MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmacl Structured version   Visualization version   GIF version

Theorem dsmmacl 20085
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmmacl.j (𝜑𝐽𝐻)
dsmmacl.k (𝜑𝐾𝐻)
dsmmacl.a + = (+g𝑃)
Assertion
Ref Expression
dsmmacl (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)

Proof of Theorem dsmmacl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2622 . . 3 (Base‘𝑃) = (Base‘𝑃)
3 dsmmacl.a . . 3 + = (+g𝑃)
4 dsmmcl.s . . 3 (𝜑𝑆𝑉)
5 dsmmcl.i . . 3 (𝜑𝐼𝑊)
6 dsmmcl.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
7 dsmmacl.j . . . . 5 (𝜑𝐽𝐻)
8 eqid 2622 . . . . . 6 (𝑆m 𝑅) = (𝑆m 𝑅)
9 dsmmcl.h . . . . . 6 𝐻 = (Base‘(𝑆m 𝑅))
10 ffn 6045 . . . . . . 7 (𝑅:𝐼⟶Mnd → 𝑅 Fn 𝐼)
116, 10syl 17 . . . . . 6 (𝜑𝑅 Fn 𝐼)
121, 8, 2, 9, 5, 11dsmmelbas 20083 . . . . 5 (𝜑 → (𝐽𝐻 ↔ (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
137, 12mpbid 222 . . . 4 (𝜑 → (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1413simpld 475 . . 3 (𝜑𝐽 ∈ (Base‘𝑃))
15 dsmmacl.k . . . . 5 (𝜑𝐾𝐻)
161, 8, 2, 9, 5, 11dsmmelbas 20083 . . . . 5 (𝜑 → (𝐾𝐻 ↔ (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
1715, 16mpbid 222 . . . 4 (𝜑 → (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1817simpld 475 . . 3 (𝜑𝐾 ∈ (Base‘𝑃))
191, 2, 3, 4, 5, 6, 14, 18prdsplusgcl 17321 . 2 (𝜑 → (𝐽 + 𝐾) ∈ (Base‘𝑃))
204adantr 481 . . . . . 6 ((𝜑𝑎𝐼) → 𝑆𝑉)
215adantr 481 . . . . . 6 ((𝜑𝑎𝐼) → 𝐼𝑊)
2211adantr 481 . . . . . 6 ((𝜑𝑎𝐼) → 𝑅 Fn 𝐼)
2314adantr 481 . . . . . 6 ((𝜑𝑎𝐼) → 𝐽 ∈ (Base‘𝑃))
2418adantr 481 . . . . . 6 ((𝜑𝑎𝐼) → 𝐾 ∈ (Base‘𝑃))
25 simpr 477 . . . . . 6 ((𝜑𝑎𝐼) → 𝑎𝐼)
261, 2, 20, 21, 22, 23, 24, 3, 25prdsplusgfval 16134 . . . . 5 ((𝜑𝑎𝐼) → ((𝐽 + 𝐾)‘𝑎) = ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)))
2726neeq1d 2853 . . . 4 ((𝜑𝑎𝐼) → (((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))))
2827rabbidva 3188 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))})
2913simprd 479 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
3017simprd 479 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
31 unfi 8227 . . . . 5 (({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
3229, 30, 31syl2anc 693 . . . 4 (𝜑 → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
33 neorian 2888 . . . . . . . . . 10 (((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
3433bicomi 214 . . . . . . . . 9 (¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))))
3534con1bii 346 . . . . . . . 8 (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
366ffvelrnda 6359 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑅𝑎) ∈ Mnd)
37 eqid 2622 . . . . . . . . . . . 12 (Base‘(𝑅𝑎)) = (Base‘(𝑅𝑎))
38 eqid 2622 . . . . . . . . . . . 12 (0g‘(𝑅𝑎)) = (0g‘(𝑅𝑎))
3937, 38mndidcl 17308 . . . . . . . . . . 11 ((𝑅𝑎) ∈ Mnd → (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎)))
4036, 39syl 17 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎)))
41 eqid 2622 . . . . . . . . . . 11 (+g‘(𝑅𝑎)) = (+g‘(𝑅𝑎))
4237, 41, 38mndlid 17311 . . . . . . . . . 10 (((𝑅𝑎) ∈ Mnd ∧ (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎))) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
4336, 40, 42syl2anc 693 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
44 oveq12 6659 . . . . . . . . . 10 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))))
4544eqeq1d 2624 . . . . . . . . 9 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎)) ↔ ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎))))
4643, 45syl5ibrcom 237 . . . . . . . 8 ((𝜑𝑎𝐼) → (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4735, 46syl5bi 232 . . . . . . 7 ((𝜑𝑎𝐼) → (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4847necon1ad 2811 . . . . . 6 ((𝜑𝑎𝐼) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎)) → ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))))
4948ss2rabdv 3683 . . . . 5 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))})
50 unrab 3898 . . . . 5 ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) = {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))}
5149, 50syl6sseqr 3652 . . . 4 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}))
52 ssfi 8180 . . . 4 ((({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin ∧ {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))})) → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
5332, 51, 52syl2anc 693 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
5428, 53eqeltrd 2701 . 2 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
551, 8, 2, 9, 5, 11dsmmelbas 20083 . 2 (𝜑 → ((𝐽 + 𝐾) ∈ 𝐻 ↔ ((𝐽 + 𝐾) ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
5619, 54, 55mpbir2and 957 1 (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  cun 3572  wss 3574   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Xscprds 16106  Mndcmnd 17294  m cdsmm 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-dsmm 20076
This theorem is referenced by:  dsmmsubg  20087
  Copyright terms: Public domain W3C validator