MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssof1 Structured version   Visualization version   Unicode version

Theorem suppssof1 7328
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssof1.s  |-  ( ph  ->  ( A supp  Y ) 
C_  L )
suppssof1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssof1.a  |-  ( ph  ->  A : D --> V )
suppssof1.b  |-  ( ph  ->  B : D --> R )
suppssof1.d  |-  ( ph  ->  D  e.  W )
suppssof1.y  |-  ( ph  ->  Y  e.  U )
Assertion
Ref Expression
suppssof1  |-  ( ph  ->  ( ( A  oF O B ) supp 
Z )  C_  L
)
Distinct variable groups:    ph, v    v, B    v, O    v, R    v, Y    v, Z
Allowed substitution hints:    A( v)    D( v)    U( v)    L( v)    V( v)    W( v)

Proof of Theorem suppssof1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . 5  |-  ( ph  ->  A : D --> V )
2 ffn 6045 . . . . 5  |-  ( A : D --> V  ->  A  Fn  D )
31, 2syl 17 . . . 4  |-  ( ph  ->  A  Fn  D )
4 suppssof1.b . . . . 5  |-  ( ph  ->  B : D --> R )
5 ffn 6045 . . . . 5  |-  ( B : D --> R  ->  B  Fn  D )
64, 5syl 17 . . . 4  |-  ( ph  ->  B  Fn  D )
7 suppssof1.d . . . 4  |-  ( ph  ->  D  e.  W )
8 inidm 3822 . . . 4  |-  ( D  i^i  D )  =  D
9 eqidd 2623 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  =  ( A `  x ) )
10 eqidd 2623 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  =  ( B `  x ) )
113, 6, 7, 7, 8, 9, 10offval 6904 . . 3  |-  ( ph  ->  ( A  oF O B )  =  ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) )
1211oveq1d 6665 . 2  |-  ( ph  ->  ( ( A  oF O B ) supp 
Z )  =  ( ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) supp  Z ) )
131feqmptd 6249 . . . . 5  |-  ( ph  ->  A  =  ( x  e.  D  |->  ( A `
 x ) ) )
1413oveq1d 6665 . . . 4  |-  ( ph  ->  ( A supp  Y )  =  ( ( x  e.  D  |->  ( A `
 x ) ) supp 
Y ) )
15 suppssof1.s . . . 4  |-  ( ph  ->  ( A supp  Y ) 
C_  L )
1614, 15eqsstr3d 3640 . . 3  |-  ( ph  ->  ( ( x  e.  D  |->  ( A `  x ) ) supp  Y
)  C_  L )
17 suppssof1.o . . 3  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
18 fvexd 6203 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  e.  _V )
194ffvelrnda 6359 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  e.  R )
20 suppssof1.y . . 3  |-  ( ph  ->  Y  e.  U )
2116, 17, 18, 19, 20suppssov1 7327 . 2  |-  ( ph  ->  ( ( x  e.  D  |->  ( ( A `
 x ) O ( B `  x
) ) ) supp  Z
)  C_  L )
2212, 21eqsstrd 3639 1  |-  ( ph  ->  ( ( A  oF O B ) supp 
Z )  C_  L
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-supp 7296
This theorem is referenced by:  psrbagev1  19510  frlmup1  20137  jensen  24715
  Copyright terms: Public domain W3C validator