| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. 2
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 2 | | eqid 2622 |
. 2
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 3 | | eqid 2622 |
. 2
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
| 4 | | ablfac1.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 5 | | ablgrp 18198 |
. . 3
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 6 | 4, 5 | syl 17 |
. 2
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 7 | | ablfac1.1 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℙ) |
| 8 | | nnex 11026 |
. . . . 5
⊢ ℕ
∈ V |
| 9 | | prmnn 15388 |
. . . . . 6
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
| 10 | 9 | ssriv 3607 |
. . . . 5
⊢ ℙ
⊆ ℕ |
| 11 | 8, 10 | ssexi 4803 |
. . . 4
⊢ ℙ
∈ V |
| 12 | 11 | ssex 4802 |
. . 3
⊢ (𝐴 ⊆ ℙ → 𝐴 ∈ V) |
| 13 | 7, 12 | syl 17 |
. 2
⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝐺 ∈ Abel) |
| 15 | 7 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ ℙ) |
| 16 | 15, 9 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ ℕ) |
| 17 | | ablfac1.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐺) |
| 18 | 17 | grpbn0 17451 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| 19 | 6, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 20 | | ablfac1.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 21 | | hashnncl 13157 |
. . . . . . . . . 10
⊢ (𝐵 ∈ Fin →
((#‘𝐵) ∈ ℕ
↔ 𝐵 ≠
∅)) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((#‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
| 23 | 19, 22 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝐵) ∈ ℕ) |
| 24 | 23 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (#‘𝐵) ∈ ℕ) |
| 25 | 15, 24 | pccld 15555 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑝 pCnt (#‘𝐵)) ∈
ℕ0) |
| 26 | 16, 25 | nnexpcld 13030 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑝↑(𝑝 pCnt (#‘𝐵))) ∈ ℕ) |
| 27 | 26 | nnzd 11481 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → (𝑝↑(𝑝 pCnt (#‘𝐵))) ∈ ℤ) |
| 28 | | ablfac1.o |
. . . . 5
⊢ 𝑂 = (od‘𝐺) |
| 29 | 28, 17 | oddvdssubg 18258 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ∈ (SubGrp‘𝐺)) |
| 30 | 14, 27, 29 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ∈ (SubGrp‘𝐺)) |
| 31 | | ablfac1.s |
. . 3
⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) |
| 32 | 30, 31 | fmptd 6385 |
. 2
⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
| 33 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → 𝐺 ∈ Abel) |
| 34 | 32 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
| 35 | | simpr1 1067 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → 𝑎 ∈ 𝐴) |
| 36 | 34, 35 | ffvelrnd 6360 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → (𝑆‘𝑎) ∈ (SubGrp‘𝐺)) |
| 37 | | simpr2 1068 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → 𝑏 ∈ 𝐴) |
| 38 | 34, 37 | ffvelrnd 6360 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → (𝑆‘𝑏) ∈ (SubGrp‘𝐺)) |
| 39 | 1, 33, 36, 38 | ablcntzd 18260 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑎 ≠ 𝑏)) → (𝑆‘𝑎) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑏))) |
| 40 | | id 22 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑎 → 𝑝 = 𝑎) |
| 41 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑎 → (𝑝 pCnt (#‘𝐵)) = (𝑎 pCnt (#‘𝐵))) |
| 42 | 40, 41 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑝 = 𝑎 → (𝑝↑(𝑝 pCnt (#‘𝐵))) = (𝑎↑(𝑎 pCnt (#‘𝐵)))) |
| 43 | 42 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑝 = 𝑎 → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵))) ↔ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵))))) |
| 44 | 43 | rabbidv 3189 |
. . . . . . 7
⊢ (𝑝 = 𝑎 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))}) |
| 45 | | fvex 6201 |
. . . . . . . . 9
⊢
(Base‘𝐺)
∈ V |
| 46 | 17, 45 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
| 47 | 46 | rabex 4813 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ∈ V |
| 48 | 44, 31, 47 | fvmpt3i 6287 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 → (𝑆‘𝑎) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))}) |
| 49 | 48 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑆‘𝑎) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))}) |
| 50 | | eqimss 3657 |
. . . . 5
⊢ ((𝑆‘𝑎) = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} → (𝑆‘𝑎) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))}) |
| 51 | 49, 50 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑆‘𝑎) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))}) |
| 52 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐺 ∈ Abel) |
| 53 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 54 | 53 | subgacs 17629 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
| 55 | | acsmre 16313 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 56 | 52, 5, 54, 55 | 4syl 19 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 57 | | df-ima 5127 |
. . . . . . 7
⊢ (𝑆 “ (𝐴 ∖ {𝑎})) = ran (𝑆 ↾ (𝐴 ∖ {𝑎})) |
| 58 | 7 | sselda 3603 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℙ) |
| 59 | 58 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑎 ∈ ℙ) |
| 60 | 23 | ad3antrrr 766 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (#‘𝐵) ∈ ℕ) |
| 61 | | pcdvds 15568 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℙ ∧
(#‘𝐵) ∈ ℕ)
→ (𝑎↑(𝑎 pCnt (#‘𝐵))) ∥ (#‘𝐵)) |
| 62 | 59, 60, 61 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎↑(𝑎 pCnt (#‘𝐵))) ∥ (#‘𝐵)) |
| 63 | 7 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝐴 ⊆ ℙ) |
| 64 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝 ∈ 𝐴) |
| 65 | 64 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ 𝐴) |
| 66 | 63, 65 | sseldd 3604 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ ℙ) |
| 67 | | pcdvds 15568 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧
(#‘𝐵) ∈ ℕ)
→ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ (#‘𝐵)) |
| 68 | 66, 60, 67 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ (#‘𝐵)) |
| 69 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎↑(𝑎 pCnt (#‘𝐵))) = (𝑎↑(𝑎 pCnt (#‘𝐵))) |
| 70 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((#‘𝐵) /
(𝑎↑(𝑎 pCnt (#‘𝐵)))) = ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) |
| 71 | 17, 28, 31, 4, 20, 7, 69, 70 | ablfac1lem 18467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (((𝑎↑(𝑎 pCnt (#‘𝐵))) ∈ ℕ ∧ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℕ) ∧ ((𝑎↑(𝑎 pCnt (#‘𝐵))) gcd ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))) = 1 ∧ (#‘𝐵) = ((𝑎↑(𝑎 pCnt (#‘𝐵))) · ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))))) |
| 72 | 71 | simp1d 1073 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑎↑(𝑎 pCnt (#‘𝐵))) ∈ ℕ ∧ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℕ)) |
| 73 | 72 | simpld 475 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎↑(𝑎 pCnt (#‘𝐵))) ∈ ℕ) |
| 74 | 73 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎↑(𝑎 pCnt (#‘𝐵))) ∈ ℕ) |
| 75 | 74 | nnzd 11481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎↑(𝑎 pCnt (#‘𝐵))) ∈ ℤ) |
| 76 | 66, 9 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ ℕ) |
| 77 | 66, 60 | pccld 15555 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝 pCnt (#‘𝐵)) ∈
ℕ0) |
| 78 | 76, 77 | nnexpcld 13030 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝↑(𝑝 pCnt (#‘𝐵))) ∈ ℕ) |
| 79 | 78 | nnzd 11481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝↑(𝑝 pCnt (#‘𝐵))) ∈ ℤ) |
| 80 | 60 | nnzd 11481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (#‘𝐵) ∈ ℤ) |
| 81 | | eldifsni 4320 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ (𝐴 ∖ {𝑎}) → 𝑝 ≠ 𝑎) |
| 82 | 81 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ≠ 𝑎) |
| 83 | 82 | necomd 2849 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑎 ≠ 𝑝) |
| 84 | | prmrp 15424 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎 ≠ 𝑝)) |
| 85 | 59, 66, 84 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎 gcd 𝑝) = 1 ↔ 𝑎 ≠ 𝑝)) |
| 86 | 83, 85 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎 gcd 𝑝) = 1) |
| 87 | | prmz 15389 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ ℙ → 𝑎 ∈
ℤ) |
| 88 | 59, 87 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑎 ∈ ℤ) |
| 89 | | prmz 15389 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 90 | 66, 89 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → 𝑝 ∈ ℤ) |
| 91 | 59, 60 | pccld 15555 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎 pCnt (#‘𝐵)) ∈
ℕ0) |
| 92 | | rpexp12i 15434 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ ((𝑎 pCnt (#‘𝐵)) ∈ ℕ0 ∧ (𝑝 pCnt (#‘𝐵)) ∈ ℕ0)) →
((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (#‘𝐵))) gcd (𝑝↑(𝑝 pCnt (#‘𝐵)))) = 1)) |
| 93 | 88, 90, 91, 77, 92 | syl112anc 1330 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎 gcd 𝑝) = 1 → ((𝑎↑(𝑎 pCnt (#‘𝐵))) gcd (𝑝↑(𝑝 pCnt (#‘𝐵)))) = 1)) |
| 94 | 86, 93 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎↑(𝑎 pCnt (#‘𝐵))) gcd (𝑝↑(𝑝 pCnt (#‘𝐵)))) = 1) |
| 95 | | coprmdvds2 15368 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎↑(𝑎 pCnt (#‘𝐵))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∈ ℤ ∧ (#‘𝐵) ∈ ℤ) ∧ ((𝑎↑(𝑎 pCnt (#‘𝐵))) gcd (𝑝↑(𝑝 pCnt (#‘𝐵)))) = 1) → (((𝑎↑(𝑎 pCnt (#‘𝐵))) ∥ (#‘𝐵) ∧ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ (#‘𝐵)) → ((𝑎↑(𝑎 pCnt (#‘𝐵))) · (𝑝↑(𝑝 pCnt (#‘𝐵)))) ∥ (#‘𝐵))) |
| 96 | 75, 79, 80, 94, 95 | syl31anc 1329 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (((𝑎↑(𝑎 pCnt (#‘𝐵))) ∥ (#‘𝐵) ∧ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ (#‘𝐵)) → ((𝑎↑(𝑎 pCnt (#‘𝐵))) · (𝑝↑(𝑝 pCnt (#‘𝐵)))) ∥ (#‘𝐵))) |
| 97 | 62, 68, 96 | mp2and 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎↑(𝑎 pCnt (#‘𝐵))) · (𝑝↑(𝑝 pCnt (#‘𝐵)))) ∥ (#‘𝐵)) |
| 98 | 71 | simp3d 1075 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (#‘𝐵) = ((𝑎↑(𝑎 pCnt (#‘𝐵))) · ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))))) |
| 99 | 98 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (#‘𝐵) = ((𝑎↑(𝑎 pCnt (#‘𝐵))) · ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))))) |
| 100 | 97, 99 | breqtrd 4679 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑎↑(𝑎 pCnt (#‘𝐵))) · (𝑝↑(𝑝 pCnt (#‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (#‘𝐵))) · ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))))) |
| 101 | 72 | simprd 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℕ) |
| 102 | 101 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℕ) |
| 103 | 102 | nnzd 11481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℤ) |
| 104 | 74 | nnne0d 11065 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑎↑(𝑎 pCnt (#‘𝐵))) ≠ 0) |
| 105 | | dvdscmulr 15010 |
. . . . . . . . . . . . . 14
⊢ (((𝑝↑(𝑝 pCnt (#‘𝐵))) ∈ ℤ ∧ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℤ ∧ ((𝑎↑(𝑎 pCnt (#‘𝐵))) ∈ ℤ ∧ (𝑎↑(𝑎 pCnt (#‘𝐵))) ≠ 0)) → (((𝑎↑(𝑎 pCnt (#‘𝐵))) · (𝑝↑(𝑝 pCnt (#‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (#‘𝐵))) · ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))))) |
| 106 | 79, 103, 75, 104, 105 | syl112anc 1330 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (((𝑎↑(𝑎 pCnt (#‘𝐵))) · (𝑝↑(𝑝 pCnt (#‘𝐵)))) ∥ ((𝑎↑(𝑎 pCnt (#‘𝐵))) · ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))) ↔ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))))) |
| 107 | 100, 106 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))) |
| 108 | 17, 28 | odcl 17955 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐵 → (𝑂‘𝑥) ∈
ℕ0) |
| 109 | 108 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈
ℕ0) |
| 110 | 109 | nn0zd 11480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (𝑂‘𝑥) ∈ ℤ) |
| 111 | | dvdstr 15018 |
. . . . . . . . . . . . 13
⊢ (((𝑂‘𝑥) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∈ ℤ ∧ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℤ) → (((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))) → (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))))) |
| 112 | 110, 79, 103, 111 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → (((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∧ (𝑝↑(𝑝 pCnt (#‘𝐵))) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))) → (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))))) |
| 113 | 107, 112 | mpan2d 710 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) ∧ 𝑥 ∈ 𝐵) → ((𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵))) → (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))))) |
| 114 | 113 | ss2rabdv 3683 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 115 | 47 | elpw 4164 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ∈ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} ↔ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 116 | 114, 115 | sylibr 224 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (𝐴 ∖ {𝑎})) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))} ∈ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 117 | 31 | reseq1i 5392 |
. . . . . . . . . 10
⊢ (𝑆 ↾ (𝐴 ∖ {𝑎})) = ((𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) |
| 118 | | difss 3737 |
. . . . . . . . . . 11
⊢ (𝐴 ∖ {𝑎}) ⊆ 𝐴 |
| 119 | | resmpt 5449 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ {𝑎}) ⊆ 𝐴 → ((𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))})) |
| 120 | 118, 119 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) |
| 121 | 117, 120 | eqtri 2644 |
. . . . . . . . 9
⊢ (𝑆 ↾ (𝐴 ∖ {𝑎})) = (𝑝 ∈ (𝐴 ∖ {𝑎}) ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) |
| 122 | 116, 121 | fmptd 6385 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑆 ↾ (𝐴 ∖ {𝑎})):(𝐴 ∖ {𝑎})⟶𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 123 | | frn 6053 |
. . . . . . . 8
⊢ ((𝑆 ↾ (𝐴 ∖ {𝑎})):(𝐴 ∖ {𝑎})⟶𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} → ran (𝑆 ↾ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 124 | 122, 123 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ran (𝑆 ↾ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 125 | 57, 124 | syl5eqss 3649 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 126 | | sspwuni 4611 |
. . . . . 6
⊢ ((𝑆 “ (𝐴 ∖ {𝑎})) ⊆ 𝒫 {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} ↔ ∪
(𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 127 | 125, 126 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∪ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 128 | 101 | nnzd 11481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℤ) |
| 129 | 28, 17 | oddvdssubg 18258 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧
((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵)))) ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} ∈ (SubGrp‘𝐺)) |
| 130 | 52, 128, 129 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} ∈ (SubGrp‘𝐺)) |
| 131 | 3 | mrcsscl 16280 |
. . . . 5
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐴 ∖ {𝑎})) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} ∧ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎}))) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 132 | 56, 127, 130, 131 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎}))) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) |
| 133 | | ss2in 3840 |
. . . 4
⊢ (((𝑆‘𝑎) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} ∧ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎}))) ⊆ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) → ((𝑆‘𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))})) |
| 134 | 51, 132, 133 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑆‘𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎})))) ⊆ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))})) |
| 135 | | eqid 2622 |
. . . . 5
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} |
| 136 | | eqid 2622 |
. . . . 5
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))} |
| 137 | 71 | simp2d 1074 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑎↑(𝑎 pCnt (#‘𝐵))) gcd ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))) = 1) |
| 138 | | eqid 2622 |
. . . . 5
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
| 139 | 17, 28, 135, 136, 52, 73, 101, 137, 98, 2, 138 | ablfacrp 18465 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) = {(0g‘𝐺)} ∧ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} (LSSum‘𝐺){𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) = 𝐵)) |
| 140 | 139 | simpld 475 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑎↑(𝑎 pCnt (#‘𝐵)))} ∩ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ ((#‘𝐵) / (𝑎↑(𝑎 pCnt (#‘𝐵))))}) = {(0g‘𝐺)}) |
| 141 | 134, 140 | sseqtrd 3641 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑆‘𝑎) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐴 ∖ {𝑎})))) ⊆
{(0g‘𝐺)}) |
| 142 | 1, 2, 3, 6, 13, 32, 39, 141 | dmdprdd 18398 |
1
⊢ (𝜑 → 𝐺dom DProd 𝑆) |