MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmlss Structured version   Visualization version   GIF version

Theorem dsmmlss 20088
Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmlss.i (𝜑𝐼𝑊)
dsmmlss.s (𝜑𝑆 ∈ Ring)
dsmmlss.r (𝜑𝑅:𝐼⟶LMod)
dsmmlss.k ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
dsmmlss.p 𝑃 = (𝑆Xs𝑅)
dsmmlss.u 𝑈 = (LSubSp‘𝑃)
dsmmlss.h 𝐻 = (Base‘(𝑆m 𝑅))
Assertion
Ref Expression
dsmmlss (𝜑𝐻𝑈)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅   𝑥,𝐼   𝑥,𝑃   𝑥,𝐻
Allowed substitution hints:   𝑈(𝑥)   𝑊(𝑥)

Proof of Theorem dsmmlss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dsmmlss.p . . 3 𝑃 = (𝑆Xs𝑅)
2 dsmmlss.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
3 dsmmlss.i . . 3 (𝜑𝐼𝑊)
4 dsmmlss.s . . 3 (𝜑𝑆 ∈ Ring)
5 dsmmlss.r . . . 4 (𝜑𝑅:𝐼⟶LMod)
6 lmodgrp 18870 . . . . 5 (𝑎 ∈ LMod → 𝑎 ∈ Grp)
76ssriv 3607 . . . 4 LMod ⊆ Grp
8 fss 6056 . . . 4 ((𝑅:𝐼⟶LMod ∧ LMod ⊆ Grp) → 𝑅:𝐼⟶Grp)
95, 7, 8sylancl 694 . . 3 (𝜑𝑅:𝐼⟶Grp)
101, 2, 3, 4, 9dsmmsubg 20087 . 2 (𝜑𝐻 ∈ (SubGrp‘𝑃))
11 dsmmlss.k . . . . . . 7 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
121, 4, 3, 5, 11prdslmodd 18969 . . . . . 6 (𝜑𝑃 ∈ LMod)
1312adantr 481 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑃 ∈ LMod)
14 simprl 794 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
15 simprr 796 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏𝐻)
16 eqid 2622 . . . . . . . . 9 (𝑆m 𝑅) = (𝑆m 𝑅)
17 eqid 2622 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
18 ffn 6045 . . . . . . . . . 10 (𝑅:𝐼⟶LMod → 𝑅 Fn 𝐼)
195, 18syl 17 . . . . . . . . 9 (𝜑𝑅 Fn 𝐼)
201, 16, 17, 2, 3, 19dsmmelbas 20083 . . . . . . . 8 (𝜑 → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2120adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2215, 21mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2322simpld 475 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏 ∈ (Base‘𝑃))
24 eqid 2622 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
25 eqid 2622 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
26 eqid 2622 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2717, 24, 25, 26lmodvscl 18880 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘𝑃)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2813, 14, 23, 27syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2922simprd 479 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
30 eqid 2622 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
314ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑆 ∈ Ring)
323ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝐼𝑊)
3319ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑅 Fn 𝐼)
34 fex 6490 . . . . . . . . . . . . . . . . . 18 ((𝑅:𝐼⟶LMod ∧ 𝐼𝑊) → 𝑅 ∈ V)
355, 3, 34syl2anc 693 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ V)
361, 4, 35prdssca 16116 . . . . . . . . . . . . . . . 16 (𝜑𝑆 = (Scalar‘𝑃))
3736fveq2d 6195 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘𝑃)))
3837eleq2d 2687 . . . . . . . . . . . . . 14 (𝜑 → (𝑎 ∈ (Base‘𝑆) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
3938biimpar 502 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (Base‘(Scalar‘𝑃))) → 𝑎 ∈ (Base‘𝑆))
4039adantrr 753 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘𝑆))
4140adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘𝑆))
4223adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑏 ∈ (Base‘𝑃))
43 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑥𝐼)
441, 17, 25, 30, 31, 32, 33, 41, 42, 43prdsvscafval 16140 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
4544adantrr 753 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
465ffvelrnda 6359 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ LMod)
4746adantlr 751 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ LMod)
48 simplrl 800 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4936adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝑆 = (Scalar‘𝑃))
5011, 49eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = (Scalar‘𝑃))
5150fveq2d 6195 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5251adantlr 751 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5348, 52eleqtrrd 2704 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥))))
54 eqid 2622 . . . . . . . . . . . . 13 (Scalar‘(𝑅𝑥)) = (Scalar‘(𝑅𝑥))
55 eqid 2622 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅𝑥)) = ( ·𝑠 ‘(𝑅𝑥))
56 eqid 2622 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘(𝑅𝑥)))
57 eqid 2622 . . . . . . . . . . . . 13 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
5854, 55, 56, 57lmodvs0 18897 . . . . . . . . . . . 12 (((𝑅𝑥) ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
5947, 53, 58syl2anc 693 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
60 oveq2 6658 . . . . . . . . . . . 12 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))))
6160eqeq1d 2624 . . . . . . . . . . 11 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)) ↔ (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥))))
6259, 61syl5ibrcom 237 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥))))
6362impr 649 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)))
6445, 63eqtrd 2656 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥)))
6564expr 643 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥))))
6665necon3d 2815 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥)) → (𝑏𝑥) ≠ (0g‘(𝑅𝑥))))
6766ss2rabdv 3683 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ⊆ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))})
68 ssfi 8180 . . . . 5 (({𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ⊆ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))}) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
6929, 67, 68syl2anc 693 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
701, 16, 17, 2, 3, 19dsmmelbas 20083 . . . . 5 (𝜑 → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
7170adantr 481 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
7228, 69, 71mpbir2and 957 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
7372ralrimivva 2971 . 2 (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
74 dsmmlss.u . . . 4 𝑈 = (LSubSp‘𝑃)
7524, 26, 17, 25, 74islss4 18962 . . 3 (𝑃 ∈ LMod → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7612, 75syl 17 . 2 (𝜑 → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7710, 73, 76mpbir2and 957 1 (𝜑𝐻𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  wss 3574   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  Xscprds 16106  Grpcgrp 17422  SubGrpcsubg 17588  Ringcrg 18547  LModclmod 18863  LSubSpclss 18932  m cdsmm 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-dsmm 20076
This theorem is referenced by:  dsmmlmod  20089  frlmlss  20095
  Copyright terms: Public domain W3C validator