![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagev1 | Structured version Visualization version GIF version |
Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) |
Ref | Expression |
---|---|
psrbagev1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrbagev1.c | ⊢ 𝐶 = (Base‘𝑇) |
psrbagev1.x | ⊢ · = (.g‘𝑇) |
psrbagev1.z | ⊢ 0 = (0g‘𝑇) |
psrbagev1.t | ⊢ (𝜑 → 𝑇 ∈ CMnd) |
psrbagev1.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
psrbagev1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
psrbagev1.i | ⊢ (𝜑 → 𝐼 ∈ V) |
Ref | Expression |
---|---|
psrbagev1 | ⊢ (𝜑 → ((𝐵 ∘𝑓 · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘𝑓 · 𝐺) finSupp 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbagev1.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ CMnd) | |
2 | cmnmnd 18208 | . . . . 5 ⊢ (𝑇 ∈ CMnd → 𝑇 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Mnd) |
4 | psrbagev1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑇) | |
5 | psrbagev1.x | . . . . . 6 ⊢ · = (.g‘𝑇) | |
6 | 4, 5 | mulgnn0cl 17558 | . . . . 5 ⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶) → (𝑦 · 𝑧) ∈ 𝐶) |
7 | 6 | 3expb 1266 | . . . 4 ⊢ ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
8 | 3, 7 | sylan 488 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
9 | psrbagev1.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) | |
10 | psrbagev1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
11 | psrbagev1.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
12 | 11 | psrbagf 19365 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝐵 ∈ 𝐷) → 𝐵:𝐼⟶ℕ0) |
13 | 9, 10, 12 | syl2anc 693 | . . 3 ⊢ (𝜑 → 𝐵:𝐼⟶ℕ0) |
14 | psrbagev1.g | . . 3 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
15 | inidm 3822 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
16 | 8, 13, 14, 9, 9, 15 | off 6912 | . 2 ⊢ (𝜑 → (𝐵 ∘𝑓 · 𝐺):𝐼⟶𝐶) |
17 | ovexd 6680 | . . 3 ⊢ (𝜑 → (𝐵 ∘𝑓 · 𝐺) ∈ V) | |
18 | ffn 6045 | . . . . . 6 ⊢ (𝐵:𝐼⟶ℕ0 → 𝐵 Fn 𝐼) | |
19 | 13, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 Fn 𝐼) |
20 | ffn 6045 | . . . . . 6 ⊢ (𝐺:𝐼⟶𝐶 → 𝐺 Fn 𝐼) | |
21 | 14, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
22 | 19, 21, 9, 9, 15 | offn 6908 | . . . 4 ⊢ (𝜑 → (𝐵 ∘𝑓 · 𝐺) Fn 𝐼) |
23 | fnfun 5988 | . . . 4 ⊢ ((𝐵 ∘𝑓 · 𝐺) Fn 𝐼 → Fun (𝐵 ∘𝑓 · 𝐺)) | |
24 | 22, 23 | syl 17 | . . 3 ⊢ (𝜑 → Fun (𝐵 ∘𝑓 · 𝐺)) |
25 | psrbagev1.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
26 | fvex 6201 | . . . . 5 ⊢ (0g‘𝑇) ∈ V | |
27 | 25, 26 | eqeltri 2697 | . . . 4 ⊢ 0 ∈ V |
28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
29 | 11 | psrbagfsupp 19509 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐼 ∈ V) → 𝐵 finSupp 0) |
30 | 10, 9, 29 | syl2anc 693 | . . . 4 ⊢ (𝜑 → 𝐵 finSupp 0) |
31 | 30 | fsuppimpd 8282 | . . 3 ⊢ (𝜑 → (𝐵 supp 0) ∈ Fin) |
32 | ssid 3624 | . . . . 5 ⊢ (𝐵 supp 0) ⊆ (𝐵 supp 0) | |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0)) |
34 | 4, 25, 5 | mulg0 17546 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → (0 · 𝑧) = 0 ) |
35 | 34 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (0 · 𝑧) = 0 ) |
36 | c0ex 10034 | . . . . 5 ⊢ 0 ∈ V | |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
38 | 33, 35, 13, 14, 9, 37 | suppssof1 7328 | . . 3 ⊢ (𝜑 → ((𝐵 ∘𝑓 · 𝐺) supp 0 ) ⊆ (𝐵 supp 0)) |
39 | suppssfifsupp 8290 | . . 3 ⊢ ((((𝐵 ∘𝑓 · 𝐺) ∈ V ∧ Fun (𝐵 ∘𝑓 · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵 ∘𝑓 · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵 ∘𝑓 · 𝐺) finSupp 0 ) | |
40 | 17, 24, 28, 31, 38, 39 | syl32anc 1334 | . 2 ⊢ (𝜑 → (𝐵 ∘𝑓 · 𝐺) finSupp 0 ) |
41 | 16, 40 | jca 554 | 1 ⊢ (𝜑 → ((𝐵 ∘𝑓 · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘𝑓 · 𝐺) finSupp 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ⊆ wss 3574 class class class wbr 4653 ◡ccnv 5113 “ cima 5117 Fun wfun 5882 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 supp csupp 7295 ↑𝑚 cmap 7857 Fincfn 7955 finSupp cfsupp 8275 0cc0 9936 ℕcn 11020 ℕ0cn0 11292 Basecbs 15857 0gc0g 16100 Mndcmnd 17294 .gcmg 17540 CMndccmn 18193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mulg 17541 df-cmn 18195 |
This theorem is referenced by: psrbagev2 19511 evlslem1 19515 |
Copyright terms: Public domain | W3C validator |