Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfn Structured version   Visualization version   GIF version

Theorem signsvfn 30659
Description: Number of changes in a word compared to a shorter word. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvfn (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((#‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛   𝑖,𝑎,𝑗,𝑛,𝐹,𝑏   𝐾,𝑎,𝑏,𝑗,𝑓   𝑇,𝑎   𝑓,𝑏,𝑇,𝑗,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfn
StepHypRef Expression
1 simpl 473 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3586 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ Word ℝ)
3 simpr 477 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ)
43s1cld 13383 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ⟨“𝐾”⟩ ∈ Word ℝ)
5 ccatcl 13359 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
62, 4, 5syl2anc 693 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
7 signsv.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
8 signsv.w . . . . . 6 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
9 signsv.t . . . . . 6 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
10 signsv.v . . . . . 6 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
117, 8, 9, 10signsvvfval 30655 . . . . 5 ((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = Σ𝑗 ∈ (1..^(#‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
126, 11syl 17 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = Σ𝑗 ∈ (1..^(#‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
13 ccatlen 13360 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (#‘(𝐹 ++ ⟨“𝐾”⟩)) = ((#‘𝐹) + (#‘⟨“𝐾”⟩)))
142, 4, 13syl2anc 693 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘(𝐹 ++ ⟨“𝐾”⟩)) = ((#‘𝐹) + (#‘⟨“𝐾”⟩)))
15 s1len 13385 . . . . . . . 8 (#‘⟨“𝐾”⟩) = 1
1615oveq2i 6661 . . . . . . 7 ((#‘𝐹) + (#‘⟨“𝐾”⟩)) = ((#‘𝐹) + 1)
1714, 16syl6eq 2672 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘(𝐹 ++ ⟨“𝐾”⟩)) = ((#‘𝐹) + 1))
1817oveq2d 6666 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (1..^(#‘(𝐹 ++ ⟨“𝐾”⟩))) = (1..^((#‘𝐹) + 1)))
1918sumeq1d 14431 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(#‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^((#‘𝐹) + 1))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
20 eldifsn 4317 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
21 lennncl 13325 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (#‘𝐹) ∈ ℕ)
2220, 21sylbi 207 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) → (#‘𝐹) ∈ ℕ)
23 nnuz 11723 . . . . . . 7 ℕ = (ℤ‘1)
2422, 23syl6eleq 2711 . . . . . 6 (𝐹 ∈ (Word ℝ ∖ {∅}) → (#‘𝐹) ∈ (ℤ‘1))
2524adantr 481 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ (ℤ‘1))
26 1cnd 10056 . . . . . 6 ((((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(#‘𝐹))) ∧ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1))) → 1 ∈ ℂ)
27 0cnd 10033 . . . . . 6 ((((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(#‘𝐹))) ∧ ¬ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1))) → 0 ∈ ℂ)
2826, 27ifclda 4120 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(#‘𝐹))) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) ∈ ℂ)
29 fveq2 6191 . . . . . . 7 (𝑗 = (#‘𝐹) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)))
30 oveq1 6657 . . . . . . . 8 (𝑗 = (#‘𝐹) → (𝑗 − 1) = ((#‘𝐹) − 1))
3130fveq2d 6195 . . . . . . 7 (𝑗 = (#‘𝐹) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)))
3229, 31neeq12d 2855 . . . . . 6 (𝑗 = (#‘𝐹) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) ↔ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1))))
3332ifbid 4108 . . . . 5 (𝑗 = (#‘𝐹) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)), 1, 0))
3425, 28, 33fzosump1 14481 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^((#‘𝐹) + 1))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)), 1, 0)))
3512, 19, 343eqtrd 2660 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = (Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)), 1, 0)))
3635adantlr 751 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = (Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)), 1, 0)))
372adantr 481 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → 𝐹 ∈ Word ℝ)
383adantr 481 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → 𝐾 ∈ ℝ)
39 fzo0ss1 12498 . . . . . . . . . . 11 (1..^(#‘𝐹)) ⊆ (0..^(#‘𝐹))
4039a1i 11 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (1..^(#‘𝐹)) ⊆ (0..^(#‘𝐹)))
4140sselda 3603 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → 𝑗 ∈ (0..^(#‘𝐹)))
427, 8, 9, 10signstfvp 30648 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇𝐹)‘𝑗))
4337, 38, 41, 42syl3anc 1326 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇𝐹)‘𝑗))
44 elfzoel2 12469 . . . . . . . . . . . . 13 (𝑗 ∈ (1..^(#‘𝐹)) → (#‘𝐹) ∈ ℤ)
4544adantl 482 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → (#‘𝐹) ∈ ℤ)
46 1nn0 11308 . . . . . . . . . . . 12 1 ∈ ℕ0
47 eluzmn 11694 . . . . . . . . . . . 12 (((#‘𝐹) ∈ ℤ ∧ 1 ∈ ℕ0) → (#‘𝐹) ∈ (ℤ‘((#‘𝐹) − 1)))
4845, 46, 47sylancl 694 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → (#‘𝐹) ∈ (ℤ‘((#‘𝐹) − 1)))
49 fzoss2 12496 . . . . . . . . . . 11 ((#‘𝐹) ∈ (ℤ‘((#‘𝐹) − 1)) → (0..^((#‘𝐹) − 1)) ⊆ (0..^(#‘𝐹)))
5048, 49syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → (0..^((#‘𝐹) − 1)) ⊆ (0..^(#‘𝐹)))
51 simpr 477 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → 𝑗 ∈ (1..^(#‘𝐹)))
52 elfzoelz 12470 . . . . . . . . . . . . 13 (𝑗 ∈ (1..^(#‘𝐹)) → 𝑗 ∈ ℤ)
5352adantl 482 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → 𝑗 ∈ ℤ)
54 elfzom1b 12567 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ (#‘𝐹) ∈ ℤ) → (𝑗 ∈ (1..^(#‘𝐹)) ↔ (𝑗 − 1) ∈ (0..^((#‘𝐹) − 1))))
5553, 45, 54syl2anc 693 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → (𝑗 ∈ (1..^(#‘𝐹)) ↔ (𝑗 − 1) ∈ (0..^((#‘𝐹) − 1))))
5651, 55mpbid 222 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → (𝑗 − 1) ∈ (0..^((#‘𝐹) − 1)))
5750, 56sseldd 3604 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → (𝑗 − 1) ∈ (0..^(#‘𝐹)))
587, 8, 9, 10signstfvp 30648 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑗 − 1) ∈ (0..^(#‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇𝐹)‘(𝑗 − 1)))
5937, 38, 57, 58syl3anc 1326 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇𝐹)‘(𝑗 − 1)))
6043, 59neeq12d 2855 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) ↔ ((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1))))
6160ifbid 4108 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(#‘𝐹))) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
6261sumeq2dv 14433 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
637, 8, 9, 10signsvvfval 30655 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑉𝐹) = Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
642, 63syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉𝐹) = Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
6562, 64eqtr4d 2659 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (𝑉𝐹))
6665adantlr 751 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (𝑉𝐹))
677, 8, 9, 10signstfvn 30646 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) = (((𝑇𝐹)‘((#‘𝐹) − 1)) (sgn‘𝐾)))
6867adantlr 751 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) = (((𝑇𝐹)‘((#‘𝐹) − 1)) (sgn‘𝐾)))
692adantlr 751 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ Word ℝ)
70 simpr 477 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ)
7122ad2antrr 762 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ ℕ)
72 fzo0end 12560 . . . . . . . 8 ((#‘𝐹) ∈ ℕ → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)))
7371, 72syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)))
747, 8, 9, 10signstfvp 30648 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)) = ((𝑇𝐹)‘((#‘𝐹) − 1)))
7569, 70, 73, 74syl3anc 1326 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)) = ((𝑇𝐹)‘((#‘𝐹) − 1)))
7668, 75neeq12d 2855 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((#‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((#‘𝐹) − 1))))
777, 8, 9, 10signstfvcl 30650 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ {-1, 1})
7873, 77syldan 487 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ {-1, 1})
7970rexrd 10089 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ*)
80 sgncl 30600 . . . . . . 7 (𝐾 ∈ ℝ* → (sgn‘𝐾) ∈ {-1, 0, 1})
8179, 80syl 17 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ {-1, 0, 1})
827, 8signswch 30638 . . . . . 6 ((((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ {-1, 1} ∧ (sgn‘𝐾) ∈ {-1, 0, 1}) → ((((𝑇𝐹)‘((#‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((#‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((#‘𝐹) − 1)) · (sgn‘𝐾)) < 0))
8378, 81, 82syl2anc 693 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((#‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((#‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((#‘𝐹) − 1)) · (sgn‘𝐾)) < 0))
84 sgnsgn 30610 . . . . . . . . 9 (𝐾 ∈ ℝ* → (sgn‘(sgn‘𝐾)) = (sgn‘𝐾))
8579, 84syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘(sgn‘𝐾)) = (sgn‘𝐾))
8685oveq2d 6666 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((sgn‘((𝑇𝐹)‘((#‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) = ((sgn‘((𝑇𝐹)‘((#‘𝐹) − 1))) · (sgn‘𝐾)))
8786breq1d 4663 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((sgn‘((𝑇𝐹)‘((#‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0 ↔ ((sgn‘((𝑇𝐹)‘((#‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
88 neg1rr 11125 . . . . . . . . 9 -1 ∈ ℝ
89 1re 10039 . . . . . . . . 9 1 ∈ ℝ
90 prssi 4353 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 1} ⊆ ℝ)
9188, 89, 90mp2an 708 . . . . . . . 8 {-1, 1} ⊆ ℝ
9291, 78sseldi 3601 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ ℝ)
93 sgnclre 30601 . . . . . . . 8 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ ℝ)
9493adantl 482 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ ℝ)
95 sgnmulsgn 30611 . . . . . . 7 ((((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ ℝ ∧ (sgn‘𝐾) ∈ ℝ) → ((((𝑇𝐹)‘((#‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ ((sgn‘((𝑇𝐹)‘((#‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0))
9692, 94, 95syl2anc 693 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((#‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ ((sgn‘((𝑇𝐹)‘((#‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0))
97 sgnmulsgn 30611 . . . . . . 7 ((((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((#‘𝐹) − 1)) · 𝐾) < 0 ↔ ((sgn‘((𝑇𝐹)‘((#‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
9892, 70, 97syl2anc 693 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((#‘𝐹) − 1)) · 𝐾) < 0 ↔ ((sgn‘((𝑇𝐹)‘((#‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
9987, 96, 983bitr4d 300 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((#‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ (((𝑇𝐹)‘((#‘𝐹) − 1)) · 𝐾) < 0))
10076, 83, 993bitrd 294 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((#‘𝐹) − 1)) · 𝐾) < 0))
101100ifbid 4108 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)), 1, 0) = if((((𝑇𝐹)‘((#‘𝐹) − 1)) · 𝐾) < 0, 1, 0))
10266, 101oveq12d 6668 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((#‘𝐹) − 1)), 1, 0)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((#‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
10336, 102eqtrd 2656 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((#‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574  c0 3915  ifcif 4086  {csn 4177  {cpr 4179  {ctp 4181  cop 4183   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cmin 10266  -cneg 10267  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   ++ cconcat 13293  ⟨“cs1 13294  sgncsgn 13826  Σcsu 14416  ndxcnx 15854  Basecbs 15857  +gcplusg 15941   Σg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-sgn 13827  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-cntz 17750
This theorem is referenced by:  signsvtp  30660  signsvtn  30661  signlem0  30664
  Copyright terms: Public domain W3C validator