MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnfdomd Structured version   Visualization version   GIF version

Theorem unirnfdomd 9389
Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
unirnfdomd.1 (𝜑𝐹:𝑇⟶Fin)
unirnfdomd.2 (𝜑 → ¬ 𝑇 ∈ Fin)
unirnfdomd.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
unirnfdomd (𝜑 ran 𝐹𝑇)

Proof of Theorem unirnfdomd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unirnfdomd.1 . . . . . . . 8 (𝜑𝐹:𝑇⟶Fin)
2 ffn 6045 . . . . . . . 8 (𝐹:𝑇⟶Fin → 𝐹 Fn 𝑇)
31, 2syl 17 . . . . . . 7 (𝜑𝐹 Fn 𝑇)
4 unirnfdomd.3 . . . . . . 7 (𝜑𝑇𝑉)
5 fnex 6481 . . . . . . 7 ((𝐹 Fn 𝑇𝑇𝑉) → 𝐹 ∈ V)
63, 4, 5syl2anc 693 . . . . . 6 (𝜑𝐹 ∈ V)
7 rnexg 7098 . . . . . 6 (𝐹 ∈ V → ran 𝐹 ∈ V)
86, 7syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ V)
9 frn 6053 . . . . . . 7 (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin)
10 dfss3 3592 . . . . . . 7 (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
119, 10sylib 208 . . . . . 6 (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
12 isfinite 8549 . . . . . . . 8 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
13 sdomdom 7983 . . . . . . . 8 (𝑥 ≺ ω → 𝑥 ≼ ω)
1412, 13sylbi 207 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ≼ ω)
1514ralimi 2952 . . . . . 6 (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
161, 11, 153syl 18 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
17 unidom 9365 . . . . 5 ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ran 𝐹 ≼ (ran 𝐹 × ω))
188, 16, 17syl2anc 693 . . . 4 (𝜑 ran 𝐹 ≼ (ran 𝐹 × ω))
19 fnrndomg 9358 . . . . . 6 (𝑇𝑉 → (𝐹 Fn 𝑇 → ran 𝐹𝑇))
204, 3, 19sylc 65 . . . . 5 (𝜑 → ran 𝐹𝑇)
21 omex 8540 . . . . . 6 ω ∈ V
2221xpdom1 8059 . . . . 5 (ran 𝐹𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
2320, 22syl 17 . . . 4 (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
24 domtr 8009 . . . 4 (( ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ran 𝐹 ≼ (𝑇 × ω))
2518, 23, 24syl2anc 693 . . 3 (𝜑 ran 𝐹 ≼ (𝑇 × ω))
26 unirnfdomd.2 . . . . 5 (𝜑 → ¬ 𝑇 ∈ Fin)
27 infinf 9388 . . . . . 6 (𝑇𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
284, 27syl 17 . . . . 5 (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
2926, 28mpbid 222 . . . 4 (𝜑 → ω ≼ 𝑇)
30 xpdom2g 8056 . . . 4 ((𝑇𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇))
314, 29, 30syl2anc 693 . . 3 (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇))
32 domtr 8009 . . 3 (( ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ran 𝐹 ≼ (𝑇 × 𝑇))
3325, 31, 32syl2anc 693 . 2 (𝜑 ran 𝐹 ≼ (𝑇 × 𝑇))
34 infxpidm 9384 . . 3 (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇)
3529, 34syl 17 . 2 (𝜑 → (𝑇 × 𝑇) ≈ 𝑇)
36 domentr 8015 . 2 (( ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ran 𝐹𝑇)
3733, 35, 36syl2anc 693 1 (𝜑 ran 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wcel 1990  wral 2912  Vcvv 3200  wss 3574   cuni 4436   class class class wbr 4653   × cxp 5112  ran crn 5115   Fn wfn 5883  wf 5884  ωcom 7065  cen 7952  cdom 7953  csdm 7954  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by:  acsdomd  17181
  Copyright terms: Public domain W3C validator