Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpsuppss Structured version   Visualization version   GIF version

Theorem mndpsuppss 42152
Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.)
Hypothesis
Ref Expression
mndpsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpsuppss (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))

Proof of Theorem mndpsuppss
Dummy variables 𝑥 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 511 . . . . . 6 (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) ↔ (¬ (𝐴𝑥) ≠ (0g𝑀) ∧ ¬ (𝐵𝑥) ≠ (0g𝑀)))
2 nne 2798 . . . . . . 7 (¬ (𝐴𝑥) ≠ (0g𝑀) ↔ (𝐴𝑥) = (0g𝑀))
3 nne 2798 . . . . . . 7 (¬ (𝐵𝑥) ≠ (0g𝑀) ↔ (𝐵𝑥) = (0g𝑀))
42, 3anbi12i 733 . . . . . 6 ((¬ (𝐴𝑥) ≠ (0g𝑀) ∧ ¬ (𝐵𝑥) ≠ (0g𝑀)) ↔ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)))
51, 4bitri 264 . . . . 5 (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) ↔ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)))
6 elmapfn 7880 . . . . . . . . . . . 12 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴 Fn 𝑉)
76ad2antrl 764 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐴 Fn 𝑉)
87adantr 481 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝐴 Fn 𝑉)
9 elmapfn 7880 . . . . . . . . . . . 12 (𝐵 ∈ (𝑅𝑚 𝑉) → 𝐵 Fn 𝑉)
109ad2antll 765 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐵 Fn 𝑉)
1110adantr 481 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝐵 Fn 𝑉)
12 simplr 792 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝑉𝑋)
1312adantr 481 . . . . . . . . . 10 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → 𝑉𝑋)
14 inidm 3822 . . . . . . . . . 10 (𝑉𝑉) = 𝑉
15 simplrl 800 . . . . . . . . . 10 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → (𝐴𝑥) = (0g𝑀))
16 simplrr 801 . . . . . . . . . 10 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → (𝐵𝑥) = (0g𝑀))
178, 11, 13, 13, 14, 15, 16ofval 6906 . . . . . . . . 9 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) ∧ 𝑥𝑉) → ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) = ((0g𝑀)(+g𝑀)(0g𝑀)))
1817an32s 846 . . . . . . . 8 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) = ((0g𝑀)(+g𝑀)(0g𝑀)))
19 eqid 2622 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2622 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
2119, 20mndidcl 17308 . . . . . . . . . . 11 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
2221ancli 574 . . . . . . . . . 10 (𝑀 ∈ Mnd → (𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)))
2322ad4antr 768 . . . . . . . . 9 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → (𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)))
24 eqid 2622 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
2519, 24, 20mndlid 17311 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (0g𝑀) ∈ (Base‘𝑀)) → ((0g𝑀)(+g𝑀)(0g𝑀)) = (0g𝑀))
2623, 25syl 17 . . . . . . . 8 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((0g𝑀)(+g𝑀)(0g𝑀)) = (0g𝑀))
2718, 26eqtrd 2656 . . . . . . 7 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) = (0g𝑀))
28 nne 2798 . . . . . . 7 (¬ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀) ↔ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) = (0g𝑀))
2927, 28sylibr 224 . . . . . 6 (((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) ∧ ((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀))) → ¬ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀))
3029ex 450 . . . . 5 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑥) = (0g𝑀) ∧ (𝐵𝑥) = (0g𝑀)) → ¬ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)))
315, 30syl5bi 232 . . . 4 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (¬ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀)) → ¬ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)))
3231con4d 114 . . 3 ((((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀) → ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))))
3332ss2rabdv 3683 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → {𝑥𝑉 ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))})
347, 10, 12, 12, 14offn 6908 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴𝑓 (+g𝑀)𝐵) Fn 𝑉)
35 fnfun 5988 . . . . 5 ((𝐴𝑓 (+g𝑀)𝐵) Fn 𝑉 → Fun (𝐴𝑓 (+g𝑀)𝐵))
3634, 35syl 17 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → Fun (𝐴𝑓 (+g𝑀)𝐵))
37 ovex 6678 . . . . 5 (𝐴𝑓 (+g𝑀)𝐵) ∈ V
3837a1i 11 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴𝑓 (+g𝑀)𝐵) ∈ V)
39 fvexd 6203 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (0g𝑀) ∈ V)
40 suppval1 7301 . . . 4 ((Fun (𝐴𝑓 (+g𝑀)𝐵) ∧ (𝐴𝑓 (+g𝑀)𝐵) ∈ V ∧ (0g𝑀) ∈ V) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥 ∈ dom (𝐴𝑓 (+g𝑀)𝐵) ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
4136, 38, 39, 40syl3anc 1326 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥 ∈ dom (𝐴𝑓 (+g𝑀)𝐵) ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
4212, 7, 10offvalfv 42121 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴𝑓 (+g𝑀)𝐵) = (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))))
4342dmeqd 5326 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → dom (𝐴𝑓 (+g𝑀)𝐵) = dom (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))))
44 ovex 6678 . . . . . 6 ((𝐴𝑣)(+g𝑀)(𝐵𝑣)) ∈ V
45 eqid 2622 . . . . . 6 (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))) = (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣)))
4644, 45dmmpti 6023 . . . . 5 dom (𝑣𝑉 ↦ ((𝐴𝑣)(+g𝑀)(𝐵𝑣))) = 𝑉
4743, 46syl6eq 2672 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → dom (𝐴𝑓 (+g𝑀)𝐵) = 𝑉)
48 rabeq 3192 . . . 4 (dom (𝐴𝑓 (+g𝑀)𝐵) = 𝑉 → {𝑥 ∈ dom (𝐴𝑓 (+g𝑀)𝐵) ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
4947, 48syl 17 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → {𝑥 ∈ dom (𝐴𝑓 (+g𝑀)𝐵) ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
5041, 49eqtrd 2656 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) = {𝑥𝑉 ∣ ((𝐴𝑓 (+g𝑀)𝐵)‘𝑥) ≠ (0g𝑀)})
51 elmapfun 7881 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → Fun 𝐴)
52 id 22 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴 ∈ (𝑅𝑚 𝑉))
53 fvexd 6203 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → (0g𝑀) ∈ V)
54 suppval1 7301 . . . . . . 7 ((Fun 𝐴𝐴 ∈ (𝑅𝑚 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5551, 52, 53, 54syl3anc 1326 . . . . . 6 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝐴 supp (0g𝑀)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)})
56 elmapi 7879 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴:𝑉𝑅)
57 fdm 6051 . . . . . . 7 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
58 rabeq 3192 . . . . . . 7 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
5956, 57, 583syl 18 . . . . . 6 (𝐴 ∈ (𝑅𝑚 𝑉) → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
6055, 59eqtrd 2656 . . . . 5 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝐴 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
6160ad2antrl 764 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)})
62 elmapfun 7881 . . . . . . 7 (𝐵 ∈ (𝑅𝑚 𝑉) → Fun 𝐵)
6362ad2antll 765 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → Fun 𝐵)
64 simprr 796 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐵 ∈ (𝑅𝑚 𝑉))
65 suppval1 7301 . . . . . 6 ((Fun 𝐵𝐵 ∈ (𝑅𝑚 𝑉) ∧ (0g𝑀) ∈ V) → (𝐵 supp (0g𝑀)) = {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)})
6663, 64, 39, 65syl3anc 1326 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐵 supp (0g𝑀)) = {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)})
67 elmapi 7879 . . . . . . . 8 (𝐵 ∈ (𝑅𝑚 𝑉) → 𝐵:𝑉𝑅)
68 fdm 6051 . . . . . . . 8 (𝐵:𝑉𝑅 → dom 𝐵 = 𝑉)
6967, 68syl 17 . . . . . . 7 (𝐵 ∈ (𝑅𝑚 𝑉) → dom 𝐵 = 𝑉)
7069ad2antll 765 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → dom 𝐵 = 𝑉)
71 rabeq 3192 . . . . . 6 (dom 𝐵 = 𝑉 → {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
7270, 71syl 17 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → {𝑥 ∈ dom 𝐵 ∣ (𝐵𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
7366, 72eqtrd 2656 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐵 supp (0g𝑀)) = {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)})
7461, 73uneq12d 3768 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) = ({𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)} ∪ {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)}))
75 unrab 3898 . . 3 ({𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑀)} ∪ {𝑥𝑉 ∣ (𝐵𝑥) ≠ (0g𝑀)}) = {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))}
7674, 75syl6eq 2672 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) = {𝑥𝑉 ∣ ((𝐴𝑥) ≠ (0g𝑀) ∨ (𝐵𝑥) ≠ (0g𝑀))})
7733, 50, 763sstr4d 3648 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  cun 3572  wss 3574  cmpt 4729  dom cdm 5114  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895   supp csupp 7295  𝑚 cmap 7857  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-1st 7168  df-2nd 7169  df-supp 7296  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by:  mndpsuppfi  42156
  Copyright terms: Public domain W3C validator