| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2623 |
. 2
⊢ (𝜑 → (𝑃 ↾s 𝐻) = (𝑃 ↾s 𝐻)) |
| 2 | | eqidd 2623 |
. 2
⊢ (𝜑 → (0g‘𝑃) = (0g‘𝑃)) |
| 3 | | eqidd 2623 |
. 2
⊢ (𝜑 → (+g‘𝑃) = (+g‘𝑃)) |
| 4 | | dsmmsubg.r |
. . . . . 6
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
| 5 | | dsmmsubg.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 6 | | fex 6490 |
. . . . . 6
⊢ ((𝑅:𝐼⟶Grp ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) |
| 7 | 4, 5, 6 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ V) |
| 8 | | eqid 2622 |
. . . . . 6
⊢ {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} |
| 9 | 8 | dsmmbase 20079 |
. . . . 5
⊢ (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
| 10 | 7, 9 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
| 11 | | ssrab2 3687 |
. . . 4
⊢ {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) |
| 12 | 10, 11 | syl6eqssr 3656 |
. . 3
⊢ (𝜑 → (Base‘(𝑆 ⊕m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅))) |
| 13 | | dsmmsubg.h |
. . 3
⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
| 14 | | dsmmsubg.p |
. . . 4
⊢ 𝑃 = (𝑆Xs𝑅) |
| 15 | 14 | fveq2i 6194 |
. . 3
⊢
(Base‘𝑃) =
(Base‘(𝑆Xs𝑅)) |
| 16 | 12, 13, 15 | 3sstr4g 3646 |
. 2
⊢ (𝜑 → 𝐻 ⊆ (Base‘𝑃)) |
| 17 | | dsmmsubg.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 18 | | grpmnd 17429 |
. . . . 5
⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) |
| 19 | 18 | ssriv 3607 |
. . . 4
⊢ Grp
⊆ Mnd |
| 20 | | fss 6056 |
. . . 4
⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) →
𝑅:𝐼⟶Mnd) |
| 21 | 4, 19, 20 | sylancl 694 |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| 22 | | eqid 2622 |
. . 3
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 23 | 14, 13, 5, 17, 21, 22 | dsmm0cl 20084 |
. 2
⊢ (𝜑 → (0g‘𝑃) ∈ 𝐻) |
| 24 | 5 | 3ad2ant1 1082 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝐼 ∈ 𝑊) |
| 25 | 17 | 3ad2ant1 1082 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑆 ∈ 𝑉) |
| 26 | 21 | 3ad2ant1 1082 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑅:𝐼⟶Mnd) |
| 27 | | simp2 1062 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑎 ∈ 𝐻) |
| 28 | | simp3 1063 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑏 ∈ 𝐻) |
| 29 | | eqid 2622 |
. . 3
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 30 | 14, 13, 24, 25, 26, 27, 28, 29 | dsmmacl 20085 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → (𝑎(+g‘𝑃)𝑏) ∈ 𝐻) |
| 31 | 14, 5, 17, 4 | prdsgrpd 17525 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Grp) |
| 32 | 31 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑃 ∈ Grp) |
| 33 | 16 | sselda 3603 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ (Base‘𝑃)) |
| 34 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 35 | | eqid 2622 |
. . . . 5
⊢
(invg‘𝑃) = (invg‘𝑃) |
| 36 | 34, 35 | grpinvcl 17467 |
. . . 4
⊢ ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) →
((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃)) |
| 37 | 32, 33, 36 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃)) |
| 38 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ 𝐻) |
| 39 | | eqid 2622 |
. . . . . . 7
⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) |
| 40 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝐼 ∈ 𝑊) |
| 41 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝑅:𝐼⟶Grp → 𝑅 Fn 𝐼) |
| 42 | 4, 41 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 43 | 42 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑅 Fn 𝐼) |
| 44 | 14, 39, 34, 13, 40, 43 | dsmmelbas 20083 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑎 ∈ 𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin))) |
| 45 | 38, 44 | mpbid 222 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin)) |
| 46 | 45 | simprd 479 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
| 47 | 5 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 48 | 17 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
| 49 | 4 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑅:𝐼⟶Grp) |
| 50 | 33 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑃)) |
| 51 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑏 ∈ 𝐼) |
| 52 | 14, 47, 48, 49, 34, 35, 50, 51 | prdsinvgd2 20086 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → (((invg‘𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) |
| 53 | 52 | adantrr 753 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → (((invg‘𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) |
| 54 | | fveq2 6191 |
. . . . . . . . 9
⊢ ((𝑎‘𝑏) = (0g‘(𝑅‘𝑏)) → ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)) = ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏)))) |
| 55 | 54 | ad2antll 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)) = ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏)))) |
| 56 | 4 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐼) → (𝑅‘𝑏) ∈ Grp) |
| 57 | 56 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → (𝑅‘𝑏) ∈ Grp) |
| 58 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(0g‘(𝑅‘𝑏)) = (0g‘(𝑅‘𝑏)) |
| 59 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(invg‘(𝑅‘𝑏)) = (invg‘(𝑅‘𝑏)) |
| 60 | 58, 59 | grpinvid 17476 |
. . . . . . . . . 10
⊢ ((𝑅‘𝑏) ∈ Grp →
((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
| 61 | 57, 60 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
| 62 | 61 | adantrr 753 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
| 63 | 53, 55, 62 | 3eqtrd 2660 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → (((invg‘𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅‘𝑏))) |
| 64 | 63 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((𝑎‘𝑏) = (0g‘(𝑅‘𝑏)) → (((invg‘𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅‘𝑏)))) |
| 65 | 64 | necon3d 2815 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏)) → (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏)))) |
| 66 | 65 | ss2rabdv 3683 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ⊆ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))}) |
| 67 | | ssfi 8180 |
. . . 4
⊢ (({𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin ∧ {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ⊆ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))}) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
| 68 | 46, 66, 67 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
| 69 | 14, 39, 34, 13, 40, 43 | dsmmelbas 20083 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (((invg‘𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin))) |
| 70 | 37, 68, 69 | mpbir2and 957 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((invg‘𝑃)‘𝑎) ∈ 𝐻) |
| 71 | 1, 2, 3, 16, 23, 30, 70, 31 | issubgrpd2 17610 |
1
⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝑃)) |