| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unirnfdomd | Structured version Visualization version GIF version | ||
| Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unirnfdomd.1 | ⊢ (𝜑 → 𝐹:𝑇⟶Fin) |
| unirnfdomd.2 | ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
| unirnfdomd.3 | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| unirnfdomd | ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnfdomd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑇⟶Fin) | |
| 2 | ffn 6045 | . . . . . . . 8 ⊢ (𝐹:𝑇⟶Fin → 𝐹 Fn 𝑇) | |
| 3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝑇) |
| 4 | unirnfdomd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 5 | fnex 6481 | . . . . . . 7 ⊢ ((𝐹 Fn 𝑇 ∧ 𝑇 ∈ 𝑉) → 𝐹 ∈ V) | |
| 6 | 3, 4, 5 | syl2anc 693 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
| 7 | rnexg 7098 | . . . . . 6 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ∈ V) |
| 9 | frn 6053 | . . . . . . 7 ⊢ (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin) | |
| 10 | dfss3 3592 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) | |
| 11 | 9, 10 | sylib 208 | . . . . . 6 ⊢ (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) |
| 12 | isfinite 8549 | . . . . . . . 8 ⊢ (𝑥 ∈ Fin ↔ 𝑥 ≺ ω) | |
| 13 | sdomdom 7983 | . . . . . . . 8 ⊢ (𝑥 ≺ ω → 𝑥 ≼ ω) | |
| 14 | 12, 13 | sylbi 207 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ≼ ω) |
| 15 | 14 | ralimi 2952 | . . . . . 6 ⊢ (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
| 16 | 1, 11, 15 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
| 17 | unidom 9365 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) | |
| 18 | 8, 16, 17 | syl2anc 693 | . . . 4 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) |
| 19 | fnrndomg 9358 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (𝐹 Fn 𝑇 → ran 𝐹 ≼ 𝑇)) | |
| 20 | 4, 3, 19 | sylc 65 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ≼ 𝑇) |
| 21 | omex 8540 | . . . . . 6 ⊢ ω ∈ V | |
| 22 | 21 | xpdom1 8059 | . . . . 5 ⊢ (ran 𝐹 ≼ 𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
| 23 | 20, 22 | syl 17 | . . . 4 ⊢ (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
| 24 | domtr 8009 | . . . 4 ⊢ ((∪ ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ∪ ran 𝐹 ≼ (𝑇 × ω)) | |
| 25 | 18, 23, 24 | syl2anc 693 | . . 3 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × ω)) |
| 26 | unirnfdomd.2 | . . . . 5 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | |
| 27 | infinf 9388 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) | |
| 28 | 4, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) |
| 29 | 26, 28 | mpbid 222 | . . . 4 ⊢ (𝜑 → ω ≼ 𝑇) |
| 30 | xpdom2g 8056 | . . . 4 ⊢ ((𝑇 ∈ 𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇)) | |
| 31 | 4, 29, 30 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇)) |
| 32 | domtr 8009 | . . 3 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) | |
| 33 | 25, 31, 32 | syl2anc 693 | . 2 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) |
| 34 | infxpidm 9384 | . . 3 ⊢ (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇) | |
| 35 | 29, 34 | syl 17 | . 2 ⊢ (𝜑 → (𝑇 × 𝑇) ≈ 𝑇) |
| 36 | domentr 8015 | . 2 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ∪ ran 𝐹 ≼ 𝑇) | |
| 37 | 33, 35, 36 | syl2anc 693 | 1 ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 ∪ cuni 4436 class class class wbr 4653 × cxp 5112 ran crn 5115 Fn wfn 5883 ⟶wf 5884 ωcom 7065 ≈ cen 7952 ≼ cdom 7953 ≺ csdm 7954 Fincfn 7955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-ac2 9285 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-card 8765 df-acn 8768 df-ac 8939 |
| This theorem is referenced by: acsdomd 17181 |
| Copyright terms: Public domain | W3C validator |