MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssof1 Structured version   Visualization version   GIF version

Theorem suppssof1 7328
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssof1.s (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿)
suppssof1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssof1.a (𝜑𝐴:𝐷𝑉)
suppssof1.b (𝜑𝐵:𝐷𝑅)
suppssof1.d (𝜑𝐷𝑊)
suppssof1.y (𝜑𝑌𝑈)
Assertion
Ref Expression
suppssof1 (𝜑 → ((𝐴𝑓 𝑂𝐵) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑣,𝑍
Allowed substitution hints:   𝐴(𝑣)   𝐷(𝑣)   𝑈(𝑣)   𝐿(𝑣)   𝑉(𝑣)   𝑊(𝑣)

Proof of Theorem suppssof1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . 5 (𝜑𝐴:𝐷𝑉)
2 ffn 6045 . . . . 5 (𝐴:𝐷𝑉𝐴 Fn 𝐷)
31, 2syl 17 . . . 4 (𝜑𝐴 Fn 𝐷)
4 suppssof1.b . . . . 5 (𝜑𝐵:𝐷𝑅)
5 ffn 6045 . . . . 5 (𝐵:𝐷𝑅𝐵 Fn 𝐷)
64, 5syl 17 . . . 4 (𝜑𝐵 Fn 𝐷)
7 suppssof1.d . . . 4 (𝜑𝐷𝑊)
8 inidm 3822 . . . 4 (𝐷𝐷) = 𝐷
9 eqidd 2623 . . . 4 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝐴𝑥))
10 eqidd 2623 . . . 4 ((𝜑𝑥𝐷) → (𝐵𝑥) = (𝐵𝑥))
113, 6, 7, 7, 8, 9, 10offval 6904 . . 3 (𝜑 → (𝐴𝑓 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
1211oveq1d 6665 . 2 (𝜑 → ((𝐴𝑓 𝑂𝐵) supp 𝑍) = ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) supp 𝑍))
131feqmptd 6249 . . . . 5 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1413oveq1d 6665 . . . 4 (𝜑 → (𝐴 supp 𝑌) = ((𝑥𝐷 ↦ (𝐴𝑥)) supp 𝑌))
15 suppssof1.s . . . 4 (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿)
1614, 15eqsstr3d 3640 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑥)) supp 𝑌) ⊆ 𝐿)
17 suppssof1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
18 fvexd 6203 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) ∈ V)
194ffvelrnda 6359 . . 3 ((𝜑𝑥𝐷) → (𝐵𝑥) ∈ 𝑅)
20 suppssof1.y . . 3 (𝜑𝑌𝑈)
2116, 17, 18, 19, 20suppssov1 7327 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) supp 𝑍) ⊆ 𝐿)
2212, 21eqsstrd 3639 1 (𝜑 → ((𝐴𝑓 𝑂𝐵) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  cmpt 4729   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-supp 7296
This theorem is referenced by:  psrbagev1  19510  frlmup1  20137  jensen  24715
  Copyright terms: Public domain W3C validator