Step | Hyp | Ref
| Expression |
1 | | frlmup.b |
. 2
⊢ 𝐵 = (Base‘𝐹) |
2 | | eqid 2622 |
. 2
⊢ (
·𝑠 ‘𝐹) = ( ·𝑠
‘𝐹) |
3 | | frlmup.v |
. 2
⊢ · = (
·𝑠 ‘𝑇) |
4 | | eqid 2622 |
. 2
⊢
(Scalar‘𝐹) =
(Scalar‘𝐹) |
5 | | eqid 2622 |
. 2
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
6 | | eqid 2622 |
. 2
⊢
(Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) |
7 | | frlmup.r |
. . . 4
⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
8 | | frlmup.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ LMod) |
9 | 5 | lmodring 18871 |
. . . . 5
⊢ (𝑇 ∈ LMod →
(Scalar‘𝑇) ∈
Ring) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
11 | 7, 10 | eqeltrd 2701 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | | frlmup.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑋) |
13 | | frlmup.f |
. . . 4
⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
14 | 13 | frlmlmod 20093 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → 𝐹 ∈ LMod) |
15 | 11, 12, 14 | syl2anc 693 |
. 2
⊢ (𝜑 → 𝐹 ∈ LMod) |
16 | 13 | frlmsca 20097 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → 𝑅 = (Scalar‘𝐹)) |
17 | 11, 12, 16 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
18 | 7, 17 | eqtr3d 2658 |
. 2
⊢ (𝜑 → (Scalar‘𝑇) = (Scalar‘𝐹)) |
19 | | frlmup.c |
. . 3
⊢ 𝐶 = (Base‘𝑇) |
20 | | eqid 2622 |
. . 3
⊢
(+g‘𝐹) = (+g‘𝐹) |
21 | | eqid 2622 |
. . 3
⊢
(+g‘𝑇) = (+g‘𝑇) |
22 | | lmodgrp 18870 |
. . . 4
⊢ (𝐹 ∈ LMod → 𝐹 ∈ Grp) |
23 | 15, 22 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 ∈ Grp) |
24 | | lmodgrp 18870 |
. . . 4
⊢ (𝑇 ∈ LMod → 𝑇 ∈ Grp) |
25 | 8, 24 | syl 17 |
. . 3
⊢ (𝜑 → 𝑇 ∈ Grp) |
26 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
27 | 26 | anbi2d 740 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝜑 ∧ 𝑧 ∈ 𝐵) ↔ (𝜑 ∧ 𝑥 ∈ 𝐵))) |
28 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑧 ∘𝑓 · 𝐴) = (𝑥 ∘𝑓 · 𝐴)) |
29 | 28 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) = (𝑇 Σg (𝑥 ∘𝑓
·
𝐴))) |
30 | 29 | eleq1d 2686 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) ∈ 𝐶 ↔ (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) ∈ 𝐶)) |
31 | 27, 30 | imbi12d 334 |
. . . . 5
⊢ (𝑧 = 𝑥 → (((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) ∈ 𝐶) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) ∈ 𝐶))) |
32 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝑇) = (0g‘𝑇) |
33 | | lmodcmn 18911 |
. . . . . . . 8
⊢ (𝑇 ∈ LMod → 𝑇 ∈ CMnd) |
34 | 8, 33 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ CMnd) |
35 | 34 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑇 ∈ CMnd) |
36 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝐼 ∈ 𝑋) |
37 | 8 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → 𝑇 ∈ LMod) |
38 | | simprl 794 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ (Base‘𝑅)) |
39 | 7 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑇))) |
40 | 39 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → (Base‘𝑅) = (Base‘(Scalar‘𝑇))) |
41 | 38, 40 | eleqtrd 2703 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑇))) |
42 | | simprr 796 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → 𝑦 ∈ 𝐶) |
43 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
44 | 19, 5, 3, 43 | lmodvscl 18880 |
. . . . . . . 8
⊢ ((𝑇 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑇)) ∧ 𝑦 ∈ 𝐶) → (𝑥 · 𝑦) ∈ 𝐶) |
45 | 37, 41, 42, 44 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → (𝑥 · 𝑦) ∈ 𝐶) |
46 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
47 | 13, 46, 1 | frlmbasf 20104 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑋 ∧ 𝑧 ∈ 𝐵) → 𝑧:𝐼⟶(Base‘𝑅)) |
48 | 12, 47 | sylan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧:𝐼⟶(Base‘𝑅)) |
49 | | frlmup.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
50 | 49 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝐴:𝐼⟶𝐶) |
51 | | inidm 3822 |
. . . . . . 7
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
52 | 45, 48, 50, 36, 36, 51 | off 6912 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
53 | | ovex 6678 |
. . . . . . . 8
⊢ (𝑧 ∘𝑓
·
𝐴) ∈
V |
54 | 53 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) ∈ V) |
55 | | ffun 6048 |
. . . . . . . 8
⊢ ((𝑧 ∘𝑓
·
𝐴):𝐼⟶𝐶 → Fun (𝑧 ∘𝑓 · 𝐴)) |
56 | 52, 55 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → Fun (𝑧 ∘𝑓 · 𝐴)) |
57 | | fvexd 6203 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (0g‘𝑇) ∈ V) |
58 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
59 | 13, 58, 1 | frlmbasfsupp 20102 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑋 ∧ 𝑧 ∈ 𝐵) → 𝑧 finSupp (0g‘𝑅)) |
60 | 12, 59 | sylan 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 finSupp (0g‘𝑅)) |
61 | 7 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0g‘𝑅) =
(0g‘(Scalar‘𝑇))) |
62 | 61 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ (𝜑 →
(0g‘(Scalar‘𝑇)) = (0g‘𝑅)) |
63 | 62 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 finSupp
(0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g‘𝑅))) |
64 | 63 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 finSupp
(0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g‘𝑅))) |
65 | 60, 64 | mpbird 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 finSupp
(0g‘(Scalar‘𝑇))) |
66 | 65 | fsuppimpd 8282 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 supp
(0g‘(Scalar‘𝑇))) ∈ Fin) |
67 | | ssid 3624 |
. . . . . . . . 9
⊢ (𝑧 supp
(0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp
(0g‘(Scalar‘𝑇))) |
68 | 67 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 supp
(0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp
(0g‘(Scalar‘𝑇)))) |
69 | 8 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 ∈ 𝐶) → 𝑇 ∈ LMod) |
70 | | eqid 2622 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑇)) =
(0g‘(Scalar‘𝑇)) |
71 | 19, 5, 3, 70, 32 | lmod0vs 18896 |
. . . . . . . . 9
⊢ ((𝑇 ∈ LMod ∧ 𝑤 ∈ 𝐶) →
((0g‘(Scalar‘𝑇)) · 𝑤) = (0g‘𝑇)) |
72 | 69, 71 | sylancom 701 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 ∈ 𝐶) →
((0g‘(Scalar‘𝑇)) · 𝑤) = (0g‘𝑇)) |
73 | | fvexd 6203 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) →
(0g‘(Scalar‘𝑇)) ∈ V) |
74 | 68, 72, 48, 50, 36, 73 | suppssof1 7328 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ((𝑧 ∘𝑓 · 𝐴) supp
(0g‘𝑇))
⊆ (𝑧 supp
(0g‘(Scalar‘𝑇)))) |
75 | | suppssfifsupp 8290 |
. . . . . . 7
⊢ ((((𝑧 ∘𝑓
·
𝐴) ∈ V ∧ Fun
(𝑧
∘𝑓 · 𝐴) ∧ (0g‘𝑇) ∈ V) ∧ ((𝑧 supp
(0g‘(Scalar‘𝑇))) ∈ Fin ∧ ((𝑧 ∘𝑓 · 𝐴) supp
(0g‘𝑇))
⊆ (𝑧 supp
(0g‘(Scalar‘𝑇))))) → (𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
76 | 54, 56, 57, 66, 74, 75 | syl32anc 1334 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
77 | 19, 32, 35, 36, 52, 76 | gsumcl 18316 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) ∈ 𝐶) |
78 | 31, 77 | chvarv 2263 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) ∈ 𝐶) |
79 | | frlmup.e |
. . . 4
⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘𝑓
·
𝐴))) |
80 | 78, 79 | fmptd 6385 |
. . 3
⊢ (𝜑 → 𝐸:𝐵⟶𝐶) |
81 | 34 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑇 ∈ CMnd) |
82 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐼 ∈ 𝑋) |
83 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
84 | 83 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝜑 ∧ 𝑧 ∈ 𝐵) ↔ (𝜑 ∧ 𝑦 ∈ 𝐵))) |
85 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∘𝑓 · 𝐴) = (𝑦 ∘𝑓 · 𝐴)) |
86 | 85 | feq1d 6030 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶 ↔ (𝑦 ∘𝑓 · 𝐴):𝐼⟶𝐶)) |
87 | 84, 86 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴):𝐼⟶𝐶))) |
88 | 87, 52 | chvarv 2263 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
89 | 88 | adantrr 753 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
90 | 52 | adantrl 752 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
91 | 85 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)
↔ (𝑦
∘𝑓 · 𝐴) finSupp (0g‘𝑇))) |
92 | 84, 91 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇))
↔ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)))) |
93 | 92, 76 | chvarv 2263 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
94 | 93 | adantrr 753 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
95 | 76 | adantrl 752 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
96 | 19, 32, 21, 81, 82, 89, 90, 94, 95 | gsumadd 18323 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg ((𝑦 ∘𝑓
·
𝐴)
∘𝑓 (+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))) = ((𝑇 Σg (𝑦 ∘𝑓
·
𝐴))(+g‘𝑇)(𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
97 | 1, 20 | lmodvacl 18877 |
. . . . . . . 8
⊢ ((𝐹 ∈ LMod ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐹)𝑧) ∈ 𝐵) |
98 | 97 | 3expb 1266 |
. . . . . . 7
⊢ ((𝐹 ∈ LMod ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐹)𝑧) ∈ 𝐵) |
99 | 15, 98 | sylan 488 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐹)𝑧) ∈ 𝐵) |
100 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑥 = (𝑦(+g‘𝐹)𝑧) → (𝑥 ∘𝑓 · 𝐴) = ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴)) |
101 | 100 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = (𝑦(+g‘𝐹)𝑧) → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) = (𝑇 Σg ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
102 | | ovex 6678 |
. . . . . . 7
⊢ (𝑇 Σg
((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴)) ∈ V |
103 | 101, 79, 102 | fvmpt 6282 |
. . . . . 6
⊢ ((𝑦(+g‘𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦(+g‘𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
104 | 99, 103 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦(+g‘𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
105 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Ring) |
106 | | simprl 794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
107 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
108 | | eqid 2622 |
. . . . . . . . 9
⊢
(+g‘𝑅) = (+g‘𝑅) |
109 | 13, 1, 105, 82, 106, 107, 108, 20 | frlmplusgval 20107 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐹)𝑧) = (𝑦 ∘𝑓
(+g‘𝑅)𝑧)) |
110 | 109 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴) = ((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴)) |
111 | 13, 46, 1 | frlmbasf 20104 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑋 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐼⟶(Base‘𝑅)) |
112 | 12, 111 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐼⟶(Base‘𝑅)) |
113 | 112 | adantrr 753 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦:𝐼⟶(Base‘𝑅)) |
114 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝑦:𝐼⟶(Base‘𝑅) → 𝑦 Fn 𝐼) |
115 | 113, 114 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 Fn 𝐼) |
116 | 48 | adantrl 752 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧:𝐼⟶(Base‘𝑅)) |
117 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝑧:𝐼⟶(Base‘𝑅) → 𝑧 Fn 𝐼) |
118 | 116, 117 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 Fn 𝐼) |
119 | 115, 118,
82, 82, 51 | offn 6908 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∘𝑓
(+g‘𝑅)𝑧) Fn 𝐼) |
120 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝐴:𝐼⟶𝐶 → 𝐴 Fn 𝐼) |
121 | 49, 120 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 Fn 𝐼) |
122 | 121 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐴 Fn 𝐼) |
123 | 119, 122,
82, 82, 51 | offn 6908 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴) Fn 𝐼) |
124 | | ffn 6045 |
. . . . . . . . . . 11
⊢ ((𝑦 ∘𝑓
·
𝐴):𝐼⟶𝐶 → (𝑦 ∘𝑓 · 𝐴) Fn 𝐼) |
125 | 88, 124 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴) Fn 𝐼) |
126 | 125 | adantrr 753 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∘𝑓 · 𝐴) Fn 𝐼) |
127 | | ffn 6045 |
. . . . . . . . . . 11
⊢ ((𝑧 ∘𝑓
·
𝐴):𝐼⟶𝐶 → (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) |
128 | 52, 127 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) |
129 | 128 | adantrl 752 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) |
130 | 126, 129,
82, 82, 51 | offn 6908 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴)) Fn 𝐼) |
131 | 7 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (+g‘𝑅) =
(+g‘(Scalar‘𝑇))) |
132 | 131 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (+g‘𝑅) =
(+g‘(Scalar‘𝑇))) |
133 | 132 | oveqd 6667 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥)) = ((𝑦‘𝑥)(+g‘(Scalar‘𝑇))(𝑧‘𝑥))) |
134 | 133 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥)) = (((𝑦‘𝑥)(+g‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥))) |
135 | 8 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑇 ∈ LMod) |
136 | 113 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈ (Base‘𝑅)) |
137 | 39 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇))) |
138 | 136, 137 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈ (Base‘(Scalar‘𝑇))) |
139 | 116 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘𝑅)) |
140 | 139, 137 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇))) |
141 | 49 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐴:𝐼⟶𝐶) |
142 | 141 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝐴‘𝑥) ∈ 𝐶) |
143 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(+g‘(Scalar‘𝑇)) =
(+g‘(Scalar‘𝑇)) |
144 | 19, 21, 5, 3, 43, 143 | lmodvsdir 18887 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ LMod ∧ ((𝑦‘𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴‘𝑥) ∈ 𝐶)) → (((𝑦‘𝑥)(+g‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥)) = (((𝑦‘𝑥) · (𝐴‘𝑥))(+g‘𝑇)((𝑧‘𝑥) · (𝐴‘𝑥)))) |
145 | 135, 138,
140, 142, 144 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦‘𝑥)(+g‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥)) = (((𝑦‘𝑥) · (𝐴‘𝑥))(+g‘𝑇)((𝑧‘𝑥) · (𝐴‘𝑥)))) |
146 | 134, 145 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥)) = (((𝑦‘𝑥) · (𝐴‘𝑥))(+g‘𝑇)((𝑧‘𝑥) · (𝐴‘𝑥)))) |
147 | 115 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑦 Fn 𝐼) |
148 | 118 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑧 Fn 𝐼) |
149 | 12 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
150 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
151 | | fnfvof 6911 |
. . . . . . . . . . . 12
⊢ (((𝑦 Fn 𝐼 ∧ 𝑧 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → ((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) = ((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥))) |
152 | 147, 148,
149, 150, 151 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) = ((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥))) |
153 | 152 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) · (𝐴‘𝑥)) = (((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥))) |
154 | 121 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐴 Fn 𝐼) |
155 | | fnfvof 6911 |
. . . . . . . . . . . 12
⊢ (((𝑦 Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → ((𝑦 ∘𝑓 · 𝐴)‘𝑥) = ((𝑦‘𝑥) · (𝐴‘𝑥))) |
156 | 147, 154,
149, 150, 155 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∘𝑓 · 𝐴)‘𝑥) = ((𝑦‘𝑥) · (𝐴‘𝑥))) |
157 | | fnfvof 6911 |
. . . . . . . . . . . 12
⊢ (((𝑧 Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → ((𝑧 ∘𝑓 · 𝐴)‘𝑥) = ((𝑧‘𝑥) · (𝐴‘𝑥))) |
158 | 148, 154,
149, 150, 157 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∘𝑓 · 𝐴)‘𝑥) = ((𝑧‘𝑥) · (𝐴‘𝑥))) |
159 | 156, 158 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓 · 𝐴)‘𝑥)(+g‘𝑇)((𝑧 ∘𝑓 · 𝐴)‘𝑥)) = (((𝑦‘𝑥) · (𝐴‘𝑥))(+g‘𝑇)((𝑧‘𝑥) · (𝐴‘𝑥)))) |
160 | 146, 153,
159 | 3eqtr4d 2666 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) · (𝐴‘𝑥)) = (((𝑦 ∘𝑓 · 𝐴)‘𝑥)(+g‘𝑇)((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
161 | 119 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∘𝑓
(+g‘𝑅)𝑧) Fn 𝐼) |
162 | | fnfvof 6911 |
. . . . . . . . . 10
⊢ ((((𝑦 ∘𝑓
(+g‘𝑅)𝑧) Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) · (𝐴‘𝑥))) |
163 | 161, 154,
149, 150, 162 | syl22anc 1327 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) · (𝐴‘𝑥))) |
164 | 126 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∘𝑓 · 𝐴) Fn 𝐼) |
165 | 129 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) |
166 | | fnfvof 6911 |
. . . . . . . . . 10
⊢ ((((𝑦 ∘𝑓
·
𝐴) Fn 𝐼 ∧ (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → (((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))‘𝑥) = (((𝑦 ∘𝑓 · 𝐴)‘𝑥)(+g‘𝑇)((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
167 | 164, 165,
149, 150, 166 | syl22anc 1327 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))‘𝑥) = (((𝑦 ∘𝑓 · 𝐴)‘𝑥)(+g‘𝑇)((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
168 | 160, 163,
167 | 3eqtr4d 2666 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))‘𝑥)) |
169 | 123, 130,
168 | eqfnfvd 6314 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴) = ((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))) |
170 | 110, 169 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴) = ((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))) |
171 | 170 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑇 Σg ((𝑦 ∘𝑓
·
𝐴)
∘𝑓 (+g‘𝑇)(𝑧 ∘𝑓 · 𝐴)))) |
172 | 104, 171 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦(+g‘𝐹)𝑧)) = (𝑇 Σg ((𝑦 ∘𝑓
·
𝐴)
∘𝑓 (+g‘𝑇)(𝑧 ∘𝑓 · 𝐴)))) |
173 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∘𝑓 · 𝐴) = (𝑦 ∘𝑓 · 𝐴)) |
174 | 173 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) = (𝑇 Σg (𝑦 ∘𝑓
·
𝐴))) |
175 | | ovex 6678 |
. . . . . . 7
⊢ (𝑇 Σg
(𝑦
∘𝑓 · 𝐴)) ∈ V |
176 | 174, 79, 175 | fvmpt 6282 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵 → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘𝑓
·
𝐴))) |
177 | 176 | ad2antrl 764 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘𝑓
·
𝐴))) |
178 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ∘𝑓 · 𝐴) = (𝑧 ∘𝑓 · 𝐴)) |
179 | 178 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) = (𝑇 Σg (𝑧 ∘𝑓
·
𝐴))) |
180 | | ovex 6678 |
. . . . . . 7
⊢ (𝑇 Σg
(𝑧
∘𝑓 · 𝐴)) ∈ V |
181 | 179, 79, 180 | fvmpt 6282 |
. . . . . 6
⊢ (𝑧 ∈ 𝐵 → (𝐸‘𝑧) = (𝑇 Σg (𝑧 ∘𝑓
·
𝐴))) |
182 | 181 | ad2antll 765 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘𝑧) = (𝑇 Σg (𝑧 ∘𝑓
·
𝐴))) |
183 | 177, 182 | oveq12d 6668 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝐸‘𝑦)(+g‘𝑇)(𝐸‘𝑧)) = ((𝑇 Σg (𝑦 ∘𝑓
·
𝐴))(+g‘𝑇)(𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
184 | 96, 172, 183 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦(+g‘𝐹)𝑧)) = ((𝐸‘𝑦)(+g‘𝑇)(𝐸‘𝑧))) |
185 | 1, 19, 20, 21, 23, 25, 80, 184 | isghmd 17669 |
. 2
⊢ (𝜑 → 𝐸 ∈ (𝐹 GrpHom 𝑇)) |
186 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑇 ∈ LMod) |
187 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝐼 ∈ 𝑋) |
188 | 18 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝜑 →
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹))) |
189 | 188 | eleq2d 2687 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑦 ∈ (Base‘(Scalar‘𝐹)))) |
190 | 189 | biimpar 502 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(Scalar‘𝐹))) → 𝑦 ∈ (Base‘(Scalar‘𝑇))) |
191 | 190 | adantrr 753 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝑇))) |
192 | 52 | adantrl 752 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
193 | 192 | ffvelrnda 6359 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∘𝑓 · 𝐴)‘𝑥) ∈ 𝐶) |
194 | 52 | feqmptd 6249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) = (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
195 | 194, 76 | eqbrtrrd 4677 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥)) finSupp (0g‘𝑇)) |
196 | 195 | adantrl 752 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥)) finSupp (0g‘𝑇)) |
197 | 19, 5, 43, 32, 21, 3, 186, 187, 191, 193, 196 | gsumvsmul 18927 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg (𝑥 ∈ 𝐼 ↦ (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥)))) = (𝑦 · (𝑇 Σg (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥))))) |
198 | 15 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝐹 ∈ LMod) |
199 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝐹))) |
200 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
201 | 1, 4, 2, 6 | lmodvscl 18880 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ LMod ∧ 𝑦 ∈
(Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵) → (𝑦( ·𝑠
‘𝐹)𝑧) ∈ 𝐵) |
202 | 198, 199,
200, 201 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦( ·𝑠
‘𝐹)𝑧) ∈ 𝐵) |
203 | 13, 46, 1 | frlmbasf 20104 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑋 ∧ (𝑦( ·𝑠
‘𝐹)𝑧) ∈ 𝐵) → (𝑦( ·𝑠
‘𝐹)𝑧):𝐼⟶(Base‘𝑅)) |
204 | 187, 202,
203 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦( ·𝑠
‘𝐹)𝑧):𝐼⟶(Base‘𝑅)) |
205 | | ffn 6045 |
. . . . . . . . . 10
⊢ ((𝑦(
·𝑠 ‘𝐹)𝑧):𝐼⟶(Base‘𝑅) → (𝑦( ·𝑠
‘𝐹)𝑧) Fn 𝐼) |
206 | 204, 205 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦( ·𝑠
‘𝐹)𝑧) Fn 𝐼) |
207 | 121 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝐴 Fn 𝐼) |
208 | 206, 207,
187, 187, 51 | offn 6908 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴) Fn 𝐼) |
209 | | dffn2 6047 |
. . . . . . . 8
⊢ (((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴) Fn 𝐼 ↔ ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴):𝐼⟶V) |
210 | 208, 209 | sylib 208 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴):𝐼⟶V) |
211 | 210 | feqmptd 6249 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴) = (𝑥 ∈ 𝐼 ↦ (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥))) |
212 | 7 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝜑 → (.r‘𝑅) =
(.r‘(Scalar‘𝑇))) |
213 | 212 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (.r‘𝑅) =
(.r‘(Scalar‘𝑇))) |
214 | 213 | oveqd 6667 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦(.r‘𝑅)(𝑧‘𝑥)) = (𝑦(.r‘(Scalar‘𝑇))(𝑧‘𝑥))) |
215 | 214 | oveq1d 6665 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦(.r‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥)) = ((𝑦(.r‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥))) |
216 | 8 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑇 ∈ LMod) |
217 | | simplrl 800 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝐹))) |
218 | 188 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘𝑇)) =
(Base‘(Scalar‘𝐹))) |
219 | 217, 218 | eleqtrrd 2704 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝑇))) |
220 | 48 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘𝑅)) |
221 | 39 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇))) |
222 | 220, 221 | eleqtrd 2703 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇))) |
223 | 222 | adantlrl 756 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇))) |
224 | 49 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐴‘𝑥) ∈ 𝐶) |
225 | 224 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝐴‘𝑥) ∈ 𝐶) |
226 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(.r‘(Scalar‘𝑇)) =
(.r‘(Scalar‘𝑇)) |
227 | 19, 5, 3, 43, 226 | lmodvsass 18888 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ LMod ∧ (𝑦 ∈
(Base‘(Scalar‘𝑇)) ∧ (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴‘𝑥) ∈ 𝐶)) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥)) = (𝑦 · ((𝑧‘𝑥) · (𝐴‘𝑥)))) |
228 | 216, 219,
223, 225, 227 | syl13anc 1328 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥)) = (𝑦 · ((𝑧‘𝑥) · (𝐴‘𝑥)))) |
229 | 215, 228 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦(.r‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥)) = (𝑦 · ((𝑧‘𝑥) · (𝐴‘𝑥)))) |
230 | 206 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦( ·𝑠
‘𝐹)𝑧) Fn 𝐼) |
231 | 121 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐴 Fn 𝐼) |
232 | 12 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
233 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
234 | | fnfvof 6911 |
. . . . . . . . . 10
⊢ ((((𝑦(
·𝑠 ‘𝐹)𝑧) Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦( ·𝑠
‘𝐹)𝑧)‘𝑥) · (𝐴‘𝑥))) |
235 | 230, 231,
232, 233, 234 | syl22anc 1327 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦( ·𝑠
‘𝐹)𝑧)‘𝑥) · (𝐴‘𝑥))) |
236 | 17 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝐹))) |
237 | 236 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
238 | 217, 237 | eleqtrrd 2704 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑦 ∈ (Base‘𝑅)) |
239 | | simplrr 801 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑧 ∈ 𝐵) |
240 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
241 | 13, 1, 46, 232, 238, 239, 233, 2, 240 | frlmvscaval 20110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦( ·𝑠
‘𝐹)𝑧)‘𝑥) = (𝑦(.r‘𝑅)(𝑧‘𝑥))) |
242 | 241 | oveq1d 6665 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦( ·𝑠
‘𝐹)𝑧)‘𝑥) · (𝐴‘𝑥)) = ((𝑦(.r‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥))) |
243 | 235, 242 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = ((𝑦(.r‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥))) |
244 | 48, 117 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 Fn 𝐼) |
245 | 244 | adantrl 752 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑧 Fn 𝐼) |
246 | 245 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑧 Fn 𝐼) |
247 | 246, 231,
232, 233, 157 | syl22anc 1327 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∘𝑓 · 𝐴)‘𝑥) = ((𝑧‘𝑥) · (𝐴‘𝑥))) |
248 | 247 | oveq2d 6666 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥)) = (𝑦 · ((𝑧‘𝑥) · (𝐴‘𝑥)))) |
249 | 229, 243,
248 | 3eqtr4d 2666 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥))) |
250 | 249 | mpteq2dva 4744 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥)) = (𝑥 ∈ 𝐼 ↦ (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥)))) |
251 | 211, 250 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴) = (𝑥 ∈ 𝐼 ↦ (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥)))) |
252 | 251 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑇 Σg (𝑥 ∈ 𝐼 ↦ (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥))))) |
253 | 192 | feqmptd 6249 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴) = (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
254 | 253 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) = (𝑇 Σg (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥)))) |
255 | 254 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦 · (𝑇 Σg (𝑧 ∘𝑓
·
𝐴))) = (𝑦 · (𝑇 Σg (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥))))) |
256 | 197, 252,
255 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑦 · (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
257 | | oveq1 6657 |
. . . . . 6
⊢ (𝑥 = (𝑦( ·𝑠
‘𝐹)𝑧) → (𝑥 ∘𝑓 · 𝐴) = ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)) |
258 | 257 | oveq2d 6666 |
. . . . 5
⊢ (𝑥 = (𝑦( ·𝑠
‘𝐹)𝑧) → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) = (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
259 | | ovex 6678 |
. . . . 5
⊢ (𝑇 Σg
((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴)) ∈ V |
260 | 258, 79, 259 | fvmpt 6282 |
. . . 4
⊢ ((𝑦(
·𝑠 ‘𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦( ·𝑠
‘𝐹)𝑧)) = (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
261 | 202, 260 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦( ·𝑠
‘𝐹)𝑧)) = (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
262 | 181 | oveq2d 6666 |
. . . 4
⊢ (𝑧 ∈ 𝐵 → (𝑦 · (𝐸‘𝑧)) = (𝑦 · (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
263 | 262 | ad2antll 765 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦 · (𝐸‘𝑧)) = (𝑦 · (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
264 | 256, 261,
263 | 3eqtr4d 2666 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦( ·𝑠
‘𝐹)𝑧)) = (𝑦 · (𝐸‘𝑧))) |
265 | 1, 2, 3, 4, 5, 6, 15, 8, 18, 185, 264 | islmhmd 19039 |
1
⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |