| Step | Hyp | Ref
| Expression |
| 1 | | fzfi 12771 |
. . . . . 6
⊢
(0...𝐾) ∈
Fin |
| 2 | | fzfi 12771 |
. . . . . 6
⊢
(1...𝑁) ∈
Fin |
| 3 | | mapfi 8262 |
. . . . . 6
⊢
(((0...𝐾) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((0...𝐾)
↑𝑚 (1...𝑁)) ∈ Fin) |
| 4 | 1, 2, 3 | mp2an 708 |
. . . . 5
⊢
((0...𝐾)
↑𝑚 (1...𝑁)) ∈ Fin |
| 5 | | fzfi 12771 |
. . . . 5
⊢
(0...(𝑁 − 1))
∈ Fin |
| 6 | | mapfi 8262 |
. . . . 5
⊢
((((0...𝐾)
↑𝑚 (1...𝑁)) ∈ Fin ∧ (0...(𝑁 − 1)) ∈ Fin) → (((0...𝐾) ↑𝑚
(1...𝑁))
↑𝑚 (0...(𝑁 − 1))) ∈ Fin) |
| 7 | 4, 5, 6 | mp2an 708 |
. . . 4
⊢
(((0...𝐾)
↑𝑚 (1...𝑁)) ↑𝑚 (0...(𝑁 − 1))) ∈
Fin |
| 8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))) ∈
Fin) |
| 9 | | 2z 11409 |
. . . 4
⊢ 2 ∈
ℤ |
| 10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → 2 ∈
ℤ) |
| 11 | | fzofi 12773 |
. . . . . . . 8
⊢
(0..^𝐾) ∈
Fin |
| 12 | | mapfi 8262 |
. . . . . . . 8
⊢
(((0..^𝐾) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((0..^𝐾)
↑𝑚 (1...𝑁)) ∈ Fin) |
| 13 | 11, 2, 12 | mp2an 708 |
. . . . . . 7
⊢
((0..^𝐾)
↑𝑚 (1...𝑁)) ∈ Fin |
| 14 | | mapfi 8262 |
. . . . . . . . 9
⊢
(((1...𝑁) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((1...𝑁)
↑𝑚 (1...𝑁)) ∈ Fin) |
| 15 | 2, 2, 14 | mp2an 708 |
. . . . . . . 8
⊢
((1...𝑁)
↑𝑚 (1...𝑁)) ∈ Fin |
| 16 | | f1of 6137 |
. . . . . . . . . 10
⊢ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑓:(1...𝑁)⟶(1...𝑁)) |
| 17 | 16 | ss2abi 3674 |
. . . . . . . . 9
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} |
| 18 | | ovex 6678 |
. . . . . . . . . 10
⊢
(1...𝑁) ∈
V |
| 19 | 18, 18 | mapval 7869 |
. . . . . . . . 9
⊢
((1...𝑁)
↑𝑚 (1...𝑁)) = {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} |
| 20 | 17, 19 | sseqtr4i 3638 |
. . . . . . . 8
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ ((1...𝑁) ↑𝑚 (1...𝑁)) |
| 21 | | ssfi 8180 |
. . . . . . . 8
⊢
((((1...𝑁)
↑𝑚 (1...𝑁)) ∈ Fin ∧ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ ((1...𝑁) ↑𝑚 (1...𝑁))) → {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) |
| 22 | 15, 20, 21 | mp2an 708 |
. . . . . . 7
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin |
| 23 | | xpfi 8231 |
. . . . . . 7
⊢
((((0..^𝐾)
↑𝑚 (1...𝑁)) ∈ Fin ∧ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) → (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin) |
| 24 | 13, 22, 23 | mp2an 708 |
. . . . . 6
⊢
(((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin |
| 25 | | fzfi 12771 |
. . . . . 6
⊢
(0...𝑁) ∈
Fin |
| 26 | | xpfi 8231 |
. . . . . 6
⊢
(((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin ∧ (0...𝑁) ∈ Fin) → ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin) |
| 27 | 24, 25, 26 | mp2an 708 |
. . . . 5
⊢
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin |
| 28 | | rabfi 8185 |
. . . . 5
⊢
(((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} ∈ Fin) |
| 29 | 27, 28 | ax-mp 5 |
. . . 4
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} ∈ Fin |
| 30 | | hashcl 13147 |
. . . . 5
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} ∈ Fin → (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) ∈
ℕ0) |
| 31 | 30 | nn0zd 11480 |
. . . 4
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} ∈ Fin → (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) ∈ ℤ) |
| 32 | 29, 31 | mp1i 13 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) ∈ ℤ) |
| 33 | | dfrex2 2996 |
. . . . 5
⊢
(∃𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ↔ ¬ ∀𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ¬ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) |
| 34 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 −
1)))) |
| 35 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑡2 |
| 36 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑡
∥ |
| 37 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑡# |
| 38 | | nfrab1 3122 |
. . . . . . . 8
⊢
Ⅎ𝑡{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} |
| 39 | 37, 38 | nffv 6198 |
. . . . . . 7
⊢
Ⅎ𝑡(#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) |
| 40 | 35, 36, 39 | nfbr 4699 |
. . . . . 6
⊢
Ⅎ𝑡2 ∥
(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) |
| 41 | | neq0 3930 |
. . . . . . . . . . . 12
⊢ (¬
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} = ∅ ↔
∃𝑠 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) |
| 42 | | iddvds 14995 |
. . . . . . . . . . . . . . . . 17
⊢ (2 ∈
ℤ → 2 ∥ 2) |
| 43 | 9, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∥
2 |
| 44 | | vex 3203 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑠 ∈ V |
| 45 | | hashsng 13159 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ V → (#‘{𝑠}) = 1) |
| 46 | 44, 45 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(#‘{𝑠}) =
1 |
| 47 | 46 | oveq2i 6661 |
. . . . . . . . . . . . . . . . 17
⊢ (1 +
(#‘{𝑠})) = (1 +
1) |
| 48 | | df-2 11079 |
. . . . . . . . . . . . . . . . 17
⊢ 2 = (1 +
1) |
| 49 | 47, 48 | eqtr4i 2647 |
. . . . . . . . . . . . . . . 16
⊢ (1 +
(#‘{𝑠})) =
2 |
| 50 | 43, 49 | breqtrri 4680 |
. . . . . . . . . . . . . . 15
⊢ 2 ∥
(1 + (#‘{𝑠})) |
| 51 | | rabfi 8185 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∈
Fin) |
| 52 | | diffi 8192 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∈ Fin →
({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∈ Fin) |
| 53 | 27, 51, 52 | mp2b 10 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∈ Fin |
| 54 | | snfi 8038 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑠} ∈ Fin |
| 55 | | incom 3805 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∩ {𝑠}) = ({𝑠} ∩ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) |
| 56 | | disjdif 4040 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑠} ∩ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) = ∅ |
| 57 | 55, 56 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∩ {𝑠}) = ∅ |
| 58 | | hashun 13171 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∈ Fin ∧ {𝑠} ∈ Fin ∧ (({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∩ {𝑠}) = ∅) → (#‘(({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∪ {𝑠})) = ((#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) + (#‘{𝑠}))) |
| 59 | 53, 54, 57, 58 | mp3an 1424 |
. . . . . . . . . . . . . . . . . 18
⊢
(#‘(({𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∪ {𝑠})) = ((#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) + (#‘{𝑠})) |
| 60 | | difsnid 4341 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → (({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∪ {𝑠}) = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) |
| 61 | 60 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → (#‘(({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∪ {𝑠})) = (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})) |
| 62 | 59, 61 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → ((#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) + (#‘{𝑠})) = (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})) |
| 63 | 62 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) →
((#‘({𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) + (#‘{𝑠})) = (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})) |
| 64 | | poimir.0 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 65 | 64 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → 𝑁 ∈
ℕ) |
| 66 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑢 → (2nd ‘𝑡) = (2nd ‘𝑢)) |
| 67 | 66 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑢 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑢))) |
| 68 | 67 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑢 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑢), 𝑦, (𝑦 + 1))) |
| 69 | 68 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑢 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑢), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 70 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑢 → (1st ‘𝑡) = (1st ‘𝑢)) |
| 71 | 70 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑢 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑢))) |
| 72 | 70 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 𝑢 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑢))) |
| 73 | 72 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑢 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑢)) “
(1...𝑗))) |
| 74 | 73 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑢 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑢)) “ (1...𝑗)) × {1})) |
| 75 | 72 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑢 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑢)) “ ((𝑗 + 1)...𝑁))) |
| 76 | 75 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑢 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 77 | 74, 76 | uneq12d 3768 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑢 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 78 | 71, 77 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑢 → ((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 79 | 78 | csbeq2dv 3992 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑢 → ⦋if(𝑦 < (2nd ‘𝑢), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑢), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 80 | 69, 79 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑢 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑢), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 81 | 80 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑢 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑢), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 82 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑤 → (𝑦 < (2nd ‘𝑢) ↔ 𝑤 < (2nd ‘𝑢))) |
| 83 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑤 → 𝑦 = 𝑤) |
| 84 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑤 → (𝑦 + 1) = (𝑤 + 1)) |
| 85 | 82, 83, 84 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑤 → if(𝑦 < (2nd ‘𝑢), 𝑦, (𝑦 + 1)) = if(𝑤 < (2nd ‘𝑢), 𝑤, (𝑤 + 1))) |
| 86 | 85 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑤 → ⦋if(𝑦 < (2nd ‘𝑢), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑤 < (2nd
‘𝑢), 𝑤, (𝑤 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 87 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑖 → (1...𝑗) = (1...𝑖)) |
| 88 | 87 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 = 𝑖 → ((2nd
‘(1st ‘𝑢)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑢)) “
(1...𝑖))) |
| 89 | 88 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 𝑖 → (((2nd
‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑢)) “ (1...𝑖)) × {1})) |
| 90 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1)) |
| 91 | 90 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑖 → ((𝑗 + 1)...𝑁) = ((𝑖 + 1)...𝑁)) |
| 92 | 91 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 = 𝑖 → ((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑢)) “ ((𝑖 + 1)...𝑁))) |
| 93 | 92 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 𝑖 → (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0})) |
| 94 | 89, 93 | uneq12d 3768 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 𝑖 → ((((2nd
‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑢)) “ (1...𝑖)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0}))) |
| 95 | 94 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑖 → ((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑖)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0})))) |
| 96 | 95 | cbvcsbv 3539 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
⦋if(𝑤
< (2nd ‘𝑢), 𝑤, (𝑤 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑤 < (2nd
‘𝑢), 𝑤, (𝑤 + 1)) / 𝑖⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑖)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0}))) |
| 97 | 86, 96 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑤 → ⦋if(𝑦 < (2nd ‘𝑢), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑤 < (2nd
‘𝑢), 𝑤, (𝑤 + 1)) / 𝑖⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑖)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0})))) |
| 98 | 97 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑢), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑤 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑤 < (2nd
‘𝑢), 𝑤, (𝑤 + 1)) / 𝑖⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑖)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0})))) |
| 99 | 81, 98 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑢 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑤 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑤 < (2nd
‘𝑢), 𝑤, (𝑤 + 1)) / 𝑖⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑖)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0}))))) |
| 100 | 99 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑢 → (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝑥 = (𝑤 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑤 < (2nd
‘𝑢), 𝑤, (𝑤 + 1)) / 𝑖⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑖)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0})))))) |
| 101 | 100 | cbvrabv 3199 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} = {𝑢 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑤 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑤 < (2nd
‘𝑢), 𝑤, (𝑤 + 1)) / 𝑖⦌((1st
‘(1st ‘𝑢)) ∘𝑓 +
((((2nd ‘(1st ‘𝑢)) “ (1...𝑖)) × {1}) ∪ (((2nd
‘(1st ‘𝑢)) “ ((𝑖 + 1)...𝑁)) × {0}))))} |
| 102 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))) →
𝑥:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁))) |
| 103 | 102 | ad3antlr 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → 𝑥:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁))) |
| 104 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) |
| 105 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∃𝑝 ∈
ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) → ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0) |
| 106 | 105 | ralimi 2952 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑛 ∈
(1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0) |
| 107 | 106 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0) |
| 108 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝑝‘𝑛) = (𝑝‘𝑚)) |
| 109 | 108 | neeq1d 2853 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → ((𝑝‘𝑛) ≠ 0 ↔ (𝑝‘𝑚) ≠ 0)) |
| 110 | 109 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑚) ≠ 0)) |
| 111 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 = 𝑞 → (𝑝‘𝑚) = (𝑞‘𝑚)) |
| 112 | 111 | neeq1d 2853 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = 𝑞 → ((𝑝‘𝑚) ≠ 0 ↔ (𝑞‘𝑚) ≠ 0)) |
| 113 | 112 | cbvrexv 3172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑝 ∈ ran
𝑥(𝑝‘𝑚) ≠ 0 ↔ ∃𝑞 ∈ ran 𝑥(𝑞‘𝑚) ≠ 0) |
| 114 | 110, 113 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ ∃𝑞 ∈ ran 𝑥(𝑞‘𝑚) ≠ 0)) |
| 115 | 114 | rspccva 3308 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑛 ∈
(1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ 𝑚 ∈ (1...𝑁)) → ∃𝑞 ∈ ran 𝑥(𝑞‘𝑚) ≠ 0) |
| 116 | 107, 115 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) ∧ 𝑚 ∈ (1...𝑁)) → ∃𝑞 ∈ ran 𝑥(𝑞‘𝑚) ≠ 0) |
| 117 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∃𝑝 ∈
ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) → ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) |
| 118 | 117 | ralimi 2952 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑛 ∈
(1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) |
| 119 | 118 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) |
| 120 | 108 | neeq1d 2853 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → ((𝑝‘𝑛) ≠ 𝐾 ↔ (𝑝‘𝑚) ≠ 𝐾)) |
| 121 | 120 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾 ↔ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑚) ≠ 𝐾)) |
| 122 | 111 | neeq1d 2853 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = 𝑞 → ((𝑝‘𝑚) ≠ 𝐾 ↔ (𝑞‘𝑚) ≠ 𝐾)) |
| 123 | 122 | cbvrexv 3172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑝 ∈ ran
𝑥(𝑝‘𝑚) ≠ 𝐾 ↔ ∃𝑞 ∈ ran 𝑥(𝑞‘𝑚) ≠ 𝐾) |
| 124 | 121, 123 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾 ↔ ∃𝑞 ∈ ran 𝑥(𝑞‘𝑚) ≠ 𝐾)) |
| 125 | 124 | rspccva 3308 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑛 ∈
(1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾 ∧ 𝑚 ∈ (1...𝑁)) → ∃𝑞 ∈ ran 𝑥(𝑞‘𝑚) ≠ 𝐾) |
| 126 | 119, 125 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) ∧ 𝑚 ∈ (1...𝑁)) → ∃𝑞 ∈ ran 𝑥(𝑞‘𝑚) ≠ 𝐾) |
| 127 | 65, 101, 103, 104, 116, 126 | poimirlem22 33431 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → ∃!𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}𝑧 ≠ 𝑠) |
| 128 | | eldifsn 4317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ↔ (𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∧ 𝑧 ≠ 𝑠)) |
| 129 | 128 | eubii 2492 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃!𝑧 𝑧 ∈ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ↔ ∃!𝑧(𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∧ 𝑧 ≠ 𝑠)) |
| 130 | 53 | elexi 3213 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∈ V |
| 131 | | euhash1 13208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}) ∈ V →
((#‘({𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) = 1 ↔ ∃!𝑧 𝑧 ∈ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠}))) |
| 132 | 130, 131 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘({𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) = 1 ↔ ∃!𝑧 𝑧 ∈ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) |
| 133 | | df-reu 2919 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃!𝑧 ∈
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}𝑧 ≠ 𝑠 ↔ ∃!𝑧(𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∧ 𝑧 ≠ 𝑠)) |
| 134 | 129, 132,
133 | 3bitr4ri 293 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃!𝑧 ∈
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}𝑧 ≠ 𝑠 ↔ (#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) = 1) |
| 135 | 127, 134 | sylib 208 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → (#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) = 1) |
| 136 | 135 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) →
((#‘({𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ∖ {𝑠})) + (#‘{𝑠})) = (1 + (#‘{𝑠}))) |
| 137 | 63, 136 | eqtr3d 2658 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) = (1 + (#‘{𝑠}))) |
| 138 | 50, 137 | syl5breqr 4691 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) ∧ 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) → 2 ∥
(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})) |
| 139 | 138 | ex 450 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → (𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 2 ∥
(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}))) |
| 140 | 139 | exlimdv 1861 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → (∃𝑠 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 2 ∥
(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}))) |
| 141 | 41, 140 | syl5bi 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → (¬ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} = ∅ → 2
∥ (#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}))) |
| 142 | | dvds0 14997 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℤ → 2 ∥ 0) |
| 143 | 9, 142 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 2 ∥
0 |
| 144 | | hash0 13158 |
. . . . . . . . . . . . 13
⊢
(#‘∅) = 0 |
| 145 | 143, 144 | breqtrri 4680 |
. . . . . . . . . . . 12
⊢ 2 ∥
(#‘∅) |
| 146 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} = ∅ →
(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) =
(#‘∅)) |
| 147 | 145, 146 | syl5breqr 4691 |
. . . . . . . . . . 11
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} = ∅ → 2
∥ (#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})) |
| 148 | 141, 147 | pm2.61d2 172 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})) |
| 149 | 148 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (∀𝑛 ∈
(1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) → 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}))) |
| 150 | 149 | adantld 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (((0...(𝑁 −
1)) ⊆ ran (𝑝 ∈
ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}))) |
| 151 | | iba 524 |
. . . . . . . . . . 11
⊢
(((0...(𝑁 −
1)) ⊆ ran (𝑝 ∈
ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))))) |
| 152 | 151 | rabbidv 3189 |
. . . . . . . . . 10
⊢
(((0...(𝑁 −
1)) ⊆ ran (𝑝 ∈
ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) |
| 153 | 152 | fveq2d 6195 |
. . . . . . . . 9
⊢
(((0...(𝑁 −
1)) ⊆ ran (𝑝 ∈
ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) = (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))})) |
| 154 | 153 | breq2d 4665 |
. . . . . . . 8
⊢
(((0...(𝑁 −
1)) ⊆ ran (𝑝 ∈
ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → (2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) ↔ 2 ∥
(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}))) |
| 155 | 150, 154 | mpbidi 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (((0...(𝑁 −
1)) ⊆ ran (𝑝 ∈
ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}))) |
| 156 | 155 | a1d 25 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))})))) |
| 157 | 34, 40, 156 | rexlimd 3026 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (∃𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}))) |
| 158 | 33, 157 | syl5bir 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (¬ ∀𝑡
∈ ((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ¬ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}))) |
| 159 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) → ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) |
| 160 | 159 | con3i 150 |
. . . . . . . 8
⊢ (¬
((0...(𝑁 − 1))
⊆ ran (𝑝 ∈ ran
𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → ¬ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))) |
| 161 | 160 | ralimi 2952 |
. . . . . . 7
⊢
(∀𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ¬ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → ∀𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ¬ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))) |
| 162 | | rabeq0 3957 |
. . . . . . 7
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} = ∅ ↔ ∀𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ¬ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))) |
| 163 | 161, 162 | sylibr 224 |
. . . . . 6
⊢
(∀𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ¬ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} = ∅) |
| 164 | 163 | fveq2d 6195 |
. . . . 5
⊢
(∀𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ¬ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) = (#‘∅)) |
| 165 | 145, 164 | syl5breqr 4691 |
. . . 4
⊢
(∀𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ¬ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) → 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))})) |
| 166 | 158, 165 | pm2.61d2 172 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ 2 ∥ (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))})) |
| 167 | 8, 10, 32, 166 | fsumdvds 15030 |
. 2
⊢ (𝜑 → 2 ∥ Σ𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 −
1)))(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))})) |
| 168 | | rabfi 8185 |
. . . . 5
⊢
(((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∈ Fin) |
| 169 | 27, 168 | ax-mp 5 |
. . . 4
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∈ Fin |
| 170 | | simp1 1061 |
. . . . . . 7
⊢
((∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
(0...(𝑁 − 1))𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) |
| 171 | | sneq 4187 |
. . . . . . . . . . . . 13
⊢
((2nd ‘𝑡) = 𝑁 → {(2nd ‘𝑡)} = {𝑁}) |
| 172 | 171 | difeq2d 3728 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑡) = 𝑁 → ((0...𝑁) ∖ {(2nd ‘𝑡)}) = ((0...𝑁) ∖ {𝑁})) |
| 173 | | difun2 4048 |
. . . . . . . . . . . . 13
⊢
(((0...(𝑁 −
1)) ∪ {𝑁}) ∖
{𝑁}) = ((0...(𝑁 − 1)) ∖ {𝑁}) |
| 174 | 64 | nnnn0d 11351 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 175 | | nn0uz 11722 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 = (ℤ≥‘0) |
| 176 | 174, 175 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 177 | | fzm1 12420 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝑛 ∈ (0...𝑁) ↔ (𝑛 ∈ (0...(𝑁 − 1)) ∨ 𝑛 = 𝑁))) |
| 178 | 176, 177 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑛 ∈ (0...𝑁) ↔ (𝑛 ∈ (0...(𝑁 − 1)) ∨ 𝑛 = 𝑁))) |
| 179 | | elun 3753 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ((0...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (0...(𝑁 − 1)) ∨ 𝑛 ∈ {𝑁})) |
| 180 | | velsn 4193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ {𝑁} ↔ 𝑛 = 𝑁) |
| 181 | 180 | orbi2i 541 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (0...(𝑁 − 1)) ∨ 𝑛 ∈ {𝑁}) ↔ (𝑛 ∈ (0...(𝑁 − 1)) ∨ 𝑛 = 𝑁)) |
| 182 | 179, 181 | bitri 264 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ((0...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (0...(𝑁 − 1)) ∨ 𝑛 = 𝑁)) |
| 183 | 178, 182 | syl6bbr 278 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑛 ∈ (0...𝑁) ↔ 𝑛 ∈ ((0...(𝑁 − 1)) ∪ {𝑁}))) |
| 184 | 183 | eqrdv 2620 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ {𝑁})) |
| 185 | 184 | difeq1d 3727 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((0...𝑁) ∖ {𝑁}) = (((0...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁})) |
| 186 | 64 | nnzd 11481 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 187 | | uzid 11702 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
| 188 | | uznfz 12423 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝑁) → ¬ 𝑁 ∈ (0...(𝑁 − 1))) |
| 189 | 186, 187,
188 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑁 ∈ (0...(𝑁 − 1))) |
| 190 | | disjsn 4246 |
. . . . . . . . . . . . . . 15
⊢
(((0...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(0...(𝑁 −
1))) |
| 191 | | disj3 4021 |
. . . . . . . . . . . . . . 15
⊢
(((0...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ (0...(𝑁 − 1))
= ((0...(𝑁 − 1))
∖ {𝑁})) |
| 192 | 190, 191 | bitr3i 266 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑁 ∈ (0...(𝑁 − 1)) ↔ (0...(𝑁 − 1)) = ((0...(𝑁 − 1)) ∖ {𝑁})) |
| 193 | 189, 192 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...(𝑁 − 1)) = ((0...(𝑁 − 1)) ∖ {𝑁})) |
| 194 | 173, 185,
193 | 3eqtr4a 2682 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((0...𝑁) ∖ {𝑁}) = (0...(𝑁 − 1))) |
| 195 | 172, 194 | sylan9eqr 2678 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (2nd
‘𝑡) = 𝑁) → ((0...𝑁) ∖ {(2nd ‘𝑡)}) = (0...(𝑁 − 1))) |
| 196 | 195 | rexeqdv 3145 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (2nd
‘𝑡) = 𝑁) → (∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 197 | 196 | biimprd 238 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (2nd
‘𝑡) = 𝑁) → (∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 198 | 197 | ralimdv 2963 |
. . . . . . . 8
⊢ ((𝜑 ∧ (2nd
‘𝑡) = 𝑁) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 199 | 198 | expimpd 629 |
. . . . . . 7
⊢ (𝜑 → (((2nd
‘𝑡) = 𝑁 ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 200 | 170, 199 | sylan2i 687 |
. . . . . 6
⊢ (𝜑 → (((2nd
‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 201 | 200 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 202 | 201 | ss2rabdv 3683 |
. . . 4
⊢ (𝜑 → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ⊆ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) |
| 203 | | hashssdif 13200 |
. . . 4
⊢ (({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∈ Fin ∧ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ⊆ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) → (#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})) = ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}))) |
| 204 | 169, 202,
203 | sylancr 695 |
. . 3
⊢ (𝜑 → (#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})) = ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}))) |
| 205 | 64 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → 𝑁 ∈ ℕ) |
| 206 | | poimirlem28.1 |
. . . . . . . . . 10
⊢ (𝑝 = ((1st ‘𝑠) ∘𝑓 +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) |
| 207 | | poimirlem28.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) |
| 208 | 207 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) |
| 209 | | xp1st 7198 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 210 | | xp1st 7198 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑡)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 211 | | elmapi 7879 |
. . . . . . . . . . . 12
⊢
((1st ‘(1st ‘𝑡)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑡)):(1...𝑁)⟶(0..^𝐾)) |
| 212 | 209, 210,
211 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st
‘(1st ‘𝑡)):(1...𝑁)⟶(0..^𝐾)) |
| 213 | 212 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (1st
‘(1st ‘𝑡)):(1...𝑁)⟶(0..^𝐾)) |
| 214 | | xp2nd 7199 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑡)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 215 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢
(2nd ‘(1st ‘𝑡)) ∈ V |
| 216 | | f1oeq1 6127 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (2nd
‘(1st ‘𝑡)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑡)):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 217 | 215, 216 | elab 3350 |
. . . . . . . . . . . . 13
⊢
((2nd ‘(1st ‘𝑡)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑡)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 218 | 214, 217 | sylib 208 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑡)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 219 | 209, 218 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd
‘(1st ‘𝑡)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 220 | 219 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (2nd
‘(1st ‘𝑡)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 221 | | xp2nd 7199 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd ‘𝑡) ∈ (0...𝑁)) |
| 222 | 221 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (2nd ‘𝑡) ∈ (0...𝑁)) |
| 223 | 205, 206,
208, 213, 220, 222 | poimirlem24 33433 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋〈(1st
‘(1st ‘𝑡)), (2nd ‘(1st
‘𝑡))〉 / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))))) |
| 224 | 209 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 225 | | 1st2nd2 7205 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘𝑡) = 〈(1st
‘(1st ‘𝑡)), (2nd ‘(1st
‘𝑡))〉) |
| 226 | 225 | csbeq1d 3540 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋〈(1st
‘(1st ‘𝑡)), (2nd ‘(1st
‘𝑡))〉 / 𝑠⦌𝐶) |
| 227 | 226 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑖 = ⦋〈(1st
‘(1st ‘𝑡)), (2nd ‘(1st
‘𝑡))〉 / 𝑠⦌𝐶)) |
| 228 | 227 | rexbidv 3052 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋〈(1st
‘(1st ‘𝑡)), (2nd ‘(1st
‘𝑡))〉 / 𝑠⦌𝐶)) |
| 229 | 228 | ralbidv 2986 |
. . . . . . . . . . 11
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋〈(1st
‘(1st ‘𝑡)), (2nd ‘(1st
‘𝑡))〉 / 𝑠⦌𝐶)) |
| 230 | 229 | anbi1d 741 |
. . . . . . . . . 10
⊢
((1st ‘𝑡) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋〈(1st
‘(1st ‘𝑡)), (2nd ‘(1st
‘𝑡))〉 / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))))) |
| 231 | 224, 230 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋〈(1st
‘(1st ‘𝑡)), (2nd ‘(1st
‘𝑡))〉 / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))))) |
| 232 | 223, 231 | bitr4d 271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))))) |
| 233 | | frn 6053 |
. . . . . . . . . . . . . . 15
⊢ (𝑥:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)) → ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) |
| 234 | 102, 233 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))) →
ran 𝑥 ⊆ ((0...𝐾) ↑𝑚
(1...𝑁))) |
| 235 | 234 | anim2i 593 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁)))) |
| 236 | | dfss3 3592 |
. . . . . . . . . . . . . 14
⊢
((0...(𝑁 − 1))
⊆ ran (𝑝 ∈ ran
𝑥 ↦ 𝐵) ↔ ∀𝑛 ∈ (0...(𝑁 − 1))𝑛 ∈ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵)) |
| 237 | | vex 3203 |
. . . . . . . . . . . . . . . 16
⊢ 𝑛 ∈ V |
| 238 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ran 𝑥 ↦ 𝐵) = (𝑝 ∈ ran 𝑥 ↦ 𝐵) |
| 239 | 238 | elrnmpt 5372 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ V → (𝑛 ∈ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ↔ ∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵)) |
| 240 | 237, 239 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ↔ ∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) |
| 241 | 240 | ralbii 2980 |
. . . . . . . . . . . . . 14
⊢
(∀𝑛 ∈
(0...(𝑁 − 1))𝑛 ∈ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ↔ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) |
| 242 | 236, 241 | sylbb 209 |
. . . . . . . . . . . . 13
⊢
((0...(𝑁 − 1))
⊆ ran (𝑝 ∈ ran
𝑥 ↦ 𝐵) → ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) |
| 243 | | 1eluzge0 11732 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
(ℤ≥‘0) |
| 244 | | fzss1 12380 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
(ℤ≥‘0) → (1...(𝑁 − 1)) ⊆ (0...(𝑁 − 1))) |
| 245 | | ssralv 3666 |
. . . . . . . . . . . . . . . . 17
⊢
((1...(𝑁 − 1))
⊆ (0...(𝑁 − 1))
→ (∀𝑛 ∈
(0...(𝑁 −
1))∃𝑝 ∈ ran
𝑥 𝑛 = 𝐵 → ∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵)) |
| 246 | 243, 244,
245 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑛 ∈
(0...(𝑁 −
1))∃𝑝 ∈ ran
𝑥 𝑛 = 𝐵 → ∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) |
| 247 | 64 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 248 | | npcan1 10455 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
| 249 | 247, 248 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 250 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 251 | 186, 250 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 252 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 253 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 254 | 251, 252,
253 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 255 | 249, 254 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 256 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 257 | 255, 256 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 258 | 257 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ∈ (1...𝑁)) |
| 259 | 258 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ∈ (1...𝑁)) |
| 260 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) |
| 261 | | ssel2 3598 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ran
𝑥 ⊆ ((0...𝐾) ↑𝑚
(1...𝑁)) ∧ 𝑝 ∈ ran 𝑥) → 𝑝 ∈ ((0...𝐾) ↑𝑚 (1...𝑁))) |
| 262 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 ∈ ((0...𝐾) ↑𝑚 (1...𝑁)) → 𝑝:(1...𝑁)⟶(0...𝐾)) |
| 263 | 261, 262 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ran
𝑥 ⊆ ((0...𝐾) ↑𝑚
(1...𝑁)) ∧ 𝑝 ∈ ran 𝑥) → 𝑝:(1...𝑁)⟶(0...𝐾)) |
| 264 | 260, 263 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝 ∈ ran 𝑥) → 𝑝:(1...𝑁)⟶(0...𝐾)) |
| 265 | | poimirlem28.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) |
| 266 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ) |
| 267 | 266 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℝ) |
| 268 | 267 | ltnrd 10171 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 ∈ (1...𝑁) → ¬ 𝑛 < 𝑛) |
| 269 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝐵 → (𝑛 < 𝑛 ↔ 𝐵 < 𝑛)) |
| 270 | 269 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 𝐵 → (¬ 𝑛 < 𝑛 ↔ ¬ 𝐵 < 𝑛)) |
| 271 | 268, 270 | syl5ibcom 235 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ (1...𝑁) → (𝑛 = 𝐵 → ¬ 𝐵 < 𝑛)) |
| 272 | 271 | necon2ad 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (1...𝑁) → (𝐵 < 𝑛 → 𝑛 ≠ 𝐵)) |
| 273 | 272 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0) → (𝐵 < 𝑛 → 𝑛 ≠ 𝐵)) |
| 274 | 273 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → (𝐵 < 𝑛 → 𝑛 ≠ 𝐵)) |
| 275 | 265, 274 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝑛 ≠ 𝐵) |
| 276 | 275 | 3exp2 1285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑝:(1...𝑁)⟶(0...𝐾) → ((𝑝‘𝑛) = 0 → 𝑛 ≠ 𝐵)))) |
| 277 | 276 | imp31 448 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → ((𝑝‘𝑛) = 0 → 𝑛 ≠ 𝐵)) |
| 278 | 277 | necon2d 2817 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → (𝑛 = 𝐵 → (𝑝‘𝑛) ≠ 0)) |
| 279 | 278 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → (𝑛 = 𝐵 → (𝑝‘𝑛) ≠ 0)) |
| 280 | 264, 279 | syldan 487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝 ∈ ran 𝑥) → (𝑛 = 𝐵 → (𝑝‘𝑛) ≠ 0)) |
| 281 | 280 | reximdva 3017 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → (∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0)) |
| 282 | 259, 281 | syldan 487 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0)) |
| 283 | 282 | ralimdva 2962 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) → (∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 → ∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0)) |
| 284 | 283 | imp 445 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → ∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0) |
| 285 | 246, 284 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → ∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0) |
| 286 | 285 | biantrurd 529 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0 ↔ (∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0))) |
| 287 | | nnuz 11723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℕ =
(ℤ≥‘1) |
| 288 | 64, 287 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 289 | | fzm1 12420 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘1) → (𝑛 ∈ (1...𝑁) ↔ (𝑛 ∈ (1...(𝑁 − 1)) ∨ 𝑛 = 𝑁))) |
| 290 | 288, 289 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↔ (𝑛 ∈ (1...(𝑁 − 1)) ∨ 𝑛 = 𝑁))) |
| 291 | | elun 3753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...(𝑁 − 1)) ∨ 𝑛 ∈ {𝑁})) |
| 292 | 180 | orbi2i 541 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (1...(𝑁 − 1)) ∨ 𝑛 ∈ {𝑁}) ↔ (𝑛 ∈ (1...(𝑁 − 1)) ∨ 𝑛 = 𝑁)) |
| 293 | 291, 292 | bitri 264 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...(𝑁 − 1)) ∨ 𝑛 = 𝑁)) |
| 294 | 290, 293 | syl6bbr 278 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↔ 𝑛 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}))) |
| 295 | 294 | eqrdv 2620 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 296 | 295 | raleqdv 3144 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ ∀𝑛 ∈ ((1...(𝑁 − 1)) ∪ {𝑁})∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0)) |
| 297 | | ralunb 3794 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑛 ∈
((1...(𝑁 − 1)) ∪
{𝑁})∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ (∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∀𝑛 ∈ {𝑁}∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0)) |
| 298 | 296, 297 | syl6bb 276 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ (∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∀𝑛 ∈ {𝑁}∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0))) |
| 299 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑁 → (𝑝‘𝑛) = (𝑝‘𝑁)) |
| 300 | 299 | neeq1d 2853 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑁 → ((𝑝‘𝑛) ≠ 0 ↔ (𝑝‘𝑁) ≠ 0)) |
| 301 | 300 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑁 → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) |
| 302 | 301 | ralsng 4218 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ →
(∀𝑛 ∈ {𝑁}∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) |
| 303 | 64, 302 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∀𝑛 ∈ {𝑁}∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) |
| 304 | 303 | anbi2d 740 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∀𝑛 ∈ {𝑁}∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0) ↔ (∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0))) |
| 305 | 298, 304 | bitrd 268 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ (∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0))) |
| 306 | 305 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ (∀𝑛 ∈ (1...(𝑁 − 1))∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0))) |
| 307 | | 0z 11388 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℤ |
| 308 | | 1z 11407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℤ |
| 309 | | fzshftral 12428 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0
∈ ℤ ∧ (𝑁
− 1) ∈ ℤ ∧ 1 ∈ ℤ) → (∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀𝑚 ∈ ((0 + 1)...((𝑁 − 1) + 1))[(𝑚 − 1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵)) |
| 310 | 307, 308,
309 | mp3an13 1415 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 − 1) ∈ ℤ
→ (∀𝑛 ∈
(0...(𝑁 −
1))∃𝑝 ∈ ran
𝑥 𝑛 = 𝐵 ↔ ∀𝑚 ∈ ((0 + 1)...((𝑁 − 1) + 1))[(𝑚 − 1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵)) |
| 311 | 186, 250,
310 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀𝑚 ∈ ((0 + 1)...((𝑁 − 1) + 1))[(𝑚 − 1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵)) |
| 312 | | 0p1e1 11132 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 + 1) =
1 |
| 313 | 312 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (0 + 1) =
1) |
| 314 | 313, 249 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 315 | 314 | raleqdv 3144 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (∀𝑚 ∈ ((0 + 1)...((𝑁 − 1) + 1))[(𝑚 − 1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀𝑚 ∈ (1...𝑁)[(𝑚 − 1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵)) |
| 316 | 311, 315 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀𝑚 ∈ (1...𝑁)[(𝑚 − 1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵)) |
| 317 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 − 1) ∈
V |
| 318 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = (𝑚 − 1) → (𝑛 = 𝐵 ↔ (𝑚 − 1) = 𝐵)) |
| 319 | 318 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (𝑚 − 1) → (∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∃𝑝 ∈ ran 𝑥(𝑚 − 1) = 𝐵)) |
| 320 | 317, 319 | sbcie 3470 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
([(𝑚 −
1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∃𝑝 ∈ ran 𝑥(𝑚 − 1) = 𝐵) |
| 321 | 320 | ralbii 2980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑚 ∈
(1...𝑁)[(𝑚 − 1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀𝑚 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑚 − 1) = 𝐵) |
| 322 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1)) |
| 323 | 322 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑛 → ((𝑚 − 1) = 𝐵 ↔ (𝑛 − 1) = 𝐵)) |
| 324 | 323 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑛 → (∃𝑝 ∈ ran 𝑥(𝑚 − 1) = 𝐵 ↔ ∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵)) |
| 325 | 324 | cbvralv 3171 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑚 ∈
(1...𝑁)∃𝑝 ∈ ran 𝑥(𝑚 − 1) = 𝐵 ↔ ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵) |
| 326 | 321, 325 | bitri 264 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑚 ∈
(1...𝑁)[(𝑚 − 1) / 𝑛]∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵) |
| 327 | 316, 326 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵 ↔ ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵)) |
| 328 | 327 | biimpa 501 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵) |
| 329 | 328 | adantlr 751 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵) |
| 330 | | poimirlem28.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) |
| 331 | 330 | necomd 2849 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → (𝑛 − 1) ≠ 𝐵) |
| 332 | 331 | 3exp2 1285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑝:(1...𝑁)⟶(0...𝐾) → ((𝑝‘𝑛) = 𝐾 → (𝑛 − 1) ≠ 𝐵)))) |
| 333 | 332 | imp31 448 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → ((𝑝‘𝑛) = 𝐾 → (𝑛 − 1) ≠ 𝐵)) |
| 334 | 333 | necon2d 2817 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → ((𝑛 − 1) = 𝐵 → (𝑝‘𝑛) ≠ 𝐾)) |
| 335 | 334 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → ((𝑛 − 1) = 𝐵 → (𝑝‘𝑛) ≠ 𝐾)) |
| 336 | 264, 335 | syldan 487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑝 ∈ ran 𝑥) → ((𝑛 − 1) = 𝐵 → (𝑝‘𝑛) ≠ 𝐾)) |
| 337 | 336 | reximdva 3017 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → (∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵 → ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) |
| 338 | 337 | ralimdva 2962 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) → (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵 → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) |
| 339 | 338 | imp 445 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑛 − 1) = 𝐵) → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) |
| 340 | 329, 339 | syldan 487 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) |
| 341 | 340 | biantrud 528 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) |
| 342 | | r19.26 3064 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑛 ∈
(1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾) ↔ (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)) |
| 343 | 341, 342 | syl6bbr 278 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → (∀𝑛 ∈ (1...𝑁)∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ↔ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) |
| 344 | 286, 306,
343 | 3bitr2d 296 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ran 𝑥 ⊆ ((0...𝐾) ↑𝑚 (1...𝑁))) ∧ ∀𝑛 ∈ (0...(𝑁 − 1))∃𝑝 ∈ ran 𝑥 𝑛 = 𝐵) → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0 ↔ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) |
| 345 | 235, 242,
344 | syl2an 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))) ∧
(0...(𝑁 − 1)) ⊆
ran (𝑝 ∈ ran 𝑥 ↦ 𝐵)) → (∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0 ↔ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) |
| 346 | 345 | pm5.32da 673 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ (((0...(𝑁 −
1)) ⊆ ran (𝑝 ∈
ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0) ↔ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))) |
| 347 | 346 | anbi2d 740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ ((𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))))) |
| 348 | 347 | rexbidva 3049 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ ∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))))) |
| 349 | 348 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑁) ≠ 0)) ↔ ∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))))) |
| 350 | 194 | rexeqdv 3145 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑁})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 351 | 350 | biimpd 219 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑁})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 352 | 351 | ralimdv 2963 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑁})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 353 | 172 | rexeqdv 3145 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑡) = 𝑁 → (∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑁})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 354 | 353 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑡) = 𝑁 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑁})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 355 | 354 | imbi1d 331 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑡) = 𝑁 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑁})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) |
| 356 | 352, 355 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2nd
‘𝑡) = 𝑁 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) |
| 357 | 356 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ((2nd ‘𝑡) = 𝑁 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) |
| 358 | 357 | imp 445 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ((2nd ‘𝑡) = 𝑁 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 359 | 358 | adantrd 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) |
| 360 | 359 | pm4.71rd 667 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))))) |
| 361 | | an12 838 |
. . . . . . . . . . . . 13
⊢
((∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
(0...(𝑁 − 1))𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))) ↔ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)))) |
| 362 | | 3anass 1042 |
. . . . . . . . . . . . . 14
⊢
((∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
(0...(𝑁 − 1))𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))) |
| 363 | 362 | anbi2i 730 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) ↔ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)))) |
| 364 | 361, 363 | bitr4i 267 |
. . . . . . . . . . . 12
⊢
((∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
(0...(𝑁 − 1))𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))) ↔ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))) |
| 365 | 360, 364 | syl6bb 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) ↔ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)))) |
| 366 | 365 | notbid 308 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (¬ ((2nd
‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) ↔ ¬ ((2nd
‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)))) |
| 367 | 366 | pm5.32da 673 |
. . . . . . . . 9
⊢ (𝜑 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))))) |
| 368 | 367 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))))) |
| 369 | 232, 349,
368 | 3bitr3d 298 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))))) |
| 370 | 369 | rabbidva 3188 |
. . . . . 6
⊢ (𝜑 → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)))}) |
| 371 | | iunrab 4567 |
. . . . . 6
⊢ ∪ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))){𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} |
| 372 | | difrab 3901 |
. . . . . 6
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)))} |
| 373 | 370, 371,
372 | 3eqtr4g 2681 |
. . . . 5
⊢ (𝜑 → ∪ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))){𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} = ({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})) |
| 374 | 373 | fveq2d 6195 |
. . . 4
⊢ (𝜑 → (#‘∪ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))){𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) = (#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}))) |
| 375 | 27, 28 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))))
→ {𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} ∈ Fin) |
| 376 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) → 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 377 | 376 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → ((𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾))) → 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 378 | 377 | ss2rabi 3684 |
. . . . . . . . . 10
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} ⊆ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
| 379 | 378 | sseli 3599 |
. . . . . . . . 9
⊢ (𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} → 𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}) |
| 380 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑠 → (2nd ‘𝑡) = (2nd ‘𝑠)) |
| 381 | 380 | breq2d 4665 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑠 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑠))) |
| 382 | 381 | ifbid 4108 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑠 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑠), 𝑦, (𝑦 + 1))) |
| 383 | 382 | csbeq1d 3540 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑠 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 384 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑠 → (1st ‘𝑡) = (1st ‘𝑠)) |
| 385 | 384 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑠 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑠))) |
| 386 | 384 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑠 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑠))) |
| 387 | 386 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑠 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑠)) “
(1...𝑗))) |
| 388 | 387 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑠 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑠)) “ (1...𝑗)) × {1})) |
| 389 | 386 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑠 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑠)) “ ((𝑗 + 1)...𝑁))) |
| 390 | 389 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑠 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 391 | 388, 390 | uneq12d 3768 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑠 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 392 | 385, 391 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑠 → ((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 393 | 392 | csbeq2dv 3992 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑠 → ⦋if(𝑦 < (2nd ‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 394 | 383, 393 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑠 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 395 | 394 | mpteq2dv 4745 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑠 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 396 | 395 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑠 → (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 397 | | eqcom 2629 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) = 𝑥) |
| 398 | 396, 397 | syl6bb 276 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑠 → (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) = 𝑥)) |
| 399 | 398 | elrab 3363 |
. . . . . . . . . 10
⊢ (𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ↔ (𝑠 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) = 𝑥)) |
| 400 | 399 | simprbi 480 |
. . . . . . . . 9
⊢ (𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) = 𝑥) |
| 401 | 379, 400 | syl 17 |
. . . . . . . 8
⊢ (𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) = 𝑥) |
| 402 | 401 | rgen 2922 |
. . . . . . 7
⊢
∀𝑠 ∈
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) = 𝑥 |
| 403 | 402 | rgenw 2924 |
. . . . . 6
⊢
∀𝑥 ∈
(((0...𝐾)
↑𝑚 (1...𝑁)) ↑𝑚 (0...(𝑁 − 1)))∀𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) = 𝑥 |
| 404 | | invdisj 4638 |
. . . . . 6
⊢
(∀𝑥 ∈
(((0...𝐾)
↑𝑚 (1...𝑁)) ↑𝑚 (0...(𝑁 − 1)))∀𝑠 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))} (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑠), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑠)) ∘𝑓 +
((((2nd ‘(1st ‘𝑠)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑠)) “ ((𝑗 + 1)...𝑁)) × {0})))) = 𝑥 → Disj 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))){𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) |
| 405 | 403, 404 | mp1i 13 |
. . . . 5
⊢ (𝜑 → Disj 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))){𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) |
| 406 | 8, 375, 405 | hashiun 14554 |
. . . 4
⊢ (𝜑 → (#‘∪ 𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 − 1))){𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) = Σ𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 −
1)))(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))})) |
| 407 | 374, 406 | eqtr3d 2658 |
. . 3
⊢ (𝜑 → (#‘({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})) = Σ𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 −
1)))(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))})) |
| 408 | | fo1st 7188 |
. . . . . . . . . . . . 13
⊢
1st :V–onto→V |
| 409 | | fofun 6116 |
. . . . . . . . . . . . 13
⊢
(1st :V–onto→V → Fun 1st ) |
| 410 | 408, 409 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun
1st |
| 411 | | ssv 3625 |
. . . . . . . . . . . . 13
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ⊆ V |
| 412 | | fof 6115 |
. . . . . . . . . . . . . . 15
⊢
(1st :V–onto→V → 1st
:V⟶V) |
| 413 | 408, 412 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
1st :V⟶V |
| 414 | 413 | fdmi 6052 |
. . . . . . . . . . . . 13
⊢ dom
1st = V |
| 415 | 411, 414 | sseqtr4i 3638 |
. . . . . . . . . . . 12
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ⊆ dom
1st |
| 416 | | fores 6124 |
. . . . . . . . . . . 12
⊢ ((Fun
1st ∧ {𝑡
∈ ((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ⊆ dom 1st ) →
(1st ↾ {𝑡
∈ ((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→(1st “ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})) |
| 417 | 410, 415,
416 | mp2an 708 |
. . . . . . . . . . 11
⊢
(1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→(1st “ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) |
| 418 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑥 → (2nd ‘𝑡) = (2nd ‘𝑥)) |
| 419 | 418 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑥 → ((2nd ‘𝑡) = 𝑁 ↔ (2nd ‘𝑥) = 𝑁)) |
| 420 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑥 → (1st ‘𝑡) = (1st ‘𝑥)) |
| 421 | 420 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑥 → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) |
| 422 | 421 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑥 → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) |
| 423 | 422 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑥 → (∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) |
| 424 | 423 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑥 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) |
| 425 | 420 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑥 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑥))) |
| 426 | 425 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑥 → ((1st
‘(1st ‘𝑡))‘𝑁) = ((1st ‘(1st
‘𝑥))‘𝑁)) |
| 427 | 426 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑥 → (((1st
‘(1st ‘𝑡))‘𝑁) = 0 ↔ ((1st
‘(1st ‘𝑥))‘𝑁) = 0)) |
| 428 | 420 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑥 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑥))) |
| 429 | 428 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑥 → ((2nd
‘(1st ‘𝑡))‘𝑁) = ((2nd ‘(1st
‘𝑥))‘𝑁)) |
| 430 | 429 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑥 → (((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁 ↔ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) |
| 431 | 424, 427,
430 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑥 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁))) |
| 432 | 419, 431 | anbi12d 747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑥 → (((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) ↔ ((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)))) |
| 433 | 432 | rexrab 3370 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑠 ↔ ∃𝑥 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))(((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠)) |
| 434 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑥) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 435 | 434 | anim1i 592 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) → ((1st ‘𝑥) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁))) |
| 436 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑥) = 𝑠 → ((1st ‘𝑥) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ 𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))) |
| 437 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑠 = (1st ‘𝑥) → 𝐶 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) |
| 438 | 437 | eqcoms 2630 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((1st ‘𝑥) = 𝑠 → 𝐶 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) |
| 439 | 438 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((1st ‘𝑥) = 𝑠 → ⦋(1st
‘𝑥) / 𝑠⦌𝐶 = 𝐶) |
| 440 | 439 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘𝑥) = 𝑠 → (𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑖 = 𝐶)) |
| 441 | 440 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘𝑥) = 𝑠 → (∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶)) |
| 442 | 441 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑥) = 𝑠 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶)) |
| 443 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘𝑥) = 𝑠 → (1st
‘(1st ‘𝑥)) = (1st ‘𝑠)) |
| 444 | 443 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘𝑥) = 𝑠 → ((1st
‘(1st ‘𝑥))‘𝑁) = ((1st ‘𝑠)‘𝑁)) |
| 445 | 444 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑥) = 𝑠 → (((1st
‘(1st ‘𝑥))‘𝑁) = 0 ↔ ((1st ‘𝑠)‘𝑁) = 0)) |
| 446 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘𝑥) = 𝑠 → (2nd
‘(1st ‘𝑥)) = (2nd ‘𝑠)) |
| 447 | 446 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘𝑥) = 𝑠 → ((2nd
‘(1st ‘𝑥))‘𝑁) = ((2nd ‘𝑠)‘𝑁)) |
| 448 | 447 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑥) = 𝑠 → (((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁 ↔ ((2nd ‘𝑠)‘𝑁) = 𝑁)) |
| 449 | 442, 445,
448 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑥) = 𝑠 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁))) |
| 450 | 436, 449 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑥) = 𝑠 → (((1st ‘𝑥) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ↔ (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)))) |
| 451 | 435, 450 | syl5ibcom 235 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) → ((1st ‘𝑥) = 𝑠 → (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)))) |
| 452 | 451 | adantrl 752 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ ((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁))) → ((1st ‘𝑥) = 𝑠 → (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)))) |
| 453 | 452 | expimpd 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → ((((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠) → (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)))) |
| 454 | 453 | rexlimiv 3027 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))(((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠) → (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁))) |
| 455 | | nn0fz0 12437 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈ (0...𝑁)) |
| 456 | 174, 455 | sylib 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
| 457 | | opelxpi 5148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑁 ∈ (0...𝑁)) → 〈𝑠, 𝑁〉 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 458 | 456, 457 | sylan2 491 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝜑) → 〈𝑠, 𝑁〉 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 459 | 458 | ancoms 469 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → 〈𝑠, 𝑁〉 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 460 | | opelxp2 5151 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈𝑠, 𝑁〉 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → 𝑁 ∈ (0...𝑁)) |
| 461 | | op2ndg 7181 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (2nd ‘〈𝑠, 𝑁〉) = 𝑁) |
| 462 | 461 | biantrurd 529 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁) ↔ ((2nd ‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)))) |
| 463 | | op1stg 7180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (1st ‘〈𝑠, 𝑁〉) = 𝑠) |
| 464 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑠 = (1st
‘〈𝑠, 𝑁〉) → 𝐶 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶) |
| 465 | 464 | eqcoms 2630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((1st ‘〈𝑠, 𝑁〉) = 𝑠 → 𝐶 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶) |
| 466 | 465 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((1st ‘〈𝑠, 𝑁〉) = 𝑠 → ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 = 𝐶) |
| 467 | 463, 466 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 = 𝐶) |
| 468 | 467 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ↔ 𝑖 = 𝐶)) |
| 469 | 468 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶)) |
| 470 | 469 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶)) |
| 471 | 463 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (1st
‘(1st ‘〈𝑠, 𝑁〉)) = (1st ‘𝑠)) |
| 472 | 471 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = ((1st ‘𝑠)‘𝑁)) |
| 473 | 472 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ↔ ((1st ‘𝑠)‘𝑁) = 0)) |
| 474 | 463 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (2nd
‘(1st ‘〈𝑠, 𝑁〉)) = (2nd ‘𝑠)) |
| 475 | 474 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = ((2nd ‘𝑠)‘𝑁)) |
| 476 | 475 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁 ↔ ((2nd ‘𝑠)‘𝑁) = 𝑁)) |
| 477 | 470, 473,
476 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁))) |
| 478 | 463 | biantrud 528 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → (((2nd
‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)) ↔ (((2nd
‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)) ∧ (1st ‘〈𝑠, 𝑁〉) = 𝑠))) |
| 479 | 462, 477,
478 | 3bitr3d 298 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑠 ∈ V ∧ 𝑁 ∈ (0...𝑁)) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁) ↔ (((2nd
‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)) ∧ (1st ‘〈𝑠, 𝑁〉) = 𝑠))) |
| 480 | 44, 460, 479 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑠, 𝑁〉 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁) ↔ (((2nd
‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)) ∧ (1st ‘〈𝑠, 𝑁〉) = 𝑠))) |
| 481 | 480 | biimpa 501 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑠, 𝑁〉 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)) → (((2nd
‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)) ∧ (1st ‘〈𝑠, 𝑁〉) = 𝑠)) |
| 482 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (2nd ‘𝑥) = (2nd
‘〈𝑠, 𝑁〉)) |
| 483 | 482 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈𝑠, 𝑁〉 → ((2nd ‘𝑥) = 𝑁 ↔ (2nd ‘〈𝑠, 𝑁〉) = 𝑁)) |
| 484 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (1st ‘𝑥) = (1st
‘〈𝑠, 𝑁〉)) |
| 485 | 484 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 〈𝑠, 𝑁〉 → ⦋(1st
‘𝑥) / 𝑠⦌𝐶 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶) |
| 486 | 485 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶)) |
| 487 | 486 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶)) |
| 488 | 487 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶)) |
| 489 | 484 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (1st
‘(1st ‘𝑥)) = (1st ‘(1st
‘〈𝑠, 𝑁〉))) |
| 490 | 489 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 〈𝑠, 𝑁〉 → ((1st
‘(1st ‘𝑥))‘𝑁) = ((1st ‘(1st
‘〈𝑠, 𝑁〉))‘𝑁)) |
| 491 | 490 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (((1st
‘(1st ‘𝑥))‘𝑁) = 0 ↔ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0)) |
| 492 | 484 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (2nd
‘(1st ‘𝑥)) = (2nd ‘(1st
‘〈𝑠, 𝑁〉))) |
| 493 | 492 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 〈𝑠, 𝑁〉 → ((2nd
‘(1st ‘𝑥))‘𝑁) = ((2nd ‘(1st
‘〈𝑠, 𝑁〉))‘𝑁)) |
| 494 | 493 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁 ↔ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)) |
| 495 | 488, 491,
494 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈𝑠, 𝑁〉 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁))) |
| 496 | 483, 495 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈𝑠, 𝑁〉 → (((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ↔ ((2nd
‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)))) |
| 497 | 484 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈𝑠, 𝑁〉 → ((1st ‘𝑥) = 𝑠 ↔ (1st ‘〈𝑠, 𝑁〉) = 𝑠)) |
| 498 | 496, 497 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈𝑠, 𝑁〉 → ((((2nd
‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠) ↔ (((2nd ‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)) ∧ (1st ‘〈𝑠, 𝑁〉) = 𝑠))) |
| 499 | 498 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑠, 𝑁〉 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (((2nd
‘〈𝑠, 𝑁〉) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘〈𝑠, 𝑁〉) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘〈𝑠, 𝑁〉))‘𝑁) = 𝑁)) ∧ (1st ‘〈𝑠, 𝑁〉) = 𝑠)) → ∃𝑥 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))(((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠)) |
| 500 | 481, 499 | syldan 487 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈𝑠, 𝑁〉 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)) → ∃𝑥 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))(((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠)) |
| 501 | 459, 500 | sylan 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)) → ∃𝑥 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))(((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠)) |
| 502 | 501 | expl 648 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)) → ∃𝑥 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))(((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠))) |
| 503 | 454, 502 | impbid2 216 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃𝑥 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))(((2nd ‘𝑥) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑥))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑥))‘𝑁) = 𝑁)) ∧ (1st ‘𝑥) = 𝑠) ↔ (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)))) |
| 504 | 433, 503 | syl5bb 272 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑠 ↔ (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)))) |
| 505 | 504 | abbidv 2741 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑠 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑠} = {𝑠 ∣ (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁))}) |
| 506 | | dfimafn 6245 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
1st ∧ {𝑡
∈ ((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ⊆ dom 1st ) →
(1st “ {𝑡
∈ ((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = {𝑦 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑦}) |
| 507 | 410, 415,
506 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢
(1st “ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = {𝑦 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑦} |
| 508 | | nfv 1843 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑠(2nd ‘𝑡) = 𝑁 |
| 509 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠(0...(𝑁 − 1)) |
| 510 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑠⦋(1st ‘𝑡) / 𝑠⦌𝐶 |
| 511 | 510 | nfeq2 2780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑠 𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 |
| 512 | 509, 511 | nfrex 3007 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 |
| 513 | 509, 512 | nfral 2945 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑠∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 |
| 514 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑠((1st ‘(1st
‘𝑡))‘𝑁) = 0 |
| 515 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑠((2nd ‘(1st
‘𝑡))‘𝑁) = 𝑁 |
| 516 | 513, 514,
515 | nf3an 1831 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑠(∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁) |
| 517 | 508, 516 | nfan 1828 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑠((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) |
| 518 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑠((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) |
| 519 | 517, 518 | nfrab 3123 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑠{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} |
| 520 | | nfv 1843 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑠(1st ‘𝑥) = 𝑦 |
| 521 | 519, 520 | nfrex 3007 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑠∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑦 |
| 522 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑠 |
| 523 | | eqeq2 2633 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑠 → ((1st ‘𝑥) = 𝑦 ↔ (1st ‘𝑥) = 𝑠)) |
| 524 | 523 | rexbidv 3052 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑠 → (∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑠)) |
| 525 | 521, 522,
524 | cbvab 2746 |
. . . . . . . . . . . . . 14
⊢ {𝑦 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑦} = {𝑠 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑠} |
| 526 | 507, 525 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢
(1st “ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = {𝑠 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (1st ‘𝑥) = 𝑠} |
| 527 | | df-rab 2921 |
. . . . . . . . . . . . 13
⊢ {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} = {𝑠 ∣ (𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁))} |
| 528 | 505, 526,
527 | 3eqtr4g 2681 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st “
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 529 | | foeq3 6113 |
. . . . . . . . . . . 12
⊢
((1st “ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} → ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→(1st “ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) ↔ (1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)})) |
| 530 | 528, 529 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→(1st “ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) ↔ (1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)})) |
| 531 | 417, 530 | mpbii 223 |
. . . . . . . . . 10
⊢ (𝜑 → (1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 532 | | fof 6115 |
. . . . . . . . . 10
⊢
((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} → (1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}⟶{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 533 | 531, 532 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}⟶{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 534 | | fvres 6207 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} → ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑥) = (1st ‘𝑥)) |
| 535 | | fvres 6207 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} → ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑦) = (1st ‘𝑦)) |
| 536 | 534, 535 | eqeqan12d 2638 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) → (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑦) ↔ (1st ‘𝑥) = (1st ‘𝑦))) |
| 537 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) → (2nd ‘𝑡) = 𝑁) |
| 538 | 537 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁)) → (2nd ‘𝑡) = 𝑁)) |
| 539 | 538 | ss2rabi 3684 |
. . . . . . . . . . . . . 14
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ⊆ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (2nd ‘𝑡) = 𝑁} |
| 540 | 539 | sseli 3599 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} → 𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (2nd ‘𝑡) = 𝑁}) |
| 541 | 419 | elrab 3363 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (2nd ‘𝑡) = 𝑁} ↔ (𝑥 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (2nd ‘𝑥) = 𝑁)) |
| 542 | 540, 541 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} → (𝑥 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (2nd ‘𝑥) = 𝑁)) |
| 543 | 539 | sseli 3599 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} → 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (2nd ‘𝑡) = 𝑁}) |
| 544 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑦 → (2nd ‘𝑡) = (2nd ‘𝑦)) |
| 545 | 544 | eqeq1d 2624 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑦 → ((2nd ‘𝑡) = 𝑁 ↔ (2nd ‘𝑦) = 𝑁)) |
| 546 | 545 | elrab 3363 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (2nd ‘𝑡) = 𝑁} ↔ (𝑦 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (2nd ‘𝑦) = 𝑁)) |
| 547 | 543, 546 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} → (𝑦 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (2nd ‘𝑦) = 𝑁)) |
| 548 | | eqtr3 2643 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑥) = 𝑁 ∧ (2nd ‘𝑦) = 𝑁) → (2nd ‘𝑥) = (2nd ‘𝑦)) |
| 549 | | xpopth 7207 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑦 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥) = (2nd
‘𝑦)) ↔ 𝑥 = 𝑦)) |
| 550 | 549 | biimpd 219 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑦 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥) = (2nd
‘𝑦)) → 𝑥 = 𝑦)) |
| 551 | 550 | ancomsd 470 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑦 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((2nd ‘𝑥) = (2nd ‘𝑦) ∧ (1st
‘𝑥) = (1st
‘𝑦)) → 𝑥 = 𝑦)) |
| 552 | 551 | expdimp 453 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑦 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) ∧ (2nd ‘𝑥) = (2nd ‘𝑦)) → ((1st
‘𝑥) = (1st
‘𝑦) → 𝑥 = 𝑦)) |
| 553 | 548, 552 | sylan2 491 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑦 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) ∧ ((2nd ‘𝑥) = 𝑁 ∧ (2nd ‘𝑦) = 𝑁)) → ((1st ‘𝑥) = (1st ‘𝑦) → 𝑥 = 𝑦)) |
| 554 | 553 | an4s 869 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (2nd ‘𝑥) = 𝑁) ∧ (𝑦 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (2nd ‘𝑦) = 𝑁)) → ((1st ‘𝑥) = (1st ‘𝑦) → 𝑥 = 𝑦)) |
| 555 | 542, 547,
554 | syl2an 494 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) → ((1st ‘𝑥) = (1st ‘𝑦) → 𝑥 = 𝑦)) |
| 556 | 536, 555 | sylbid 230 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) → (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑦) → 𝑥 = 𝑦)) |
| 557 | 556 | rgen2a 2977 |
. . . . . . . . 9
⊢
∀𝑥 ∈
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}∀𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑦) → 𝑥 = 𝑦) |
| 558 | 533, 557 | jctir 561 |
. . . . . . . 8
⊢ (𝜑 → ((1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}⟶{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} ∧ ∀𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}∀𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑦) → 𝑥 = 𝑦))) |
| 559 | | dff13 6512 |
. . . . . . . 8
⊢
((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–1-1→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} ↔ ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}⟶{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} ∧ ∀𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}∀𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})‘𝑦) → 𝑥 = 𝑦))) |
| 560 | 558, 559 | sylibr 224 |
. . . . . . 7
⊢ (𝜑 → (1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–1-1→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 561 | | df-f1o 5895 |
. . . . . . 7
⊢
((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} ↔ ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–1-1→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} ∧ (1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–onto→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)})) |
| 562 | 560, 531,
561 | sylanbrc 698 |
. . . . . 6
⊢ (𝜑 → (1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 563 | | rabfi 8185 |
. . . . . . . . 9
⊢
(((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ∈ Fin) |
| 564 | 27, 563 | ax-mp 5 |
. . . . . . . 8
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ∈ Fin |
| 565 | 564 | elexi 3213 |
. . . . . . 7
⊢ {𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ∈ V |
| 566 | 565 | f1oen 7976 |
. . . . . 6
⊢
((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}):{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ≈ {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 567 | 562, 566 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ≈ {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 568 | | rabfi 8185 |
. . . . . . 7
⊢
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} ∈ Fin) |
| 569 | 24, 568 | ax-mp 5 |
. . . . . 6
⊢ {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} ∈ Fin |
| 570 | | hashen 13135 |
. . . . . 6
⊢ (({𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ∈ Fin ∧ {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)} ∈ Fin) → ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = (#‘{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) ↔ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ≈ {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)})) |
| 571 | 564, 569,
570 | mp2an 708 |
. . . . 5
⊢
((#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = (#‘{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) ↔ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))} ≈ {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}) |
| 572 | 567, 571 | sylibr 224 |
. . . 4
⊢ (𝜑 → (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))}) = (#‘{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)})) |
| 573 | 572 | oveq2d 6666 |
. . 3
⊢ (𝜑 → ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ((2nd ‘𝑡) = 𝑁 ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ((1st
‘(1st ‘𝑡))‘𝑁) = 0 ∧ ((2nd
‘(1st ‘𝑡))‘𝑁) = 𝑁))})) = ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (#‘{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}))) |
| 574 | 204, 407,
573 | 3eqtr3d 2664 |
. 2
⊢ (𝜑 → Σ𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚
(0...(𝑁 −
1)))(#‘{𝑡 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥 ↦ 𝐵) ∧ ∀𝑛 ∈ (1...𝑁)(∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 0 ∧ ∃𝑝 ∈ ran 𝑥(𝑝‘𝑛) ≠ 𝐾)))}) = ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (#‘{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}))) |
| 575 | 167, 574 | breqtrd 4679 |
1
⊢ (𝜑 → 2 ∥ ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (#‘{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st ‘𝑠)‘𝑁) = 0 ∧ ((2nd ‘𝑠)‘𝑁) = 𝑁)}))) |