MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsfbas Structured version   Visualization version   GIF version

Theorem tsmsfbas 21931
Description: The collection of all sets of the form 𝐹(𝑧) = {𝑦𝑆𝑧𝑦}, which can be read as the set of all finite subsets of 𝐴 which contain 𝑧 as a subset, for each finite subset 𝑧 of 𝐴, form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsfbas.s 𝑆 = (𝒫 𝐴 ∩ Fin)
tsmsfbas.f 𝐹 = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
tsmsfbas.l 𝐿 = ran 𝐹
tsmsfbas.a (𝜑𝐴𝑊)
Assertion
Ref Expression
tsmsfbas (𝜑𝐿 ∈ (fBas‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑦,𝑧,𝑆
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑦)   𝐹(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem tsmsfbas
Dummy variables 𝑢 𝑎 𝑣 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsfbas.a . 2 (𝜑𝐴𝑊)
2 elex 3212 . 2 (𝐴𝑊𝐴 ∈ V)
3 tsmsfbas.l . . 3 𝐿 = ran 𝐹
4 ssrab2 3687 . . . . . . 7 {𝑦𝑆𝑧𝑦} ⊆ 𝑆
5 tsmsfbas.s . . . . . . . . . 10 𝑆 = (𝒫 𝐴 ∩ Fin)
6 pwexg 4850 . . . . . . . . . . 11 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
7 inex1g 4801 . . . . . . . . . . 11 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
86, 7syl 17 . . . . . . . . . 10 (𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
95, 8syl5eqel 2705 . . . . . . . . 9 (𝐴 ∈ V → 𝑆 ∈ V)
109adantr 481 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑧𝑆) → 𝑆 ∈ V)
11 elpw2g 4827 . . . . . . . 8 (𝑆 ∈ V → ({𝑦𝑆𝑧𝑦} ∈ 𝒫 𝑆 ↔ {𝑦𝑆𝑧𝑦} ⊆ 𝑆))
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ 𝑧𝑆) → ({𝑦𝑆𝑧𝑦} ∈ 𝒫 𝑆 ↔ {𝑦𝑆𝑧𝑦} ⊆ 𝑆))
134, 12mpbiri 248 . . . . . 6 ((𝐴 ∈ V ∧ 𝑧𝑆) → {𝑦𝑆𝑧𝑦} ∈ 𝒫 𝑆)
14 tsmsfbas.f . . . . . 6 𝐹 = (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
1513, 14fmptd 6385 . . . . 5 (𝐴 ∈ V → 𝐹:𝑆⟶𝒫 𝑆)
16 frn 6053 . . . . 5 (𝐹:𝑆⟶𝒫 𝑆 → ran 𝐹 ⊆ 𝒫 𝑆)
1715, 16syl 17 . . . 4 (𝐴 ∈ V → ran 𝐹 ⊆ 𝒫 𝑆)
18 0ss 3972 . . . . . . . . . 10 ∅ ⊆ 𝐴
19 0fin 8188 . . . . . . . . . 10 ∅ ∈ Fin
20 elfpw 8268 . . . . . . . . . 10 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
2118, 19, 20mpbir2an 955 . . . . . . . . 9 ∅ ∈ (𝒫 𝐴 ∩ Fin)
2221, 5eleqtrri 2700 . . . . . . . 8 ∅ ∈ 𝑆
23 0ss 3972 . . . . . . . . 9 ∅ ⊆ 𝑦
2423rgenw 2924 . . . . . . . 8 𝑦𝑆 ∅ ⊆ 𝑦
25 rabid2 3118 . . . . . . . . . 10 (𝑆 = {𝑦𝑆𝑧𝑦} ↔ ∀𝑦𝑆 𝑧𝑦)
26 sseq1 3626 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑧𝑦 ↔ ∅ ⊆ 𝑦))
2726ralbidv 2986 . . . . . . . . . 10 (𝑧 = ∅ → (∀𝑦𝑆 𝑧𝑦 ↔ ∀𝑦𝑆 ∅ ⊆ 𝑦))
2825, 27syl5bb 272 . . . . . . . . 9 (𝑧 = ∅ → (𝑆 = {𝑦𝑆𝑧𝑦} ↔ ∀𝑦𝑆 ∅ ⊆ 𝑦))
2928rspcev 3309 . . . . . . . 8 ((∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ∅ ⊆ 𝑦) → ∃𝑧𝑆 𝑆 = {𝑦𝑆𝑧𝑦})
3022, 24, 29mp2an 708 . . . . . . 7 𝑧𝑆 𝑆 = {𝑦𝑆𝑧𝑦}
3114elrnmpt 5372 . . . . . . . 8 (𝑆 ∈ V → (𝑆 ∈ ran 𝐹 ↔ ∃𝑧𝑆 𝑆 = {𝑦𝑆𝑧𝑦}))
329, 31syl 17 . . . . . . 7 (𝐴 ∈ V → (𝑆 ∈ ran 𝐹 ↔ ∃𝑧𝑆 𝑆 = {𝑦𝑆𝑧𝑦}))
3330, 32mpbiri 248 . . . . . 6 (𝐴 ∈ V → 𝑆 ∈ ran 𝐹)
34 ne0i 3921 . . . . . 6 (𝑆 ∈ ran 𝐹 → ran 𝐹 ≠ ∅)
3533, 34syl 17 . . . . 5 (𝐴 ∈ V → ran 𝐹 ≠ ∅)
36 simpr 477 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑧𝑆) → 𝑧𝑆)
37 ssid 3624 . . . . . . . . . . . 12 𝑧𝑧
38 sseq2 3627 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
3938rspcev 3309 . . . . . . . . . . . 12 ((𝑧𝑆𝑧𝑧) → ∃𝑦𝑆 𝑧𝑦)
4036, 37, 39sylancl 694 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑧𝑆) → ∃𝑦𝑆 𝑧𝑦)
41 rabn0 3958 . . . . . . . . . . 11 ({𝑦𝑆𝑧𝑦} ≠ ∅ ↔ ∃𝑦𝑆 𝑧𝑦)
4240, 41sylibr 224 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝑧𝑆) → {𝑦𝑆𝑧𝑦} ≠ ∅)
4342necomd 2849 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑧𝑆) → ∅ ≠ {𝑦𝑆𝑧𝑦})
4443neneqd 2799 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑧𝑆) → ¬ ∅ = {𝑦𝑆𝑧𝑦})
4544nrexdv 3001 . . . . . . 7 (𝐴 ∈ V → ¬ ∃𝑧𝑆 ∅ = {𝑦𝑆𝑧𝑦})
46 0ex 4790 . . . . . . . 8 ∅ ∈ V
4714elrnmpt 5372 . . . . . . . 8 (∅ ∈ V → (∅ ∈ ran 𝐹 ↔ ∃𝑧𝑆 ∅ = {𝑦𝑆𝑧𝑦}))
4846, 47ax-mp 5 . . . . . . 7 (∅ ∈ ran 𝐹 ↔ ∃𝑧𝑆 ∅ = {𝑦𝑆𝑧𝑦})
4945, 48sylnibr 319 . . . . . 6 (𝐴 ∈ V → ¬ ∅ ∈ ran 𝐹)
50 df-nel 2898 . . . . . 6 (∅ ∉ ran 𝐹 ↔ ¬ ∅ ∈ ran 𝐹)
5149, 50sylibr 224 . . . . 5 (𝐴 ∈ V → ∅ ∉ ran 𝐹)
52 elfpw 8268 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑢𝐴𝑢 ∈ Fin))
5352simplbi 476 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢𝐴)
5453, 5eleq2s 2719 . . . . . . . . . . . . . . . 16 (𝑢𝑆𝑢𝐴)
55 elfpw 8268 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑣𝐴𝑣 ∈ Fin))
5655simplbi 476 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣𝐴)
5756, 5eleq2s 2719 . . . . . . . . . . . . . . . 16 (𝑣𝑆𝑣𝐴)
5854, 57anim12i 590 . . . . . . . . . . . . . . 15 ((𝑢𝑆𝑣𝑆) → (𝑢𝐴𝑣𝐴))
59 unss 3787 . . . . . . . . . . . . . . 15 ((𝑢𝐴𝑣𝐴) ↔ (𝑢𝑣) ⊆ 𝐴)
6058, 59sylib 208 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑣𝑆) → (𝑢𝑣) ⊆ 𝐴)
6152simprbi 480 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢 ∈ Fin)
6261, 5eleq2s 2719 . . . . . . . . . . . . . . 15 (𝑢𝑆𝑢 ∈ Fin)
6355simprbi 480 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣 ∈ Fin)
6463, 5eleq2s 2719 . . . . . . . . . . . . . . 15 (𝑣𝑆𝑣 ∈ Fin)
65 unfi 8227 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Fin ∧ 𝑣 ∈ Fin) → (𝑢𝑣) ∈ Fin)
6662, 64, 65syl2an 494 . . . . . . . . . . . . . 14 ((𝑢𝑆𝑣𝑆) → (𝑢𝑣) ∈ Fin)
67 elfpw 8268 . . . . . . . . . . . . . 14 ((𝑢𝑣) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑢𝑣) ⊆ 𝐴 ∧ (𝑢𝑣) ∈ Fin))
6860, 66, 67sylanbrc 698 . . . . . . . . . . . . 13 ((𝑢𝑆𝑣𝑆) → (𝑢𝑣) ∈ (𝒫 𝐴 ∩ Fin))
6968adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝑣) ∈ (𝒫 𝐴 ∩ Fin))
7069, 5syl6eleqr 2712 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → (𝑢𝑣) ∈ 𝑆)
71 eqidd 2623 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
72 sseq1 3626 . . . . . . . . . . . . . 14 (𝑎 = (𝑢𝑣) → (𝑎𝑦 ↔ (𝑢𝑣) ⊆ 𝑦))
7372rabbidv 3189 . . . . . . . . . . . . 13 (𝑎 = (𝑢𝑣) → {𝑦𝑆𝑎𝑦} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
7473eqeq2d 2632 . . . . . . . . . . . 12 (𝑎 = (𝑢𝑣) → ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦} ↔ {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}))
7574rspcev 3309 . . . . . . . . . . 11 (((𝑢𝑣) ∈ 𝑆 ∧ {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) → ∃𝑎𝑆 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦})
7670, 71, 75syl2anc 693 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → ∃𝑎𝑆 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦})
779adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → 𝑆 ∈ V)
78 rabexg 4812 . . . . . . . . . . . 12 (𝑆 ∈ V → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ V)
7977, 78syl 17 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ V)
80 sseq1 3626 . . . . . . . . . . . . . . 15 (𝑧 = 𝑎 → (𝑧𝑦𝑎𝑦))
8180rabbidv 3189 . . . . . . . . . . . . . 14 (𝑧 = 𝑎 → {𝑦𝑆𝑧𝑦} = {𝑦𝑆𝑎𝑦})
8281cbvmptv 4750 . . . . . . . . . . . . 13 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑎𝑆 ↦ {𝑦𝑆𝑎𝑦})
8314, 82eqtri 2644 . . . . . . . . . . . 12 𝐹 = (𝑎𝑆 ↦ {𝑦𝑆𝑎𝑦})
8483elrnmpt 5372 . . . . . . . . . . 11 ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ V → ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ ran 𝐹 ↔ ∃𝑎𝑆 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦}))
8579, 84syl 17 . . . . . . . . . 10 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ ran 𝐹 ↔ ∃𝑎𝑆 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} = {𝑦𝑆𝑎𝑦}))
8676, 85mpbird 247 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ ran 𝐹)
87 pwidg 4173 . . . . . . . . . 10 ({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ V → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
8879, 87syl 17 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
89 inelcm 4032 . . . . . . . . 9 (({𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ ran 𝐹 ∧ {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦} ∈ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) → (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅)
9086, 88, 89syl2anc 693 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑢𝑆𝑣𝑆)) → (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅)
9190ralrimivva 2971 . . . . . . 7 (𝐴 ∈ V → ∀𝑢𝑆𝑣𝑆 (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅)
92 rabexg 4812 . . . . . . . . . 10 (𝑆 ∈ V → {𝑦𝑆𝑢𝑦} ∈ V)
939, 92syl 17 . . . . . . . . 9 (𝐴 ∈ V → {𝑦𝑆𝑢𝑦} ∈ V)
9493ralrimivw 2967 . . . . . . . 8 (𝐴 ∈ V → ∀𝑢𝑆 {𝑦𝑆𝑢𝑦} ∈ V)
95 sseq1 3626 . . . . . . . . . . . 12 (𝑧 = 𝑢 → (𝑧𝑦𝑢𝑦))
9695rabbidv 3189 . . . . . . . . . . 11 (𝑧 = 𝑢 → {𝑦𝑆𝑧𝑦} = {𝑦𝑆𝑢𝑦})
9796cbvmptv 4750 . . . . . . . . . 10 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑢𝑆 ↦ {𝑦𝑆𝑢𝑦})
9814, 97eqtri 2644 . . . . . . . . 9 𝐹 = (𝑢𝑆 ↦ {𝑦𝑆𝑢𝑦})
99 ineq1 3807 . . . . . . . . . . . . . 14 (𝑎 = {𝑦𝑆𝑢𝑦} → (𝑎 ∩ {𝑦𝑆𝑣𝑦}) = ({𝑦𝑆𝑢𝑦} ∩ {𝑦𝑆𝑣𝑦}))
100 inrab 3899 . . . . . . . . . . . . . . 15 ({𝑦𝑆𝑢𝑦} ∩ {𝑦𝑆𝑣𝑦}) = {𝑦𝑆 ∣ (𝑢𝑦𝑣𝑦)}
101 unss 3787 . . . . . . . . . . . . . . . . 17 ((𝑢𝑦𝑣𝑦) ↔ (𝑢𝑣) ⊆ 𝑦)
102101a1i 11 . . . . . . . . . . . . . . . 16 (𝑦𝑆 → ((𝑢𝑦𝑣𝑦) ↔ (𝑢𝑣) ⊆ 𝑦))
103102rabbiia 3185 . . . . . . . . . . . . . . 15 {𝑦𝑆 ∣ (𝑢𝑦𝑣𝑦)} = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}
104100, 103eqtri 2644 . . . . . . . . . . . . . 14 ({𝑦𝑆𝑢𝑦} ∩ {𝑦𝑆𝑣𝑦}) = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}
10599, 104syl6eq 2672 . . . . . . . . . . . . 13 (𝑎 = {𝑦𝑆𝑢𝑦} → (𝑎 ∩ {𝑦𝑆𝑣𝑦}) = {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
106105pweqd 4163 . . . . . . . . . . . 12 (𝑎 = {𝑦𝑆𝑢𝑦} → 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦}) = 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦})
107106ineq2d 3814 . . . . . . . . . . 11 (𝑎 = {𝑦𝑆𝑢𝑦} → (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) = (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}))
108107neeq1d 2853 . . . . . . . . . 10 (𝑎 = {𝑦𝑆𝑢𝑦} → ((ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅ ↔ (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅))
109108ralbidv 2986 . . . . . . . . 9 (𝑎 = {𝑦𝑆𝑢𝑦} → (∀𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅ ↔ ∀𝑣𝑆 (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅))
11098, 109ralrnmpt 6368 . . . . . . . 8 (∀𝑢𝑆 {𝑦𝑆𝑢𝑦} ∈ V → (∀𝑎 ∈ ran 𝐹𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅ ↔ ∀𝑢𝑆𝑣𝑆 (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅))
11194, 110syl 17 . . . . . . 7 (𝐴 ∈ V → (∀𝑎 ∈ ran 𝐹𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅ ↔ ∀𝑢𝑆𝑣𝑆 (ran 𝐹 ∩ 𝒫 {𝑦𝑆 ∣ (𝑢𝑣) ⊆ 𝑦}) ≠ ∅))
11291, 111mpbird 247 . . . . . 6 (𝐴 ∈ V → ∀𝑎 ∈ ran 𝐹𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅)
113 rabexg 4812 . . . . . . . . . 10 (𝑆 ∈ V → {𝑦𝑆𝑣𝑦} ∈ V)
1149, 113syl 17 . . . . . . . . 9 (𝐴 ∈ V → {𝑦𝑆𝑣𝑦} ∈ V)
115114ralrimivw 2967 . . . . . . . 8 (𝐴 ∈ V → ∀𝑣𝑆 {𝑦𝑆𝑣𝑦} ∈ V)
116 sseq1 3626 . . . . . . . . . . . 12 (𝑧 = 𝑣 → (𝑧𝑦𝑣𝑦))
117116rabbidv 3189 . . . . . . . . . . 11 (𝑧 = 𝑣 → {𝑦𝑆𝑧𝑦} = {𝑦𝑆𝑣𝑦})
118117cbvmptv 4750 . . . . . . . . . 10 (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦}) = (𝑣𝑆 ↦ {𝑦𝑆𝑣𝑦})
11914, 118eqtri 2644 . . . . . . . . 9 𝐹 = (𝑣𝑆 ↦ {𝑦𝑆𝑣𝑦})
120 ineq2 3808 . . . . . . . . . . . 12 (𝑏 = {𝑦𝑆𝑣𝑦} → (𝑎𝑏) = (𝑎 ∩ {𝑦𝑆𝑣𝑦}))
121120pweqd 4163 . . . . . . . . . . 11 (𝑏 = {𝑦𝑆𝑣𝑦} → 𝒫 (𝑎𝑏) = 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦}))
122121ineq2d 3814 . . . . . . . . . 10 (𝑏 = {𝑦𝑆𝑣𝑦} → (ran 𝐹 ∩ 𝒫 (𝑎𝑏)) = (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})))
123122neeq1d 2853 . . . . . . . . 9 (𝑏 = {𝑦𝑆𝑣𝑦} → ((ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅ ↔ (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅))
124119, 123ralrnmpt 6368 . . . . . . . 8 (∀𝑣𝑆 {𝑦𝑆𝑣𝑦} ∈ V → (∀𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅ ↔ ∀𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅))
125115, 124syl 17 . . . . . . 7 (𝐴 ∈ V → (∀𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅ ↔ ∀𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅))
126125ralbidv 2986 . . . . . 6 (𝐴 ∈ V → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅ ↔ ∀𝑎 ∈ ran 𝐹𝑣𝑆 (ran 𝐹 ∩ 𝒫 (𝑎 ∩ {𝑦𝑆𝑣𝑦})) ≠ ∅))
127112, 126mpbird 247 . . . . 5 (𝐴 ∈ V → ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅)
12835, 51, 1273jca 1242 . . . 4 (𝐴 ∈ V → (ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅))
129 isfbas 21633 . . . . 5 (𝑆 ∈ V → (ran 𝐹 ∈ (fBas‘𝑆) ↔ (ran 𝐹 ⊆ 𝒫 𝑆 ∧ (ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅))))
1309, 129syl 17 . . . 4 (𝐴 ∈ V → (ran 𝐹 ∈ (fBas‘𝑆) ↔ (ran 𝐹 ⊆ 𝒫 𝑆 ∧ (ran 𝐹 ≠ ∅ ∧ ∅ ∉ ran 𝐹 ∧ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(ran 𝐹 ∩ 𝒫 (𝑎𝑏)) ≠ ∅))))
13117, 128, 130mpbir2and 957 . . 3 (𝐴 ∈ V → ran 𝐹 ∈ (fBas‘𝑆))
1323, 131syl5eqel 2705 . 2 (𝐴 ∈ V → 𝐿 ∈ (fBas‘𝑆))
1331, 2, 1323syl 18 1 (𝜑𝐿 ∈ (fBas‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wnel 2897  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  Fincfn 7955  fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fbas 19743
This theorem is referenced by:  eltsms  21936  haustsms  21939  tsmscls  21941  tsmsmhm  21949  tsmsadd  21950
  Copyright terms: Public domain W3C validator