Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2 Structured version   Visualization version   GIF version

Theorem elaa2 40451
Description: Elementhood in the set of nonzero algebraic numbers: when 𝐴 is nonzero, the polynomial 𝑓 can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 1-Oct-2020.)
Assertion
Ref Expression
elaa2 (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
Distinct variable group:   𝐴,𝑓

Proof of Theorem elaa2
Dummy variables 𝑘 𝑔 𝑧 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aasscn 24073 . . . 4 𝔸 ⊆ ℂ
2 eldifi 3732 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ∈ 𝔸)
31, 2sseldi 3601 . . 3 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ∈ ℂ)
4 elaa 24071 . . . . . 6 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0))
52, 4sylib 208 . . . . 5 (𝐴 ∈ (𝔸 ∖ {0}) → (𝐴 ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0))
65simprd 479 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0)
723ad2ant1 1082 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝐴 ∈ 𝔸)
8 eldifsni 4320 . . . . . . 7 (𝐴 ∈ (𝔸 ∖ {0}) → 𝐴 ≠ 0)
983ad2ant1 1082 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝐴 ≠ 0)
10 eldifi 3732 . . . . . . 7 (𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑔 ∈ (Poly‘ℤ))
11103ad2ant2 1083 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝑔 ∈ (Poly‘ℤ))
12 eldifsni 4320 . . . . . . 7 (𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑔 ≠ 0𝑝)
13123ad2ant2 1083 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → 𝑔 ≠ 0𝑝)
14 simp3 1063 . . . . . 6 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → (𝑔𝐴) = 0)
15 fveq2 6191 . . . . . . . . 9 (𝑚 = 𝑛 → ((coeff‘𝑔)‘𝑚) = ((coeff‘𝑔)‘𝑛))
1615neeq1d 2853 . . . . . . . 8 (𝑚 = 𝑛 → (((coeff‘𝑔)‘𝑚) ≠ 0 ↔ ((coeff‘𝑔)‘𝑛) ≠ 0))
1716cbvrabv 3199 . . . . . . 7 {𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0} = {𝑛 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑛) ≠ 0}
1817infeq1i 8384 . . . . . 6 inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ) = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑛) ≠ 0}, ℝ, < )
19 oveq1 6657 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )) = (𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))
2019fveq2d 6195 . . . . . . 7 (𝑗 = 𝑘 → ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))) = ((coeff‘𝑔)‘(𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))
2120cbvmptv 4750 . . . . . 6 (𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))) = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑘 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))
22 eqid 2622 . . . . . 6 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝑔) − inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))(((𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝑔) − inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < )))(((𝑗 ∈ ℕ0 ↦ ((coeff‘𝑔)‘(𝑗 + inf({𝑚 ∈ ℕ0 ∣ ((coeff‘𝑔)‘𝑚) ≠ 0}, ℝ, < ))))‘𝑘) · (𝑧𝑘)))
237, 9, 11, 13, 14, 18, 21, 22elaa2lem 40450 . . . . 5 ((𝐴 ∈ (𝔸 ∖ {0}) ∧ 𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑔𝐴) = 0) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
2423rexlimdv3a 3033 . . . 4 (𝐴 ∈ (𝔸 ∖ {0}) → (∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔𝐴) = 0 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
256, 24mpd 15 . . 3 (𝐴 ∈ (𝔸 ∖ {0}) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
263, 25jca 554 . 2 (𝐴 ∈ (𝔸 ∖ {0}) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
27 simpl 473 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → 𝑓 ∈ (Poly‘ℤ))
28 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑓 = 0𝑝 → (coeff‘𝑓) = (coeff‘0𝑝))
29 coe0 24012 . . . . . . . . . . . . . . 15 (coeff‘0𝑝) = (ℕ0 × {0})
3028, 29syl6eq 2672 . . . . . . . . . . . . . 14 (𝑓 = 0𝑝 → (coeff‘𝑓) = (ℕ0 × {0}))
3130fveq1d 6193 . . . . . . . . . . . . 13 (𝑓 = 0𝑝 → ((coeff‘𝑓)‘0) = ((ℕ0 × {0})‘0))
32 0nn0 11307 . . . . . . . . . . . . . 14 0 ∈ ℕ0
33 fvconst2g 6467 . . . . . . . . . . . . . 14 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((ℕ0 × {0})‘0) = 0)
3432, 32, 33mp2an 708 . . . . . . . . . . . . 13 ((ℕ0 × {0})‘0) = 0
3531, 34syl6eq 2672 . . . . . . . . . . . 12 (𝑓 = 0𝑝 → ((coeff‘𝑓)‘0) = 0)
3635adantl 482 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝑓 = 0𝑝) → ((coeff‘𝑓)‘0) = 0)
37 neneq 2800 . . . . . . . . . . . 12 (((coeff‘𝑓)‘0) ≠ 0 → ¬ ((coeff‘𝑓)‘0) = 0)
3837ad2antlr 763 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝑓 = 0𝑝) → ¬ ((coeff‘𝑓)‘0) = 0)
3936, 38pm2.65da 600 . . . . . . . . . 10 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → ¬ 𝑓 = 0𝑝)
40 velsn 4193 . . . . . . . . . 10 (𝑓 ∈ {0𝑝} ↔ 𝑓 = 0𝑝)
4139, 40sylnibr 319 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → ¬ 𝑓 ∈ {0𝑝})
4227, 41eldifd 3585 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4342adantrr 753 . . . . . . 7 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
44 simprr 796 . . . . . . 7 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = 0)
4543, 44jca 554 . . . . . 6 ((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0))
4645reximi2 3010 . . . . 5 (∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
4746anim2i 593 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
48 elaa 24071 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
4947, 48sylibr 224 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ 𝔸)
50 simpr 477 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
51 nfv 1843 . . . . . 6 𝑓 𝐴 ∈ ℂ
52 nfre1 3005 . . . . . 6 𝑓𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)
5351, 52nfan 1828 . . . . 5 𝑓(𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
54 nfv 1843 . . . . 5 𝑓 ¬ 𝐴 ∈ {0}
55 simpl3r 1117 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → (𝑓𝐴) = 0)
56 fveq2 6191 . . . . . . . . . . . . . . 15 (𝐴 = 0 → (𝑓𝐴) = (𝑓‘0))
57 eqid 2622 . . . . . . . . . . . . . . . 16 (coeff‘𝑓) = (coeff‘𝑓)
5857coefv0 24004 . . . . . . . . . . . . . . 15 (𝑓 ∈ (Poly‘ℤ) → (𝑓‘0) = ((coeff‘𝑓)‘0))
5956, 58sylan9eqr 2678 . . . . . . . . . . . . . 14 ((𝑓 ∈ (Poly‘ℤ) ∧ 𝐴 = 0) → (𝑓𝐴) = ((coeff‘𝑓)‘0))
6059adantlr 751 . . . . . . . . . . . . 13 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → (𝑓𝐴) = ((coeff‘𝑓)‘0))
61 simplr 792 . . . . . . . . . . . . 13 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → ((coeff‘𝑓)‘0) ≠ 0)
6260, 61eqnetrd 2861 . . . . . . . . . . . 12 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → (𝑓𝐴) ≠ 0)
6362neneqd 2799 . . . . . . . . . . 11 (((𝑓 ∈ (Poly‘ℤ) ∧ ((coeff‘𝑓)‘0) ≠ 0) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
6463adantlrr 757 . . . . . . . . . 10 (((𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
65643adantl1 1217 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 = 0) → ¬ (𝑓𝐴) = 0)
6655, 65pm2.65da 600 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 = 0)
67 elsng 4191 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
6867biimpa 501 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ {0}) → 𝐴 = 0)
69683ad2antl1 1223 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) ∧ 𝐴 ∈ {0}) → 𝐴 = 0)
7066, 69mtand 691 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑓 ∈ (Poly‘ℤ) ∧ (((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 ∈ {0})
71703exp 1264 . . . . . 6 (𝐴 ∈ ℂ → (𝑓 ∈ (Poly‘ℤ) → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0})))
7271adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ (Poly‘ℤ) → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0})))
7353, 54, 72rexlimd 3026 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → (∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) → ¬ 𝐴 ∈ {0}))
7450, 73mpd 15 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → ¬ 𝐴 ∈ {0})
7549, 74eldifd 3585 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ (𝔸 ∖ {0}))
7626, 75impbii 199 1 (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cdif 3571  {csn 4177  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  infcinf 8347  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266  0cn0 11292  cz 11377  ...cfz 12326  cexp 12860  Σcsu 14416  0𝑝c0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943  𝔸caa 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947  df-aa 24070
This theorem is referenced by:  etransc  40500
  Copyright terms: Public domain W3C validator