Proof of Theorem ballotth
| Step | Hyp | Ref
| Expression |
| 1 | | ballotth.e |
. . . . . 6
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| 2 | | ssrab2 3687 |
. . . . . 6
⊢ {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} ⊆ 𝑂 |
| 3 | 1, 2 | eqsstri 3635 |
. . . . 5
⊢ 𝐸 ⊆ 𝑂 |
| 4 | | fzfi 12771 |
. . . . . . . . . . 11
⊢
(1...(𝑀 + 𝑁)) ∈ Fin |
| 5 | | pwfi 8261 |
. . . . . . . . . . 11
⊢
((1...(𝑀 + 𝑁)) ∈ Fin ↔ 𝒫
(1...(𝑀 + 𝑁)) ∈ Fin) |
| 6 | 4, 5 | mpbi 220 |
. . . . . . . . . 10
⊢ 𝒫
(1...(𝑀 + 𝑁)) ∈ Fin |
| 7 | | ballotth.o |
. . . . . . . . . . 11
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
| 8 | | ssrab2 3687 |
. . . . . . . . . . 11
⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
| 9 | 7, 8 | eqsstri 3635 |
. . . . . . . . . 10
⊢ 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
| 10 | | ssfi 8180 |
. . . . . . . . . 10
⊢
((𝒫 (1...(𝑀
+ 𝑁)) ∈ Fin ∧
𝑂 ⊆ 𝒫
(1...(𝑀 + 𝑁))) → 𝑂 ∈ Fin) |
| 11 | 6, 9, 10 | mp2an 708 |
. . . . . . . . 9
⊢ 𝑂 ∈ Fin |
| 12 | | ssfi 8180 |
. . . . . . . . 9
⊢ ((𝑂 ∈ Fin ∧ 𝐸 ⊆ 𝑂) → 𝐸 ∈ Fin) |
| 13 | 11, 3, 12 | mp2an 708 |
. . . . . . . 8
⊢ 𝐸 ∈ Fin |
| 14 | 13 | elexi 3213 |
. . . . . . 7
⊢ 𝐸 ∈ V |
| 15 | 14 | elpw 4164 |
. . . . . 6
⊢ (𝐸 ∈ 𝒫 𝑂 ↔ 𝐸 ⊆ 𝑂) |
| 16 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (#‘𝑥) = (#‘𝐸)) |
| 17 | 16 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → ((#‘𝑥) / (#‘𝑂)) = ((#‘𝐸) / (#‘𝑂))) |
| 18 | | ballotth.p |
. . . . . . 7
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
| 19 | | ovex 6678 |
. . . . . . 7
⊢
((#‘𝐸) /
(#‘𝑂)) ∈
V |
| 20 | 17, 18, 19 | fvmpt 6282 |
. . . . . 6
⊢ (𝐸 ∈ 𝒫 𝑂 → (𝑃‘𝐸) = ((#‘𝐸) / (#‘𝑂))) |
| 21 | 15, 20 | sylbir 225 |
. . . . 5
⊢ (𝐸 ⊆ 𝑂 → (𝑃‘𝐸) = ((#‘𝐸) / (#‘𝑂))) |
| 22 | 3, 21 | ax-mp 5 |
. . . 4
⊢ (𝑃‘𝐸) = ((#‘𝐸) / (#‘𝑂)) |
| 23 | | hashssdif 13200 |
. . . . . . . 8
⊢ ((𝑂 ∈ Fin ∧ 𝐸 ⊆ 𝑂) → (#‘(𝑂 ∖ 𝐸)) = ((#‘𝑂) − (#‘𝐸))) |
| 24 | 11, 3, 23 | mp2an 708 |
. . . . . . 7
⊢
(#‘(𝑂 ∖
𝐸)) = ((#‘𝑂) − (#‘𝐸)) |
| 25 | 24 | eqcomi 2631 |
. . . . . 6
⊢
((#‘𝑂) −
(#‘𝐸)) =
(#‘(𝑂 ∖ 𝐸)) |
| 26 | | hashcl 13147 |
. . . . . . . . 9
⊢ (𝑂 ∈ Fin →
(#‘𝑂) ∈
ℕ0) |
| 27 | 11, 26 | ax-mp 5 |
. . . . . . . 8
⊢
(#‘𝑂) ∈
ℕ0 |
| 28 | 27 | nn0cni 11304 |
. . . . . . 7
⊢
(#‘𝑂) ∈
ℂ |
| 29 | | hashcl 13147 |
. . . . . . . . 9
⊢ (𝐸 ∈ Fin →
(#‘𝐸) ∈
ℕ0) |
| 30 | 13, 29 | ax-mp 5 |
. . . . . . . 8
⊢
(#‘𝐸) ∈
ℕ0 |
| 31 | 30 | nn0cni 11304 |
. . . . . . 7
⊢
(#‘𝐸) ∈
ℂ |
| 32 | | difss 3737 |
. . . . . . . . . 10
⊢ (𝑂 ∖ 𝐸) ⊆ 𝑂 |
| 33 | | ssfi 8180 |
. . . . . . . . . 10
⊢ ((𝑂 ∈ Fin ∧ (𝑂 ∖ 𝐸) ⊆ 𝑂) → (𝑂 ∖ 𝐸) ∈ Fin) |
| 34 | 11, 32, 33 | mp2an 708 |
. . . . . . . . 9
⊢ (𝑂 ∖ 𝐸) ∈ Fin |
| 35 | | hashcl 13147 |
. . . . . . . . 9
⊢ ((𝑂 ∖ 𝐸) ∈ Fin → (#‘(𝑂 ∖ 𝐸)) ∈
ℕ0) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
⊢
(#‘(𝑂 ∖
𝐸)) ∈
ℕ0 |
| 37 | 36 | nn0cni 11304 |
. . . . . . 7
⊢
(#‘(𝑂 ∖
𝐸)) ∈
ℂ |
| 38 | 28, 31, 37 | subsub23i 10371 |
. . . . . 6
⊢
(((#‘𝑂)
− (#‘𝐸)) =
(#‘(𝑂 ∖ 𝐸)) ↔ ((#‘𝑂) − (#‘(𝑂 ∖ 𝐸))) = (#‘𝐸)) |
| 39 | 25, 38 | mpbi 220 |
. . . . 5
⊢
((#‘𝑂) −
(#‘(𝑂 ∖ 𝐸))) = (#‘𝐸) |
| 40 | 39 | oveq1i 6660 |
. . . 4
⊢
(((#‘𝑂)
− (#‘(𝑂 ∖
𝐸))) / (#‘𝑂)) = ((#‘𝐸) / (#‘𝑂)) |
| 41 | 22, 40 | eqtr4i 2647 |
. . 3
⊢ (𝑃‘𝐸) = (((#‘𝑂) − (#‘(𝑂 ∖ 𝐸))) / (#‘𝑂)) |
| 42 | | ballotth.m |
. . . . . . 7
⊢ 𝑀 ∈ ℕ |
| 43 | | ballotth.n |
. . . . . . 7
⊢ 𝑁 ∈ ℕ |
| 44 | 42, 43, 7 | ballotlem1 30548 |
. . . . . 6
⊢
(#‘𝑂) =
((𝑀 + 𝑁)C𝑀) |
| 45 | 42 | nnnn0i 11300 |
. . . . . . . . 9
⊢ 𝑀 ∈
ℕ0 |
| 46 | | nnaddcl 11042 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
| 47 | 42, 43, 46 | mp2an 708 |
. . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈ ℕ |
| 48 | 47 | nnnn0i 11300 |
. . . . . . . . 9
⊢ (𝑀 + 𝑁) ∈
ℕ0 |
| 49 | 42 | nnrei 11029 |
. . . . . . . . . 10
⊢ 𝑀 ∈ ℝ |
| 50 | 43 | nnnn0i 11300 |
. . . . . . . . . 10
⊢ 𝑁 ∈
ℕ0 |
| 51 | 49, 50 | nn0addge1i 11341 |
. . . . . . . . 9
⊢ 𝑀 ≤ (𝑀 + 𝑁) |
| 52 | | elfz2nn0 12431 |
. . . . . . . . 9
⊢ (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ (𝑀 ∈ ℕ0 ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ 𝑀 ≤ (𝑀 + 𝑁))) |
| 53 | 45, 48, 51, 52 | mpbir3an 1244 |
. . . . . . . 8
⊢ 𝑀 ∈ (0...(𝑀 + 𝑁)) |
| 54 | | bccl2 13110 |
. . . . . . . 8
⊢ (𝑀 ∈ (0...(𝑀 + 𝑁)) → ((𝑀 + 𝑁)C𝑀) ∈ ℕ) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑀 + 𝑁)C𝑀) ∈ ℕ |
| 56 | 55 | nnne0i 11055 |
. . . . . 6
⊢ ((𝑀 + 𝑁)C𝑀) ≠ 0 |
| 57 | 44, 56 | eqnetri 2864 |
. . . . 5
⊢
(#‘𝑂) ≠
0 |
| 58 | 28, 57 | pm3.2i 471 |
. . . 4
⊢
((#‘𝑂) ∈
ℂ ∧ (#‘𝑂)
≠ 0) |
| 59 | | divsubdir 10721 |
. . . 4
⊢
(((#‘𝑂) ∈
ℂ ∧ (#‘(𝑂
∖ 𝐸)) ∈ ℂ
∧ ((#‘𝑂) ∈
ℂ ∧ (#‘𝑂)
≠ 0)) → (((#‘𝑂) − (#‘(𝑂 ∖ 𝐸))) / (#‘𝑂)) = (((#‘𝑂) / (#‘𝑂)) − ((#‘(𝑂 ∖ 𝐸)) / (#‘𝑂)))) |
| 60 | 28, 37, 58, 59 | mp3an 1424 |
. . 3
⊢
(((#‘𝑂)
− (#‘(𝑂 ∖
𝐸))) / (#‘𝑂)) = (((#‘𝑂) / (#‘𝑂)) − ((#‘(𝑂 ∖ 𝐸)) / (#‘𝑂))) |
| 61 | 28, 57 | dividi 10758 |
. . . 4
⊢
((#‘𝑂) /
(#‘𝑂)) =
1 |
| 62 | 61 | oveq1i 6660 |
. . 3
⊢
(((#‘𝑂) /
(#‘𝑂)) −
((#‘(𝑂 ∖ 𝐸)) / (#‘𝑂))) = (1 − ((#‘(𝑂 ∖ 𝐸)) / (#‘𝑂))) |
| 63 | 41, 60, 62 | 3eqtri 2648 |
. 2
⊢ (𝑃‘𝐸) = (1 − ((#‘(𝑂 ∖ 𝐸)) / (#‘𝑂))) |
| 64 | | ballotth.f |
. . . . . . 7
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
| 65 | | ballotth.mgtn |
. . . . . . 7
⊢ 𝑁 < 𝑀 |
| 66 | | ballotth.i |
. . . . . . 7
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| 67 | | ballotth.s |
. . . . . . 7
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| 68 | | ballotth.r |
. . . . . . 7
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| 69 | 42, 43, 7, 18, 64, 1, 65, 66, 67, 68 | ballotlem8 30598 |
. . . . . 6
⊢
(#‘{𝑐 ∈
(𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) = (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
| 70 | 69 | oveq1i 6660 |
. . . . 5
⊢
((#‘{𝑐 ∈
(𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) |
| 71 | 70 | oveq1i 6660 |
. . . 4
⊢
(((#‘{𝑐 ∈
(𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) = (((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) |
| 72 | | rabxm 3961 |
. . . . . . 7
⊢ (𝑂 ∖ 𝐸) = ({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
| 73 | 72 | fveq2i 6194 |
. . . . . 6
⊢
(#‘(𝑂 ∖
𝐸)) = (#‘({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) |
| 74 | | ssrab2 3687 |
. . . . . . . . . 10
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ⊆ (𝑂 ∖ 𝐸) |
| 75 | 74, 32 | sstri 3612 |
. . . . . . . . 9
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝑂 |
| 76 | 75, 9 | sstri 3612 |
. . . . . . . 8
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
| 77 | | ssfi 8180 |
. . . . . . . 8
⊢
((𝒫 (1...(𝑀
+ 𝑁)) ∈ Fin ∧
{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))) → {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∈ Fin) |
| 78 | 6, 76, 77 | mp2an 708 |
. . . . . . 7
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∈ Fin |
| 79 | | ssrab2 3687 |
. . . . . . . . . 10
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ (𝑂 ∖ 𝐸) |
| 80 | 79, 32 | sstri 3612 |
. . . . . . . . 9
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂 |
| 81 | 80, 9 | sstri 3612 |
. . . . . . . 8
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
| 82 | | ssfi 8180 |
. . . . . . . 8
⊢
((𝒫 (1...(𝑀
+ 𝑁)) ∈ Fin ∧
{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))) → {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin) |
| 83 | 6, 81, 82 | mp2an 708 |
. . . . . . 7
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin |
| 84 | | rabnc 3962 |
. . . . . . 7
⊢ ({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∩ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) = ∅ |
| 85 | | hashun 13171 |
. . . . . . 7
⊢ (({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∈ Fin ∧ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin ∧ ({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∩ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) = ∅) → (#‘({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}))) |
| 86 | 78, 83, 84, 85 | mp3an 1424 |
. . . . . 6
⊢
(#‘({𝑐 ∈
(𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) |
| 87 | 73, 86 | eqtri 2644 |
. . . . 5
⊢
(#‘(𝑂 ∖
𝐸)) = ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) |
| 88 | 87 | oveq1i 6660 |
. . . 4
⊢
((#‘(𝑂 ∖
𝐸)) / (#‘𝑂)) = (((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) |
| 89 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂 |
| 90 | 11 | elexi 3213 |
. . . . . . . . . 10
⊢ 𝑂 ∈ V |
| 91 | 90 | elpw2 4828 |
. . . . . . . . 9
⊢ ({𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 ↔ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂) |
| 92 | 89, 91 | mpbir 221 |
. . . . . . . 8
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 |
| 93 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → (#‘𝑥) = (#‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐})) |
| 94 | 93 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑥 = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → ((#‘𝑥) / (#‘𝑂)) = ((#‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂))) |
| 95 | | ovex 6678 |
. . . . . . . . 9
⊢
((#‘{𝑐 ∈
𝑂 ∣ ¬ 1 ∈
𝑐}) / (#‘𝑂)) ∈ V |
| 96 | 94, 18, 95 | fvmpt 6282 |
. . . . . . . 8
⊢ ({𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((#‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂))) |
| 97 | 92, 96 | ax-mp 5 |
. . . . . . 7
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((#‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)) |
| 98 | 42, 43, 7, 18 | ballotlem2 30550 |
. . . . . . 7
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁)) |
| 99 | | nfrab1 3122 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑐{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} |
| 100 | | nfrab1 3122 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑐{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
| 101 | 99, 100 | dfss2f 3594 |
. . . . . . . . . . 11
⊢ ({𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ ∀𝑐(𝑐 ∈ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) |
| 102 | 42, 43, 7, 18, 64, 1 | ballotlem4 30560 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝑂 → (¬ 1 ∈ 𝑐 → ¬ 𝑐 ∈ 𝐸)) |
| 103 | 102 | imdistani 726 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐) → (𝑐 ∈ 𝑂 ∧ ¬ 𝑐 ∈ 𝐸)) |
| 104 | | rabid 3116 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ↔ (𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐)) |
| 105 | | eldif 3584 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↔ (𝑐 ∈ 𝑂 ∧ ¬ 𝑐 ∈ 𝐸)) |
| 106 | 103, 104,
105 | 3imtr4i 281 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ (𝑂 ∖ 𝐸)) |
| 107 | 104 | simprbi 480 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → ¬ 1 ∈ 𝑐) |
| 108 | | rabid 3116 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ (𝑐 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝑐)) |
| 109 | 106, 107,
108 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
| 110 | 101, 109 | mpgbir 1726 |
. . . . . . . . . 10
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
| 111 | | rabss2 3685 |
. . . . . . . . . . 11
⊢ ((𝑂 ∖ 𝐸) ⊆ 𝑂 → {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) |
| 112 | 32, 111 | ax-mp 5 |
. . . . . . . . . 10
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} |
| 113 | 110, 112 | eqssi 3619 |
. . . . . . . . 9
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} = {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
| 114 | 113 | fveq2i 6194 |
. . . . . . . 8
⊢
(#‘{𝑐 ∈
𝑂 ∣ ¬ 1 ∈
𝑐}) = (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
| 115 | 114 | oveq1i 6660 |
. . . . . . 7
⊢
((#‘{𝑐 ∈
𝑂 ∣ ¬ 1 ∈
𝑐}) / (#‘𝑂)) = ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)) |
| 116 | 97, 98, 115 | 3eqtr3i 2652 |
. . . . . 6
⊢ (𝑁 / (𝑀 + 𝑁)) = ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)) |
| 117 | 116 | oveq2i 6661 |
. . . . 5
⊢ (2
· (𝑁 / (𝑀 + 𝑁))) = (2 · ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂))) |
| 118 | | 2cn 11091 |
. . . . . 6
⊢ 2 ∈
ℂ |
| 119 | | hashcl 13147 |
. . . . . . . 8
⊢ ({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin → (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈
ℕ0) |
| 120 | 83, 119 | ax-mp 5 |
. . . . . . 7
⊢
(#‘{𝑐 ∈
(𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈
ℕ0 |
| 121 | 120 | nn0cni 11304 |
. . . . . 6
⊢
(#‘{𝑐 ∈
(𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈
ℂ |
| 122 | 118, 121,
28, 57 | divassi 10781 |
. . . . 5
⊢ ((2
· (#‘{𝑐 ∈
(𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) = (2 · ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂))) |
| 123 | 121 | 2timesi 11147 |
. . . . . 6
⊢ (2
· (#‘{𝑐 ∈
(𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) |
| 124 | 123 | oveq1i 6660 |
. . . . 5
⊢ ((2
· (#‘{𝑐 ∈
(𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) = (((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) |
| 125 | 117, 122,
124 | 3eqtr2i 2650 |
. . . 4
⊢ (2
· (𝑁 / (𝑀 + 𝑁))) = (((#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) |
| 126 | 71, 88, 125 | 3eqtr4ri 2655 |
. . 3
⊢ (2
· (𝑁 / (𝑀 + 𝑁))) = ((#‘(𝑂 ∖ 𝐸)) / (#‘𝑂)) |
| 127 | 126 | oveq2i 6661 |
. 2
⊢ (1
− (2 · (𝑁 /
(𝑀 + 𝑁)))) = (1 − ((#‘(𝑂 ∖ 𝐸)) / (#‘𝑂))) |
| 128 | 47 | nncni 11030 |
. . . 4
⊢ (𝑀 + 𝑁) ∈ ℂ |
| 129 | 43 | nncni 11030 |
. . . . 5
⊢ 𝑁 ∈ ℂ |
| 130 | 118, 129 | mulcli 10045 |
. . . 4
⊢ (2
· 𝑁) ∈
ℂ |
| 131 | 47 | nnne0i 11055 |
. . . . 5
⊢ (𝑀 + 𝑁) ≠ 0 |
| 132 | 128, 131 | pm3.2i 471 |
. . . 4
⊢ ((𝑀 + 𝑁) ∈ ℂ ∧ (𝑀 + 𝑁) ≠ 0) |
| 133 | | divsubdir 10721 |
. . . 4
⊢ (((𝑀 + 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ ((𝑀 + 𝑁) ∈ ℂ ∧ (𝑀 + 𝑁) ≠ 0)) → (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁)))) |
| 134 | 128, 130,
132, 133 | mp3an 1424 |
. . 3
⊢ (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁))) |
| 135 | 129 | 2timesi 11147 |
. . . . . 6
⊢ (2
· 𝑁) = (𝑁 + 𝑁) |
| 136 | 135 | oveq2i 6661 |
. . . . 5
⊢ ((𝑀 + 𝑁) − (2 · 𝑁)) = ((𝑀 + 𝑁) − (𝑁 + 𝑁)) |
| 137 | 42 | nncni 11030 |
. . . . . . 7
⊢ 𝑀 ∈ ℂ |
| 138 | 137, 129,
129, 129 | addsub4i 10377 |
. . . . . 6
⊢ ((𝑀 + 𝑁) − (𝑁 + 𝑁)) = ((𝑀 − 𝑁) + (𝑁 − 𝑁)) |
| 139 | 129 | subidi 10352 |
. . . . . . 7
⊢ (𝑁 − 𝑁) = 0 |
| 140 | 139 | oveq2i 6661 |
. . . . . 6
⊢ ((𝑀 − 𝑁) + (𝑁 − 𝑁)) = ((𝑀 − 𝑁) + 0) |
| 141 | 137, 129 | subcli 10357 |
. . . . . . 7
⊢ (𝑀 − 𝑁) ∈ ℂ |
| 142 | 141 | addid1i 10223 |
. . . . . 6
⊢ ((𝑀 − 𝑁) + 0) = (𝑀 − 𝑁) |
| 143 | 138, 140,
142 | 3eqtri 2648 |
. . . . 5
⊢ ((𝑀 + 𝑁) − (𝑁 + 𝑁)) = (𝑀 − 𝑁) |
| 144 | 136, 143 | eqtri 2644 |
. . . 4
⊢ ((𝑀 + 𝑁) − (2 · 𝑁)) = (𝑀 − 𝑁) |
| 145 | 144 | oveq1i 6660 |
. . 3
⊢ (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = ((𝑀 − 𝑁) / (𝑀 + 𝑁)) |
| 146 | 128, 131 | dividi 10758 |
. . . 4
⊢ ((𝑀 + 𝑁) / (𝑀 + 𝑁)) = 1 |
| 147 | 118, 129,
128, 131 | divassi 10781 |
. . . 4
⊢ ((2
· 𝑁) / (𝑀 + 𝑁)) = (2 · (𝑁 / (𝑀 + 𝑁))) |
| 148 | 146, 147 | oveq12i 6662 |
. . 3
⊢ (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁))) = (1 − (2 · (𝑁 / (𝑀 + 𝑁)))) |
| 149 | 134, 145,
148 | 3eqtr3ri 2653 |
. 2
⊢ (1
− (2 · (𝑁 /
(𝑀 + 𝑁)))) = ((𝑀 − 𝑁) / (𝑀 + 𝑁)) |
| 150 | 63, 127, 149 | 3eqtr2i 2650 |
1
⊢ (𝑃‘𝐸) = ((𝑀 − 𝑁) / (𝑀 + 𝑁)) |