| Step | Hyp | Ref
| Expression |
| 1 | | jensen.7 |
. . . . . 6
⊢ (𝜑 → 0 <
(ℂfld Σg 𝑇)) |
| 2 | | jensen.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) |
| 3 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝑇:𝐴⟶(0[,)+∞) → 𝑇 Fn 𝐴) |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 Fn 𝐴) |
| 5 | | fnresdm 6000 |
. . . . . . . 8
⊢ (𝑇 Fn 𝐴 → (𝑇 ↾ 𝐴) = 𝑇) |
| 6 | 4, 5 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑇 ↾ 𝐴) = 𝑇) |
| 7 | 6 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg (𝑇 ↾ 𝐴)) = (ℂfld
Σg 𝑇)) |
| 8 | 1, 7 | breqtrrd 4681 |
. . . . 5
⊢ (𝜑 → 0 <
(ℂfld Σg (𝑇 ↾ 𝐴))) |
| 9 | | ssid 3624 |
. . . . 5
⊢ 𝐴 ⊆ 𝐴 |
| 10 | 8, 9 | jctil 560 |
. . . 4
⊢ (𝜑 → (𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴)))) |
| 11 | | jensen.4 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 12 | | sseq1 3626 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 13 | | reseq2 5391 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → (𝑇 ↾ 𝑎) = (𝑇 ↾ ∅)) |
| 14 | | res0 5400 |
. . . . . . . . . . . . 13
⊢ (𝑇 ↾ ∅) =
∅ |
| 15 | 13, 14 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑇 ↾ 𝑎) = ∅) |
| 16 | 15 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ →
(ℂfld Σg (𝑇 ↾ 𝑎)) = (ℂfld
Σg ∅)) |
| 17 | | cnfld0 19770 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘ℂfld) |
| 18 | 17 | gsum0 17278 |
. . . . . . . . . . 11
⊢
(ℂfld Σg ∅) =
0 |
| 19 | 16, 18 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ →
(ℂfld Σg (𝑇 ↾ 𝑎)) = 0) |
| 20 | 19 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (0 <
(ℂfld Σg (𝑇 ↾ 𝑎)) ↔ 0 < 0)) |
| 21 | 12, 20 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑎 = ∅ → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (∅ ⊆ 𝐴 ∧ 0 < 0))) |
| 22 | | reseq2 5391 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ → ((𝑇 ∘𝑓
· 𝑋) ↾ 𝑎) = ((𝑇 ∘𝑓 · 𝑋) ↾
∅)) |
| 23 | 22 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ →
(ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾
∅))) |
| 24 | 23, 19 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑎 = ∅ →
((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) /
0)) |
| 25 | | reseq2 5391 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → ((𝑇 ∘𝑓
· (𝐹 ∘ 𝑋)) ↾ 𝑎) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) |
| 26 | 25 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ →
(ℂfld Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅))) |
| 27 | 26, 19 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ →
((ℂfld Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0)) |
| 28 | 27 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0))) |
| 29 | 28 | rabbidv 3189 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0)}) |
| 30 | 24, 29 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑎 = ∅ →
(((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} ↔ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) /
0)})) |
| 31 | 21, 30 | imbi12d 334 |
. . . . . . 7
⊢ (𝑎 = ∅ → (((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))}) ↔ ((∅ ⊆ 𝐴 ∧ 0 < 0) →
((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) /
0)}))) |
| 32 | 31 | imbi2d 330 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝜑 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))})) ↔ (𝜑 → ((∅ ⊆ 𝐴 ∧ 0 < 0) →
((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) /
0)})))) |
| 33 | | sseq1 3626 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → (𝑎 ⊆ 𝐴 ↔ 𝑘 ⊆ 𝐴)) |
| 34 | | reseq2 5391 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑘 → (𝑇 ↾ 𝑎) = (𝑇 ↾ 𝑘)) |
| 35 | 34 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑘 → (ℂfld
Σg (𝑇 ↾ 𝑎)) = (ℂfld
Σg (𝑇 ↾ 𝑘))) |
| 36 | 35 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → (0 < (ℂfld
Σg (𝑇 ↾ 𝑎)) ↔ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
| 37 | 33, 36 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑎 = 𝑘 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
| 38 | | reseq2 5391 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑘 → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎) = ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) |
| 39 | 38 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑘 → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘))) |
| 40 | 39, 35 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
| 41 | | reseq2 5391 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑘 → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) |
| 42 | 41 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑘 → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘))) |
| 43 | 42, 35 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑘 → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
| 44 | 43 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑘 → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
| 45 | 44 | rabbidv 3189 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) |
| 46 | 40, 45 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑎 = 𝑘 → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} ↔ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) |
| 47 | 37, 46 | imbi12d 334 |
. . . . . . 7
⊢ (𝑎 = 𝑘 → (((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))}) ↔ ((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}))) |
| 48 | 47 | imbi2d 330 |
. . . . . 6
⊢ (𝑎 = 𝑘 → ((𝜑 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))})) ↔ (𝜑 → ((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})))) |
| 49 | | sseq1 3626 |
. . . . . . . . 9
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (𝑎 ⊆ 𝐴 ↔ (𝑘 ∪ {𝑐}) ⊆ 𝐴)) |
| 50 | | reseq2 5391 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (𝑇 ↾ 𝑎) = (𝑇 ↾ (𝑘 ∪ {𝑐}))) |
| 51 | 50 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (ℂfld
Σg (𝑇 ↾ 𝑎)) = (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) |
| 52 | 51 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (0 < (ℂfld
Σg (𝑇 ↾ 𝑎)) ↔ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) |
| 53 | 49, 52 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
| 54 | | reseq2 5391 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎) = ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) |
| 55 | 54 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})))) |
| 56 | 55, 51 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) |
| 57 | | reseq2 5391 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) |
| 58 | 57 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})))) |
| 59 | 58, 51 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) |
| 60 | 59 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
| 61 | 60 | rabbidv 3189 |
. . . . . . . . 9
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}) |
| 62 | 56, 61 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} ↔ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
| 63 | 53, 62 | imbi12d 334 |
. . . . . . 7
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))}) ↔ (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}))) |
| 64 | 63 | imbi2d 330 |
. . . . . 6
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝜑 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))})) ↔ (𝜑 → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})))) |
| 65 | | sseq1 3626 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 66 | | reseq2 5391 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (𝑇 ↾ 𝑎) = (𝑇 ↾ 𝐴)) |
| 67 | 66 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (ℂfld
Σg (𝑇 ↾ 𝑎)) = (ℂfld
Σg (𝑇 ↾ 𝐴))) |
| 68 | 67 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (0 < (ℂfld
Σg (𝑇 ↾ 𝑎)) ↔ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴)))) |
| 69 | 65, 68 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))))) |
| 70 | | reseq2 5391 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎) = ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) |
| 71 | 70 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴))) |
| 72 | 71, 67 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))) |
| 73 | | reseq2 5391 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) |
| 74 | 73 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴))) |
| 75 | 74, 67 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))) |
| 76 | 75 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))))) |
| 77 | 76 | rabbidv 3189 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))}) |
| 78 | 72, 77 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} ↔ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))})) |
| 79 | 69, 78 | imbi12d 334 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))}) ↔ ((𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))}))) |
| 80 | 79 | imbi2d 330 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝜑 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))})) ↔ (𝜑 → ((𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))})))) |
| 81 | | 0re 10040 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 82 | 81 | ltnri 10146 |
. . . . . . . . 9
⊢ ¬ 0
< 0 |
| 83 | 82 | pm2.21i 116 |
. . . . . . . 8
⊢ (0 < 0
→ ((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0)}) |
| 84 | 83 | adantl 482 |
. . . . . . 7
⊢ ((∅
⊆ 𝐴 ∧ 0 < 0)
→ ((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0)}) |
| 85 | 84 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((∅ ⊆ 𝐴 ∧ 0 < 0) →
((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) /
0)})) |
| 86 | | impexp 462 |
. . . . . . . . . . . 12
⊢ (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) ↔ (𝑘 ⊆ 𝐴 → (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}))) |
| 87 | | simprl 794 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (𝑘 ∪ {𝑐}) ⊆ 𝐴) |
| 88 | 87 | unssad 3790 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 𝑘 ⊆ 𝐴) |
| 89 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) |
| 90 | | jensen.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 91 | 90 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝐷 ⊆ ℝ) |
| 92 | | jensen.2 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 93 | 92 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝐹:𝐷⟶ℝ) |
| 94 | | simplll 798 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝜑) |
| 95 | | jensen.3 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
| 96 | 94, 95 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
| 97 | 94, 11 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝐴 ∈ Fin) |
| 98 | 94, 2 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝑇:𝐴⟶(0[,)+∞)) |
| 99 | | jensen.6 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑋:𝐴⟶𝐷) |
| 100 | 94, 99 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝑋:𝐴⟶𝐷) |
| 101 | 1 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 0 < (ℂfld
Σg 𝑇)) |
| 102 | | jensen.8 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
| 103 | 94, 102 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
| 104 | | simpllr 799 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ¬ 𝑐 ∈ 𝑘) |
| 105 | 87 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (𝑘 ∪ {𝑐}) ⊆ 𝐴) |
| 106 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℂfld Σg (𝑇 ↾ 𝑘)) = (ℂfld
Σg (𝑇 ↾ 𝑘)) |
| 107 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℂfld Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))) = (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))) |
| 108 | | cnring 19768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
ℂfld ∈ Ring |
| 109 | | ringcmn 18581 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
| 110 | 108, 109 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → ℂfld ∈
CMnd) |
| 111 | 11 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 𝐴 ∈ Fin) |
| 112 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ Fin ∧ 𝑘 ⊆ 𝐴) → 𝑘 ∈ Fin) |
| 113 | 111, 88, 112 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 𝑘 ∈ Fin) |
| 114 | | rege0subm 19802 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0[,)+∞) ∈
(SubMnd‘ℂfld) |
| 115 | 114 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (0[,)+∞) ∈
(SubMnd‘ℂfld)) |
| 116 | 2 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 𝑇:𝐴⟶(0[,)+∞)) |
| 117 | 116, 88 | fssresd 6071 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (𝑇 ↾ 𝑘):𝑘⟶(0[,)+∞)) |
| 118 | | c0ex 10034 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
V |
| 119 | 118 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 0 ∈ V) |
| 120 | 117, 113,
119 | fdmfifsupp 8285 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (𝑇 ↾ 𝑘) finSupp 0) |
| 121 | 17, 110, 113, 115, 117, 120 | gsumsubmcl 18319 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (ℂfld
Σg (𝑇 ↾ 𝑘)) ∈ (0[,)+∞)) |
| 122 | | elrege0 12278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((ℂfld Σg (𝑇 ↾ 𝑘)) ∈ (0[,)+∞) ↔
((ℂfld Σg (𝑇 ↾ 𝑘)) ∈ ℝ ∧ 0 ≤
(ℂfld Σg (𝑇 ↾ 𝑘)))) |
| 123 | 122 | simplbi 476 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((ℂfld Σg (𝑇 ↾ 𝑘)) ∈ (0[,)+∞) →
(ℂfld Σg (𝑇 ↾ 𝑘)) ∈ ℝ) |
| 124 | 121, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (ℂfld
Σg (𝑇 ↾ 𝑘)) ∈ ℝ) |
| 125 | 124 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (ℂfld
Σg (𝑇 ↾ 𝑘)) ∈ ℝ) |
| 126 | | simprl 794 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) |
| 127 | 125, 126 | elrpd 11869 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (ℂfld
Σg (𝑇 ↾ 𝑘)) ∈
ℝ+) |
| 128 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) |
| 129 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘𝑤) = (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
| 130 | 129 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ↔ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
| 131 | 130 | elrab 3363 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))} ↔ (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
| 132 | 128, 131 | sylib 208 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
| 133 | 132 | simpld 475 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ 𝐷) |
| 134 | 132 | simprd 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
| 135 | 91, 93, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 127, 133, 134 | jensenlem2 24714 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
| 136 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → (𝐹‘𝑤) = (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
| 137 | 136 | breq1d 4663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ↔ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
| 138 | 137 | elrab 3363 |
. . . . . . . . . . . . . . . . 17
⊢
(((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))} ↔ (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
| 139 | 135, 138 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}) |
| 140 | 139 | expr 643 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))} → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
| 141 | 89, 140 | embantd 59 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
| 142 | | cnfldbas 19750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℂ =
(Base‘ℂfld) |
| 143 | | ringmnd 18556 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
| 144 | 108, 143 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ℂfld ∈
Mnd) |
| 145 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∪ {𝑐}) ⊆ 𝐴) → (𝑘 ∪ {𝑐}) ∈ Fin) |
| 146 | 111, 87, 145 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (𝑘 ∪ {𝑐}) ∈ Fin) |
| 147 | 146 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑘 ∪ {𝑐}) ∈ Fin) |
| 148 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑐} ⊆ (𝑘 ∪ {𝑐}) |
| 149 | | vsnid 4209 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑐 ∈ {𝑐} |
| 150 | 148, 149 | sselii 3600 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑐 ∈ (𝑘 ∪ {𝑐}) |
| 151 | 150 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑐 ∈ (𝑘 ∪ {𝑐})) |
| 152 | | remulcl 10021 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
| 153 | 152 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
| 154 | | rge0ssre 12280 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0[,)+∞) ⊆ ℝ |
| 155 | | fss 6056 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑇:𝐴⟶(0[,)+∞) ∧ (0[,)+∞)
⊆ ℝ) → 𝑇:𝐴⟶ℝ) |
| 156 | 2, 154, 155 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑇:𝐴⟶ℝ) |
| 157 | 99, 90 | fssd 6057 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑋:𝐴⟶ℝ) |
| 158 | | inidm 3822 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 159 | 153, 156,
157, 11, 11, 158 | off 6912 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑇 ∘𝑓 · 𝑋):𝐴⟶ℝ) |
| 160 | | ax-resscn 9993 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℝ
⊆ ℂ |
| 161 | | fss 6056 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑇 ∘𝑓
· 𝑋):𝐴⟶ℝ ∧ ℝ
⊆ ℂ) → (𝑇
∘𝑓 · 𝑋):𝐴⟶ℂ) |
| 162 | 159, 160,
161 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑇 ∘𝑓 · 𝑋):𝐴⟶ℂ) |
| 163 | 162 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇 ∘𝑓 · 𝑋):𝐴⟶ℂ) |
| 164 | 87 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑘 ∪ {𝑐}) ⊆ 𝐴) |
| 165 | 163, 164 | fssresd 6071 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
| 166 | 2 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑇:𝐴⟶(0[,)+∞)) |
| 167 | 111 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝐴 ∈ Fin) |
| 168 | | fex 6490 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑇:𝐴⟶(0[,)+∞) ∧ 𝐴 ∈ Fin) → 𝑇 ∈ V) |
| 169 | 166, 167,
168 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑇 ∈ V) |
| 170 | 99 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑋:𝐴⟶𝐷) |
| 171 | | fex 6490 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋:𝐴⟶𝐷 ∧ 𝐴 ∈ Fin) → 𝑋 ∈ V) |
| 172 | 170, 167,
171 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑋 ∈ V) |
| 173 | | offres 7163 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑇 ∈ V ∧ 𝑋 ∈ V) → ((𝑇 ∘𝑓
· 𝑋) ↾ (𝑘 ∪ {𝑐})) = ((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
(𝑋 ↾ (𝑘 ∪ {𝑐})))) |
| 174 | 169, 172,
173 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})) = ((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
(𝑋 ↾ (𝑘 ∪ {𝑐})))) |
| 175 | 174 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})) supp 0) = (((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
(𝑋 ↾ (𝑘 ∪ {𝑐}))) supp 0)) |
| 176 | 154, 160 | sstri 3612 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0[,)+∞) ⊆ ℂ |
| 177 | | fss 6056 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑇:𝐴⟶(0[,)+∞) ∧ (0[,)+∞)
⊆ ℂ) → 𝑇:𝐴⟶ℂ) |
| 178 | 166, 176,
177 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑇:𝐴⟶ℂ) |
| 179 | 178, 164 | fssresd 6071 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇 ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
| 180 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐}) → 𝑥 ∈ (𝑘 ∪ {𝑐})) |
| 181 | 180 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐})) → 𝑥 ∈ (𝑘 ∪ {𝑐})) |
| 182 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ (𝑘 ∪ {𝑐}) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑥) = (𝑇‘𝑥)) |
| 183 | 181, 182 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐})) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑥) = (𝑇‘𝑥)) |
| 184 | | difun2 4048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 ∪ {𝑐}) ∖ {𝑐}) = (𝑘 ∖ {𝑐}) |
| 185 | | difss 3737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∖ {𝑐}) ⊆ 𝑘 |
| 186 | 184, 185 | eqsstri 3635 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 ∪ {𝑐}) ∖ {𝑐}) ⊆ 𝑘 |
| 187 | 186 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐}) → 𝑥 ∈ 𝑘) |
| 188 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) |
| 189 | 88 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑘 ⊆ 𝐴) |
| 190 | 166, 189 | feqresmpt 6250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇 ↾ 𝑘) = (𝑥 ∈ 𝑘 ↦ (𝑇‘𝑥))) |
| 191 | 190 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg (𝑇 ↾ 𝑘)) = (ℂfld
Σg (𝑥 ∈ 𝑘 ↦ (𝑇‘𝑥)))) |
| 192 | 113 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑘 ∈ Fin) |
| 193 | 189 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → 𝑥 ∈ 𝐴) |
| 194 | 166 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝐴) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
| 195 | 193, 194 | syldan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
| 196 | 176, 195 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → (𝑇‘𝑥) ∈ ℂ) |
| 197 | 192, 196 | gsumfsum 19813 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg (𝑥 ∈ 𝑘 ↦ (𝑇‘𝑥))) = Σ𝑥 ∈ 𝑘 (𝑇‘𝑥)) |
| 198 | 188, 191,
197 | 3eqtrrd 2661 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → Σ𝑥 ∈ 𝑘 (𝑇‘𝑥) = 0) |
| 199 | | elrege0 12278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑇‘𝑥) ∈ (0[,)+∞) ↔ ((𝑇‘𝑥) ∈ ℝ ∧ 0 ≤ (𝑇‘𝑥))) |
| 200 | 195, 199 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → ((𝑇‘𝑥) ∈ ℝ ∧ 0 ≤ (𝑇‘𝑥))) |
| 201 | 200 | simpld 475 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → (𝑇‘𝑥) ∈ ℝ) |
| 202 | 200 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → 0 ≤ (𝑇‘𝑥)) |
| 203 | 192, 201,
202 | fsum00 14530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (Σ𝑥 ∈ 𝑘 (𝑇‘𝑥) = 0 ↔ ∀𝑥 ∈ 𝑘 (𝑇‘𝑥) = 0)) |
| 204 | 198, 203 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ∀𝑥 ∈ 𝑘 (𝑇‘𝑥) = 0) |
| 205 | 204 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → (𝑇‘𝑥) = 0) |
| 206 | 187, 205 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐})) → (𝑇‘𝑥) = 0) |
| 207 | 183, 206 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐})) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑥) = 0) |
| 208 | 179, 207 | suppss 7325 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ↾ (𝑘 ∪ {𝑐})) supp 0) ⊆ {𝑐}) |
| 209 | | mul02 10214 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℂ → (0
· 𝑥) =
0) |
| 210 | 209 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0) |
| 211 | 90 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝐷 ⊆ ℝ) |
| 212 | 211, 160 | syl6ss 3615 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝐷 ⊆ ℂ) |
| 213 | 170, 212 | fssd 6057 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑋:𝐴⟶ℂ) |
| 214 | 213, 164 | fssresd 6071 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑋 ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
| 215 | 118 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 ∈ V) |
| 216 | 208, 210,
179, 214, 147, 215 | suppssof1 7328 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
(𝑋 ↾ (𝑘 ∪ {𝑐}))) supp 0) ⊆ {𝑐}) |
| 217 | 175, 216 | eqsstrd 3639 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})) supp 0) ⊆ {𝑐}) |
| 218 | 142, 17, 144, 147, 151, 165, 217 | gsumpt 18361 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) = (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))‘𝑐)) |
| 219 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ (𝑘 ∪ {𝑐}) → (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))‘𝑐) = ((𝑇 ∘𝑓 · 𝑋)‘𝑐)) |
| 220 | 151, 219 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))‘𝑐) = ((𝑇 ∘𝑓 · 𝑋)‘𝑐)) |
| 221 | 166, 3 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑇 Fn 𝐴) |
| 222 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋:𝐴⟶𝐷 → 𝑋 Fn 𝐴) |
| 223 | 170, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑋 Fn 𝐴) |
| 224 | 164, 151 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑐 ∈ 𝐴) |
| 225 | | fnfvof 6911 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑇 Fn 𝐴 ∧ 𝑋 Fn 𝐴) ∧ (𝐴 ∈ Fin ∧ 𝑐 ∈ 𝐴)) → ((𝑇 ∘𝑓 · 𝑋)‘𝑐) = ((𝑇‘𝑐) · (𝑋‘𝑐))) |
| 226 | 221, 223,
167, 224, 225 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · 𝑋)‘𝑐) = ((𝑇‘𝑐) · (𝑋‘𝑐))) |
| 227 | 218, 220,
226 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) = ((𝑇‘𝑐) · (𝑋‘𝑐))) |
| 228 | 142, 17, 144, 147, 151, 179, 208 | gsumpt 18361 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))) = ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑐)) |
| 229 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ (𝑘 ∪ {𝑐}) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑐) = (𝑇‘𝑐)) |
| 230 | 151, 229 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑐) = (𝑇‘𝑐)) |
| 231 | 228, 230 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))) = (𝑇‘𝑐)) |
| 232 | 227, 231 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) = (((𝑇‘𝑐) · (𝑋‘𝑐)) / (𝑇‘𝑐))) |
| 233 | 213, 224 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑋‘𝑐) ∈ ℂ) |
| 234 | 178, 224 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇‘𝑐) ∈ ℂ) |
| 235 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) |
| 236 | 235, 231 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 < (𝑇‘𝑐)) |
| 237 | 236 | gt0ne0d 10592 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇‘𝑐) ≠ 0) |
| 238 | 233, 234,
237 | divcan3d 10806 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇‘𝑐) · (𝑋‘𝑐)) / (𝑇‘𝑐)) = (𝑋‘𝑐)) |
| 239 | 232, 238 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) = (𝑋‘𝑐)) |
| 240 | 170, 224 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑋‘𝑐) ∈ 𝐷) |
| 241 | 239, 240 | eqeltrd 2701 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ 𝐷) |
| 242 | 92 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝐹:𝐷⟶ℝ) |
| 243 | 242, 240 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘(𝑋‘𝑐)) ∈ ℝ) |
| 244 | 243 | leidd 10594 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘(𝑋‘𝑐)) ≤ (𝐹‘(𝑋‘𝑐))) |
| 245 | 239 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) = (𝐹‘(𝑋‘𝑐))) |
| 246 | | fco 6058 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑋:𝐴⟶𝐷) → (𝐹 ∘ 𝑋):𝐴⟶ℝ) |
| 247 | 92, 99, 246 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐹 ∘ 𝑋):𝐴⟶ℝ) |
| 248 | 153, 156,
247, 11, 11, 158 | off 6912 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)):𝐴⟶ℝ) |
| 249 | | fss 6056 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑇 ∘𝑓
· (𝐹 ∘ 𝑋)):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → (𝑇
∘𝑓 · (𝐹 ∘ 𝑋)):𝐴⟶ℂ) |
| 250 | 248, 160,
249 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)):𝐴⟶ℂ) |
| 251 | 250 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)):𝐴⟶ℂ) |
| 252 | 251, 164 | fssresd 6071 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
| 253 | 247 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹 ∘ 𝑋):𝐴⟶ℝ) |
| 254 | | fex 6490 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∘ 𝑋):𝐴⟶ℝ ∧ 𝐴 ∈ Fin) → (𝐹 ∘ 𝑋) ∈ V) |
| 255 | 253, 167,
254 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹 ∘ 𝑋) ∈ V) |
| 256 | | offres 7163 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑇 ∈ V ∧ (𝐹 ∘ 𝑋) ∈ V) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})) = ((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐})))) |
| 257 | 169, 255,
256 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})) = ((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐})))) |
| 258 | 257 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})) supp 0) = (((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐}))) supp 0)) |
| 259 | | fss 6056 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∘ 𝑋):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → (𝐹 ∘
𝑋):𝐴⟶ℂ) |
| 260 | 253, 160,
259 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹 ∘ 𝑋):𝐴⟶ℂ) |
| 261 | 260, 164 | fssresd 6071 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
| 262 | 208, 210,
179, 261, 147, 215 | suppssof1 7328 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐}))) supp 0) ⊆ {𝑐}) |
| 263 | 258, 262 | eqsstrd 3639 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})) supp 0) ⊆ {𝑐}) |
| 264 | 142, 17, 144, 147, 151, 252, 263 | gsumpt 18361 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) = (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))‘𝑐)) |
| 265 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ (𝑘 ∪ {𝑐}) → (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))‘𝑐) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐)) |
| 266 | 151, 265 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))‘𝑐) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐)) |
| 267 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹:𝐷⟶ℝ → 𝐹 Fn 𝐷) |
| 268 | 92, 267 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 269 | | fnfco 6069 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹 Fn 𝐷 ∧ 𝑋:𝐴⟶𝐷) → (𝐹 ∘ 𝑋) Fn 𝐴) |
| 270 | 268, 99, 269 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐹 ∘ 𝑋) Fn 𝐴) |
| 271 | 270 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹 ∘ 𝑋) Fn 𝐴) |
| 272 | | fnfvof 6911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑇 Fn 𝐴 ∧ (𝐹 ∘ 𝑋) Fn 𝐴) ∧ (𝐴 ∈ Fin ∧ 𝑐 ∈ 𝐴)) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐) = ((𝑇‘𝑐) · ((𝐹 ∘ 𝑋)‘𝑐))) |
| 273 | 221, 271,
167, 224, 272 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐) = ((𝑇‘𝑐) · ((𝐹 ∘ 𝑋)‘𝑐))) |
| 274 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋:𝐴⟶𝐷 ∧ 𝑐 ∈ 𝐴) → ((𝐹 ∘ 𝑋)‘𝑐) = (𝐹‘(𝑋‘𝑐))) |
| 275 | 170, 224,
274 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝐹 ∘ 𝑋)‘𝑐) = (𝐹‘(𝑋‘𝑐))) |
| 276 | 275 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇‘𝑐) · ((𝐹 ∘ 𝑋)‘𝑐)) = ((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐)))) |
| 277 | 273, 276 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐) = ((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐)))) |
| 278 | 264, 266,
277 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) = ((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐)))) |
| 279 | 278, 231 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) = (((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐))) / (𝑇‘𝑐))) |
| 280 | 243 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘(𝑋‘𝑐)) ∈ ℂ) |
| 281 | 280, 234,
237 | divcan3d 10806 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐))) / (𝑇‘𝑐)) = (𝐹‘(𝑋‘𝑐))) |
| 282 | 279, 281 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) = (𝐹‘(𝑋‘𝑐))) |
| 283 | 244, 245,
282 | 3brtr4d 4685 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) |
| 284 | 241, 283,
138 | sylanbrc 698 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}) |
| 285 | 284 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
| 286 | 122 | simprbi 480 |
. . . . . . . . . . . . . . . 16
⊢
((ℂfld Σg (𝑇 ↾ 𝑘)) ∈ (0[,)+∞) → 0 ≤
(ℂfld Σg (𝑇 ↾ 𝑘))) |
| 287 | 121, 286 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 0 ≤ (ℂfld
Σg (𝑇 ↾ 𝑘))) |
| 288 | | leloe 10124 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ (ℂfld Σg (𝑇 ↾ 𝑘)) ∈ ℝ) → (0 ≤
(ℂfld Σg (𝑇 ↾ 𝑘)) ↔ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∨ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
| 289 | 81, 124, 288 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (0 ≤ (ℂfld
Σg (𝑇 ↾ 𝑘)) ↔ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∨ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
| 290 | 287, 289 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∨ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
| 291 | 141, 285,
290 | mpjaodan 827 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → ((0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
| 292 | 88, 291 | embantd 59 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → ((𝑘 ⊆ 𝐴 → (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
| 293 | 86, 292 | syl5bi 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
| 294 | 293 | ex 450 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}))) |
| 295 | 294 | com23 86 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}))) |
| 296 | 295 | expcom 451 |
. . . . . . . 8
⊢ (¬
𝑐 ∈ 𝑘 → (𝜑 → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})))) |
| 297 | 296 | adantl 482 |
. . . . . . 7
⊢ ((𝑘 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑘) → (𝜑 → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})))) |
| 298 | 297 | a2d 29 |
. . . . . 6
⊢ ((𝑘 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑘) → ((𝜑 → ((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (𝜑 → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})))) |
| 299 | 32, 48, 64, 80, 85, 298 | findcard2s 8201 |
. . . . 5
⊢ (𝐴 ∈ Fin → (𝜑 → ((𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))}))) |
| 300 | 11, 299 | mpcom 38 |
. . . 4
⊢ (𝜑 → ((𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))})) |
| 301 | 10, 300 | mpd 15 |
. . 3
⊢ (𝜑 → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))}) |
| 302 | | ffn 6045 |
. . . . . . 7
⊢ ((𝑇 ∘𝑓
· 𝑋):𝐴⟶ℝ → (𝑇 ∘𝑓
· 𝑋) Fn 𝐴) |
| 303 | 159, 302 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑇 ∘𝑓 · 𝑋) Fn 𝐴) |
| 304 | | fnresdm 6000 |
. . . . . 6
⊢ ((𝑇 ∘𝑓
· 𝑋) Fn 𝐴 → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴) = (𝑇 ∘𝑓 · 𝑋)) |
| 305 | 303, 304 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴) = (𝑇 ∘𝑓 · 𝑋)) |
| 306 | 305 | oveq2d 6666 |
. . . 4
⊢ (𝜑 → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) = (ℂfld
Σg (𝑇 ∘𝑓 · 𝑋))) |
| 307 | 306, 7 | oveq12d 6668 |
. . 3
⊢ (𝜑 → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) = ((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇))) |
| 308 | 4, 270, 11, 11, 158 | offn 6908 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) Fn 𝐴) |
| 309 | | fnresdm 6000 |
. . . . . . . 8
⊢ ((𝑇 ∘𝑓
· (𝐹 ∘ 𝑋)) Fn 𝐴 → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴) = (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) |
| 310 | 308, 309 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴) = (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) |
| 311 | 310 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) = (ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)))) |
| 312 | 311, 7 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) = ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇))) |
| 313 | 312 | breq2d 4665 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)))) |
| 314 | 313 | rabbidv 3189 |
. . 3
⊢ (𝜑 → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇))}) |
| 315 | 301, 307,
314 | 3eltr3d 2715 |
. 2
⊢ (𝜑 → ((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇))}) |
| 316 | | fveq2 6191 |
. . . 4
⊢ (𝑤 = ((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) → (𝐹‘𝑤) = (𝐹‘((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)))) |
| 317 | 316 | breq1d 4663 |
. . 3
⊢ (𝑤 = ((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) → ((𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)) ↔ (𝐹‘((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇))) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)))) |
| 318 | 317 | elrab 3363 |
. 2
⊢
(((ℂfld Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇))} ↔ (((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇))) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)))) |
| 319 | 315, 318 | sylib 208 |
1
⊢ (𝜑 → (((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇))) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)))) |