Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
advansys.c
Go to the documentation of this file.
1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
3 
4 /*
5  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
6  *
7  * Copyright (c) 1995-2000 Advanced System Products, Inc.
8  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9  * Copyright (c) 2007 Matthew Wilcox <[email protected]>
10  * All Rights Reserved.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  */
17 
18 /*
19  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20  * changed its name to ConnectCom Solutions, Inc.
21  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
22  */
23 
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
42 
43 #include <asm/io.h>
44 #include <asm/dma.h>
45 
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
51 
52 /* FIXME:
53  *
54  * 1. Although all of the necessary command mapping places have the
55  * appropriate dma_map.. APIs, the driver still processes its internal
56  * queue using bus_to_virt() and virt_to_bus() which are illegal under
57  * the API. The entire queue processing structure will need to be
58  * altered to fix this.
59  * 2. Need to add memory mapping workaround. Test the memory mapping.
60  * If it doesn't work revert to I/O port access. Can a test be done
61  * safely?
62  * 3. Handle an interrupt not working. Keep an interrupt counter in
63  * the interrupt handler. In the timeout function if the interrupt
64  * has not occurred then print a message and run in polled mode.
65  * 4. Need to add support for target mode commands, cf. CAM XPT.
66  * 5. check DMA mapping functions for failure
67  * 6. Use scsi_transport_spi
68  * 7. advansys_info is not safe against multiple simultaneous callers
69  * 8. Add module_param to override ISA/VLB ioport array
70  */
71 #warning this driver is still not properly converted to the DMA API
72 
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
75 
76 /* Enable driver tracing. */
77 #undef ADVANSYS_DEBUG
78 
79 /*
80  * Portable Data Types
81  *
82  * Any instance where a 32-bit long or pointer type is assumed
83  * for precision or HW defined structures, the following define
84  * types must be used. In Linux the char, short, and int types
85  * are all consistent at 8, 16, and 32 bits respectively. Pointers
86  * and long types are 64 bits on Alpha and UltraSPARC.
87  */
88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
89 #define ASC_VADDR __u32 /* Virtual address data type. */
90 #define ASC_DCNT __u32 /* Unsigned Data count type. */
91 #define ASC_SDCNT __s32 /* Signed Data count type. */
92 
93 typedef unsigned char uchar;
94 
95 #ifndef TRUE
96 #define TRUE (1)
97 #endif
98 #ifndef FALSE
99 #define FALSE (0)
100 #endif
101 
102 #define ERR (-1)
103 #define UW_ERR (uint)(0xFFFF)
104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
105 
106 #define PCI_VENDOR_ID_ASP 0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A 0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
113 
114 /*
115  * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116  * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117  * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
118  * SRB structure.
119  */
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
122 
123 #define PortAddr unsigned int /* port address size */
124 #define inp(port) inb(port)
125 #define outp(port, byte) outb((byte), (port))
126 
127 #define inpw(port) inw(port)
128 #define outpw(port, word) outw((word), (port))
129 
130 #define ASC_MAX_SG_QUEUE 7
131 #define ASC_MAX_SG_LIST 255
132 
133 #define ASC_CS_TYPE unsigned short
134 
135 #define ASC_IS_ISA (0x0001)
136 #define ASC_IS_ISAPNP (0x0081)
137 #define ASC_IS_EISA (0x0002)
138 #define ASC_IS_PCI (0x0004)
139 #define ASC_IS_PCI_ULTRA (0x0104)
140 #define ASC_IS_PCMCIA (0x0008)
141 #define ASC_IS_MCA (0x0020)
142 #define ASC_IS_VL (0x0040)
143 #define ASC_IS_WIDESCSI_16 (0x0100)
144 #define ASC_IS_WIDESCSI_32 (0x0200)
145 #define ASC_IS_BIG_ENDIAN (0x8000)
146 
147 #define ASC_CHIP_MIN_VER_VL (0x01)
148 #define ASC_CHIP_MAX_VER_VL (0x07)
149 #define ASC_CHIP_MIN_VER_PCI (0x09)
150 #define ASC_CHIP_MAX_VER_PCI (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT (0x08)
152 #define ASC_CHIP_MIN_VER_ISA (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA (0x27)
155 #define ASC_CHIP_VER_ISA_BIT (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG (0x21)
158 #define ASC_CHIP_VER_PCI 0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
168 
169 #define ASC_SCSI_ID_BITS 3
170 #define ASC_SCSI_TIX_TYPE uchar
171 #define ASC_ALL_DEVICE_BIT_SET 0xFF
172 #define ASC_SCSI_BIT_ID_TYPE uchar
173 #define ASC_MAX_TID 7
174 #define ASC_MAX_LUN 7
175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
176 #define ASC_MAX_SENSE_LEN 32
177 #define ASC_MIN_SENSE_LEN 14
178 #define ASC_SCSI_RESET_HOLD_TIME_US 60
179 
180 /*
181  * Narrow boards only support 12-byte commands, while wide boards
182  * extend to 16-byte commands.
183  */
184 #define ASC_MAX_CDB_LEN 12
185 #define ADV_MAX_CDB_LEN 16
186 
187 #define MS_SDTR_LEN 0x03
188 #define MS_WDTR_LEN 0x02
189 
190 #define ASC_SG_LIST_PER_Q 7
191 #define QS_FREE 0x00
192 #define QS_READY 0x01
193 #define QS_DISC1 0x02
194 #define QS_DISC2 0x04
195 #define QS_BUSY 0x08
196 #define QS_ABORTED 0x40
197 #define QS_DONE 0x80
198 #define QC_NO_CALLBACK 0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD 0x04
201 #define QC_DATA_IN 0x08
202 #define QC_DATA_OUT 0x10
203 #define QC_URGENT 0x20
204 #define QC_MSG_OUT 0x40
205 #define QC_REQ_SENSE 0x80
206 #define QCSG_SG_XFER_LIST 0x02
207 #define QCSG_SG_XFER_MORE 0x04
208 #define QCSG_SG_XFER_END 0x08
209 #define QD_IN_PROGRESS 0x00
210 #define QD_NO_ERROR 0x01
211 #define QD_ABORTED_BY_HOST 0x02
212 #define QD_WITH_ERROR 0x04
213 #define QD_INVALID_REQUEST 0x80
214 #define QD_INVALID_HOST_NUM 0x81
215 #define QD_INVALID_DEVICE 0x82
216 #define QD_ERR_INTERNAL 0xFF
217 #define QHSTA_NO_ERROR 0x00
218 #define QHSTA_M_SEL_TIMEOUT 0x11
219 #define QHSTA_M_DATA_OVER_RUN 0x12
220 #define QHSTA_M_DATA_UNDER_RUN 0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
225 #define QHSTA_D_HOST_ABORT_FAILED 0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
229 #define QHSTA_M_WTM_TIMEOUT 0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
234 #define QHSTA_M_BAD_TAG_CODE 0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR 0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ 0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
243 #define ASC_FLAG_WIN16 0x10
244 #define ASC_FLAG_WIN32 0x20
245 #define ASC_FLAG_ISA_OVER_16MB 0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG 4
252 #define ASC_SCSIQ_SGHD_CPY_BEG 2
253 #define ASC_SCSIQ_B_FWD 0
254 #define ASC_SCSIQ_B_BWD 1
255 #define ASC_SCSIQ_B_STATUS 2
256 #define ASC_SCSIQ_B_QNO 3
257 #define ASC_SCSIQ_B_CNTL 4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
259 #define ASC_SCSIQ_D_DATA_ADDR 8
260 #define ASC_SCSIQ_D_DATA_CNT 12
261 #define ASC_SCSIQ_B_SENSE_LEN 20
262 #define ASC_SCSIQ_DONE_INFO_BEG 22
263 #define ASC_SCSIQ_D_SRBPTR 22
264 #define ASC_SCSIQ_B_TARGET_IX 26
265 #define ASC_SCSIQ_B_CDB_LEN 28
266 #define ASC_SCSIQ_B_TAG_CODE 29
267 #define ASC_SCSIQ_W_VM_ID 30
268 #define ASC_SCSIQ_DONE_STATUS 32
269 #define ASC_SCSIQ_HOST_STATUS 33
270 #define ASC_SCSIQ_SCSI_STATUS 34
271 #define ASC_SCSIQ_CDB_BEG 36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
275 #define ASC_SCSIQ_B_SG_WK_QP 49
276 #define ASC_SCSIQ_B_SG_WK_IX 50
277 #define ASC_SCSIQ_W_ALT_DC1 52
278 #define ASC_SCSIQ_B_LIST_CNT 6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
280 #define ASC_SGQ_B_SG_CNTL 4
281 #define ASC_SGQ_B_SG_HEAD_QP 5
282 #define ASC_SGQ_B_SG_LIST_CNT 6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
284 #define ASC_SGQ_LIST_BEG 8
285 #define ASC_DEF_SCSI1_QNG 4
286 #define ASC_MAX_SCSI1_QNG 4
287 #define ASC_DEF_SCSI2_QNG 16
288 #define ASC_MAX_SCSI2_QNG 32
289 #define ASC_TAG_CODE_MASK 0x23
290 #define ASC_STOP_REQ_RISC_STOP 0x01
291 #define ASC_STOP_ACK_RISC_STOP 0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
302 
303 typedef struct asc_scsiq_1 {
315 } ASC_SCSIQ_1;
316 
317 typedef struct asc_scsiq_2 {
324 } ASC_SCSIQ_2;
325 
326 typedef struct asc_scsiq_3 {
331 } ASC_SCSIQ_3;
332 
333 typedef struct asc_scsiq_4 {
343 } ASC_SCSIQ_4;
344 
345 typedef struct asc_q_done_info {
356 
357 typedef struct asc_sg_list {
360 } ASC_SG_LIST;
361 
362 typedef struct asc_sg_head {
368 } ASC_SG_HEAD;
369 
370 typedef struct asc_scsi_q {
377 } ASC_SCSI_Q;
378 
379 typedef struct asc_scsi_req_q {
389 
390 typedef struct asc_scsi_bios_req_q {
400 
401 typedef struct asc_risc_q {
408 } ASC_RISC_Q;
409 
410 typedef struct asc_sg_list_q {
417 } ASC_SG_LIST_Q;
418 
419 typedef struct asc_risc_sg_list_q {
425 
426 #define ASCQ_ERR_Q_STATUS 0x0D
427 #define ASCQ_ERR_CUR_QNG 0x17
428 #define ASCQ_ERR_SG_Q_LINKS 0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
432 
433 /*
434  * Warning code values are set in ASC_DVC_VAR 'warn_code'.
435  */
436 #define ASC_WARN_NO_ERROR 0x0000
437 #define ASC_WARN_IO_PORT_ROTATE 0x0001
438 #define ASC_WARN_EEPROM_CHKSUM 0x0002
439 #define ASC_WARN_IRQ_MODIFIED 0x0004
440 #define ASC_WARN_AUTO_CONFIG 0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
442 #define ASC_WARN_EEPROM_RECOVER 0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
444 
445 /*
446  * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
447  */
448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR 0x0004
451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE 0x0400
459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
462 
463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
465 #define ASC_MIN_FREE_Q (0x02)
466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
471 #define ASC_MAX_INRAM_TAG_QNG 16
472 #define ASC_IOADR_GAP 0x10
473 #define ASC_SYN_MAX_OFFSET 0x0F
474 #define ASC_DEF_SDTR_OFFSET 0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
477 
478 /* The narrow chip only supports a limited selection of transfer rates.
479  * These are encoded in the range 0..7 or 0..15 depending whether the chip
480  * is Ultra-capable or not. These tables let us convert from one to the other.
481  */
482 static const unsigned char asc_syn_xfer_period[8] = {
483  25, 30, 35, 40, 50, 60, 70, 85
484 };
485 
486 static const unsigned char asc_syn_ultra_xfer_period[16] = {
487  12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
488 };
489 
490 typedef struct ext_msg {
494  union {
495  struct {
498  } sdtr;
499  struct {
501  } wdtr;
502  struct {
507  } mdp;
508  } u_ext_msg;
510 } EXT_MSG;
511 
512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3 u_ext_msg.mdp_b3
516 #define mdp_b2 u_ext_msg.mdp_b2
517 #define mdp_b1 u_ext_msg.mdp_b1
518 #define mdp_b0 u_ext_msg.mdp_b0
519 
520 typedef struct asc_dvc_cfg {
534 } ASC_DVC_CFG;
535 
536 #define ASC_DEF_DVC_CNTL 0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID 7
538 #define ASC_DEF_ISA_DMA_SPEED 4
539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
540 #define ASC_INIT_STATE_END_GET_CFG 0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
542 #define ASC_INIT_STATE_END_SET_CFG 0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
546 #define ASC_INIT_STATE_END_INQUIRY 0x0080
547 #define ASC_INIT_RESET_SCSI_DONE 0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
551 #define ASC_MIN_TAGGED_CMD 7
552 #define ASC_MAX_SCSI_RESET_WAIT 30
553 #define ASC_OVERRUN_BSIZE 64
554 
555 struct asc_dvc_var; /* Forward Declaration. */
556 
557 typedef struct asc_dvc_var {
573  char is_in_int;
586  char redo_scam;
596  void **ptr_map;
598 } ASC_DVC_VAR;
599 
600 typedef struct asc_dvc_inq_info {
603 
604 typedef struct asc_cap_info {
607 } ASC_CAP_INFO;
608 
609 typedef struct asc_cap_info_array {
612 
613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
615 #define ASC_CNTL_INITIATOR (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL 2
630 #define ASC_EEP_MAX_DVC_ADDR_VL 15
631 #define ASC_EEP_DVC_CFG_BEG 32
632 #define ASC_EEP_MAX_DVC_ADDR 45
633 #define ASC_EEP_MAX_RETRY 20
634 
635 /*
636  * These macros keep the chip SCSI id and ISA DMA speed
637  * bitfields in board order. C bitfields aren't portable
638  * between big and little-endian platforms so they are
639  * not used.
640  */
641 
642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645  ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647  ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
648 
649 typedef struct asceep_config {
661  uchar id_speed; /* low order 4 bits is chip scsi id */
662  /* high order 4 bits is isa dma speed */
667 } ASCEEP_CONFIG;
668 
669 #define ASC_EEP_CMD_READ 0x80
670 #define ASC_EEP_CMD_WRITE 0x40
671 #define ASC_EEP_CMD_WRITE_ABLE 0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG 0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
683 #define ASCV_BREAK_ADDR (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
685 #define ASCV_BREAK_CONTROL (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
687 
688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W (ushort)0x0034
691 #define ASCV_STOP_CODE_B (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
695 #define ASCV_HALTCODE_W (ushort)0x0040
696 #define ASCV_CHKSUM_W (ushort)0x0042
697 #define ASCV_MC_DATE_W (ushort)0x0044
698 #define ASCV_MC_VER_W (ushort)0x0046
699 #define ASCV_NEXTRDY_B (ushort)0x0048
700 #define ASCV_DONENEXT_B (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
704 #define ASCV_CURCDB_B (ushort)0x004D
705 #define ASCV_RCLUN_B (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B (ushort)0x0056
712 #define ASCV_NULL_TARGET_B (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
719 #define ASCV_VER_SERIAL_B (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B (ushort)0x0068
722 #define ASCV_RISC_FLAG_B (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR 0x01
725 #define ASC_HOST_FLAG_ACK_INT 0x02
726 #define ASC_RISC_FLAG_GEN_INT 0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
728 #define IOP_CTRL (0x0F)
729 #define IOP_STATUS (0x0E)
730 #define IOP_INT_ACK IOP_STATUS
731 #define IOP_REG_IFC (0x0D)
732 #define IOP_SYN_OFFSET (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC (0x0C)
735 #define IOP_RAM_ADDR (0x0A)
736 #define IOP_RAM_DATA (0x08)
737 #define IOP_EEP_DATA (0x06)
738 #define IOP_EEP_CMD (0x07)
739 #define IOP_VERSION (0x03)
740 #define IOP_CONFIG_HIGH (0x04)
741 #define IOP_CONFIG_LOW (0x02)
742 #define IOP_SIG_BYTE (0x01)
743 #define IOP_SIG_WORD (0x00)
744 #define IOP_REG_DC1 (0x0E)
745 #define IOP_REG_DC0 (0x0C)
746 #define IOP_REG_SB (0x0B)
747 #define IOP_REG_DA1 (0x0A)
748 #define IOP_REG_DA0 (0x08)
749 #define IOP_REG_SC (0x09)
750 #define IOP_DMA_SPEED (0x07)
751 #define IOP_REG_FLAG (0x07)
752 #define IOP_FIFO_H (0x06)
753 #define IOP_FIFO_L (0x04)
754 #define IOP_REG_ID (0x05)
755 #define IOP_REG_QP (0x03)
756 #define IOP_REG_IH (0x02)
757 #define IOP_REG_IX (0x01)
758 #define IOP_REG_AX (0x00)
759 #define IFC_REG_LOCK (0x00)
760 #define IFC_REG_UNLOCK (0x09)
761 #define IFC_WR_EN_FILTER (0x10)
762 #define IFC_RD_NO_EEPROM (0x10)
763 #define IFC_SLEW_RATE (0x20)
764 #define IFC_ACT_NEG (0x40)
765 #define IFC_INP_FILTER (0x80)
766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL (uchar)(0x80)
768 #define SC_BSY (uchar)(0x40)
769 #define SC_ACK (uchar)(0x20)
770 #define SC_REQ (uchar)(0x10)
771 #define SC_ATN (uchar)(0x08)
772 #define SC_IO (uchar)(0x04)
773 #define SC_CD (uchar)(0x02)
774 #define SC_MSG (uchar)(0x01)
775 #define SEC_SCSI_CTL (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
777 #define SEC_SLEW_RATE (uchar)(0x20)
778 #define SEC_ENABLE_FILTER (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO 0xF8
787 #define ASC_DATA_SEC_BEG (ushort)0x0080
788 #define ASC_DATA_SEC_END (ushort)0x0080
789 #define ASC_CODE_SEC_BEG (ushort)0x0080
790 #define ASC_CODE_SEC_END (ushort)0x0080
791 #define ASC_QADR_BEG (0x4000)
792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END (ushort)0x7FFF
794 #define ASC_QLAST_ADR (ushort)0x7FC0
795 #define ASC_QBLK_SIZE 0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END 0xFF
799 #define ASC_EEPROM_WORDS 0x10
800 #define ASC_MAX_MGS_LEN 0x10
801 #define ASC_BIOS_ADDR_DEF 0xDC00
802 #define ASC_BIOS_SIZE 0x3800
803 #define ASC_BIOS_RAM_OFF 0x3800
804 #define ASC_BIOS_RAM_SIZE 0x800
805 #define ASC_BIOS_MIN_ADDR 0xC000
806 #define ASC_BIOS_MAX_ADDR 0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR 0x0080
809 #define ASC_CFG0_HOST_INT_ON 0x0020
810 #define ASC_CFG0_BIOS_ON 0x0040
811 #define ASC_CFG0_VERA_BURST_ON 0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
815 #define ASC_CFG_MSW_CLR_MASK 0x3080
816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET (uchar)0x80
839 #define CC_SCSI_RESET (uchar)0x40
840 #define CC_HALT (uchar)0x20
841 #define CC_SINGLE_STEP (uchar)0x10
842 #define CC_DMA_ABLE (uchar)0x08
843 #define CC_TEST (uchar)0x04
844 #define CC_BANK_ONE (uchar)0x02
845 #define CC_DIAG (uchar)0x01
846 #define ASC_1000_ID0W 0x04C1
847 #define ASC_1000_ID0W_FIX 0x00C1
848 #define ASC_1000_ID1B 0x25
849 #define ASC_EISA_REV_IOP_MASK (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT (ushort)0x6281
853 #define INS_HALT (ushort)0x6280
854 #define INS_SINT (ushort)0x6200
855 #define INS_RFLAG_WTM (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE 0x500
857 #define ASC_MC_SAVE_DATA_WSIZE 0x40
858 
859 typedef struct asc_mc_saved {
862 } ASC_MC_SAVED;
863 
864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
931 
932 /*
933  * Portable Data Types
934  *
935  * Any instance where a 32-bit long or pointer type is assumed
936  * for precision or HW defined structures, the following define
937  * types must be used. In Linux the char, short, and int types
938  * are all consistent at 8, 16, and 32 bits respectively. Pointers
939  * and long types are 64 bits on Alpha and UltraSPARC.
940  */
941 #define ADV_PADDR __u32 /* Physical address data type. */
942 #define ADV_VADDR __u32 /* Virtual address data type. */
943 #define ADV_DCNT __u32 /* Unsigned Data count type. */
944 #define ADV_SDCNT __s32 /* Signed Data count type. */
945 
946 /*
947  * These macros are used to convert a virtual address to a
948  * 32-bit value. This currently can be used on Linux Alpha
949  * which uses 64-bit virtual address but a 32-bit bus address.
950  * This is likely to break in the future, but doing this now
951  * will give us time to change the HW and FW to handle 64-bit
952  * addresses.
953  */
954 #define ADV_VADDR_TO_U32 virt_to_bus
955 #define ADV_U32_TO_VADDR bus_to_virt
956 
957 #define AdvPortAddr void __iomem * /* Virtual memory address size */
958 
959 /*
960  * Define Adv Library required memory access macros.
961  */
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
967 
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
969 
970 /*
971  * Define total number of simultaneous maximum element scatter-gather
972  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973  * maximum number of outstanding commands per wide host adapter. Each
974  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977  * structures or 255 scatter-gather elements.
978  */
979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
980 
981 /*
982  * Define maximum number of scatter-gather elements per request.
983  */
984 #define ADV_MAX_SG_LIST 255
985 #define NO_OF_SG_PER_BLOCK 15
986 
987 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
988 #define ADV_EEP_DVC_CFG_END (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
991 
992 #define ADV_EEP_DELAY_MS 100
993 
994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
996 /*
997  * For the ASC3550 Bit 13 is Termination Polarity control bit.
998  * For later ICs Bit 13 controls whether the CIS (Card Information
999  * Service Section) is loaded from EEPROM.
1000  */
1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1003 /*
1004  * ASC38C1600 Bit 11
1005  *
1006  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008  * Function 0 will specify INT B.
1009  *
1010  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012  * Function 1 will specify INT A.
1013  */
1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1015 
1016 typedef struct adveep_3550_config {
1017  /* Word Offset, Description */
1018 
1019  ushort cfg_lsw; /* 00 power up initialization */
1020  /* bit 13 set - Term Polarity Control */
1021  /* bit 14 set - BIOS Enable */
1022  /* bit 15 set - Big Endian Mode */
1023  ushort cfg_msw; /* 01 unused */
1024  ushort disc_enable; /* 02 disconnect enable */
1025  ushort wdtr_able; /* 03 Wide DTR able */
1026  ushort sdtr_able; /* 04 Synchronous DTR able */
1027  ushort start_motor; /* 05 send start up motor */
1028  ushort tagqng_able; /* 06 tag queuing able */
1029  ushort bios_scan; /* 07 BIOS device control */
1030  ushort scam_tolerant; /* 08 no scam */
1031 
1032  uchar adapter_scsi_id; /* 09 Host Adapter ID */
1033  uchar bios_boot_delay; /* power up wait */
1034 
1035  uchar scsi_reset_delay; /* 10 reset delay */
1036  uchar bios_id_lun; /* first boot device scsi id & lun */
1037  /* high nibble is lun */
1038  /* low nibble is scsi id */
1039 
1040  uchar termination; /* 11 0 - automatic */
1041  /* 1 - low off / high off */
1042  /* 2 - low off / high on */
1043  /* 3 - low on / high on */
1044  /* There is no low on / high off */
1045 
1046  uchar reserved1; /* reserved byte (not used) */
1047 
1048  ushort bios_ctrl; /* 12 BIOS control bits */
1049  /* bit 0 BIOS don't act as initiator. */
1050  /* bit 1 BIOS > 1 GB support */
1051  /* bit 2 BIOS > 2 Disk Support */
1052  /* bit 3 BIOS don't support removables */
1053  /* bit 4 BIOS support bootable CD */
1054  /* bit 5 BIOS scan enabled */
1055  /* bit 6 BIOS support multiple LUNs */
1056  /* bit 7 BIOS display of message */
1057  /* bit 8 SCAM disabled */
1058  /* bit 9 Reset SCSI bus during init. */
1059  /* bit 10 */
1060  /* bit 11 No verbose initialization. */
1061  /* bit 12 SCSI parity enabled */
1062  /* bit 13 */
1063  /* bit 14 */
1064  /* bit 15 */
1065  ushort ultra_able; /* 13 ULTRA speed able */
1066  ushort reserved2; /* 14 reserved */
1067  uchar max_host_qng; /* 15 maximum host queuing */
1068  uchar max_dvc_qng; /* maximum per device queuing */
1069  ushort dvc_cntl; /* 16 control bit for driver */
1070  ushort bug_fix; /* 17 control bit for bug fix */
1071  ushort serial_number_word1; /* 18 Board serial number word 1 */
1072  ushort serial_number_word2; /* 19 Board serial number word 2 */
1073  ushort serial_number_word3; /* 20 Board serial number word 3 */
1074  ushort check_sum; /* 21 EEP check sum */
1075  uchar oem_name[16]; /* 22 OEM name */
1076  ushort dvc_err_code; /* 30 last device driver error code */
1077  ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1078  ushort adv_err_addr; /* 32 last uc error address */
1079  ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1080  ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1081  ushort saved_adv_err_addr; /* 35 saved last uc error address */
1082  ushort num_of_err; /* 36 number of error */
1084 
1085 typedef struct adveep_38C0800_config {
1086  /* Word Offset, Description */
1087 
1088  ushort cfg_lsw; /* 00 power up initialization */
1089  /* bit 13 set - Load CIS */
1090  /* bit 14 set - BIOS Enable */
1091  /* bit 15 set - Big Endian Mode */
1092  ushort cfg_msw; /* 01 unused */
1093  ushort disc_enable; /* 02 disconnect enable */
1094  ushort wdtr_able; /* 03 Wide DTR able */
1095  ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1096  ushort start_motor; /* 05 send start up motor */
1097  ushort tagqng_able; /* 06 tag queuing able */
1098  ushort bios_scan; /* 07 BIOS device control */
1099  ushort scam_tolerant; /* 08 no scam */
1100 
1101  uchar adapter_scsi_id; /* 09 Host Adapter ID */
1102  uchar bios_boot_delay; /* power up wait */
1103 
1104  uchar scsi_reset_delay; /* 10 reset delay */
1105  uchar bios_id_lun; /* first boot device scsi id & lun */
1106  /* high nibble is lun */
1107  /* low nibble is scsi id */
1108 
1109  uchar termination_se; /* 11 0 - automatic */
1110  /* 1 - low off / high off */
1111  /* 2 - low off / high on */
1112  /* 3 - low on / high on */
1113  /* There is no low on / high off */
1114 
1115  uchar termination_lvd; /* 11 0 - automatic */
1116  /* 1 - low off / high off */
1117  /* 2 - low off / high on */
1118  /* 3 - low on / high on */
1119  /* There is no low on / high off */
1120 
1121  ushort bios_ctrl; /* 12 BIOS control bits */
1122  /* bit 0 BIOS don't act as initiator. */
1123  /* bit 1 BIOS > 1 GB support */
1124  /* bit 2 BIOS > 2 Disk Support */
1125  /* bit 3 BIOS don't support removables */
1126  /* bit 4 BIOS support bootable CD */
1127  /* bit 5 BIOS scan enabled */
1128  /* bit 6 BIOS support multiple LUNs */
1129  /* bit 7 BIOS display of message */
1130  /* bit 8 SCAM disabled */
1131  /* bit 9 Reset SCSI bus during init. */
1132  /* bit 10 */
1133  /* bit 11 No verbose initialization. */
1134  /* bit 12 SCSI parity enabled */
1135  /* bit 13 */
1136  /* bit 14 */
1137  /* bit 15 */
1138  ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1139  ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1140  uchar max_host_qng; /* 15 maximum host queueing */
1141  uchar max_dvc_qng; /* maximum per device queuing */
1142  ushort dvc_cntl; /* 16 control bit for driver */
1143  ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1144  ushort serial_number_word1; /* 18 Board serial number word 1 */
1145  ushort serial_number_word2; /* 19 Board serial number word 2 */
1146  ushort serial_number_word3; /* 20 Board serial number word 3 */
1147  ushort check_sum; /* 21 EEP check sum */
1148  uchar oem_name[16]; /* 22 OEM name */
1149  ushort dvc_err_code; /* 30 last device driver error code */
1150  ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1151  ushort adv_err_addr; /* 32 last uc error address */
1152  ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1153  ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1154  ushort saved_adv_err_addr; /* 35 saved last uc error address */
1155  ushort reserved36; /* 36 reserved */
1156  ushort reserved37; /* 37 reserved */
1157  ushort reserved38; /* 38 reserved */
1158  ushort reserved39; /* 39 reserved */
1159  ushort reserved40; /* 40 reserved */
1160  ushort reserved41; /* 41 reserved */
1161  ushort reserved42; /* 42 reserved */
1162  ushort reserved43; /* 43 reserved */
1163  ushort reserved44; /* 44 reserved */
1164  ushort reserved45; /* 45 reserved */
1165  ushort reserved46; /* 46 reserved */
1166  ushort reserved47; /* 47 reserved */
1167  ushort reserved48; /* 48 reserved */
1168  ushort reserved49; /* 49 reserved */
1169  ushort reserved50; /* 50 reserved */
1170  ushort reserved51; /* 51 reserved */
1171  ushort reserved52; /* 52 reserved */
1172  ushort reserved53; /* 53 reserved */
1173  ushort reserved54; /* 54 reserved */
1174  ushort reserved55; /* 55 reserved */
1175  ushort cisptr_lsw; /* 56 CIS PTR LSW */
1176  ushort cisprt_msw; /* 57 CIS PTR MSW */
1177  ushort subsysvid; /* 58 SubSystem Vendor ID */
1178  ushort subsysid; /* 59 SubSystem ID */
1179  ushort reserved60; /* 60 reserved */
1180  ushort reserved61; /* 61 reserved */
1181  ushort reserved62; /* 62 reserved */
1182  ushort reserved63; /* 63 reserved */
1184 
1185 typedef struct adveep_38C1600_config {
1186  /* Word Offset, Description */
1187 
1188  ushort cfg_lsw; /* 00 power up initialization */
1189  /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190  /* clear - Func. 0 INTA, Func. 1 INTB */
1191  /* bit 13 set - Load CIS */
1192  /* bit 14 set - BIOS Enable */
1193  /* bit 15 set - Big Endian Mode */
1194  ushort cfg_msw; /* 01 unused */
1195  ushort disc_enable; /* 02 disconnect enable */
1196  ushort wdtr_able; /* 03 Wide DTR able */
1197  ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1198  ushort start_motor; /* 05 send start up motor */
1199  ushort tagqng_able; /* 06 tag queuing able */
1200  ushort bios_scan; /* 07 BIOS device control */
1201  ushort scam_tolerant; /* 08 no scam */
1202 
1203  uchar adapter_scsi_id; /* 09 Host Adapter ID */
1204  uchar bios_boot_delay; /* power up wait */
1205 
1206  uchar scsi_reset_delay; /* 10 reset delay */
1207  uchar bios_id_lun; /* first boot device scsi id & lun */
1208  /* high nibble is lun */
1209  /* low nibble is scsi id */
1210 
1211  uchar termination_se; /* 11 0 - automatic */
1212  /* 1 - low off / high off */
1213  /* 2 - low off / high on */
1214  /* 3 - low on / high on */
1215  /* There is no low on / high off */
1216 
1217  uchar termination_lvd; /* 11 0 - automatic */
1218  /* 1 - low off / high off */
1219  /* 2 - low off / high on */
1220  /* 3 - low on / high on */
1221  /* There is no low on / high off */
1222 
1223  ushort bios_ctrl; /* 12 BIOS control bits */
1224  /* bit 0 BIOS don't act as initiator. */
1225  /* bit 1 BIOS > 1 GB support */
1226  /* bit 2 BIOS > 2 Disk Support */
1227  /* bit 3 BIOS don't support removables */
1228  /* bit 4 BIOS support bootable CD */
1229  /* bit 5 BIOS scan enabled */
1230  /* bit 6 BIOS support multiple LUNs */
1231  /* bit 7 BIOS display of message */
1232  /* bit 8 SCAM disabled */
1233  /* bit 9 Reset SCSI bus during init. */
1234  /* bit 10 Basic Integrity Checking disabled */
1235  /* bit 11 No verbose initialization. */
1236  /* bit 12 SCSI parity enabled */
1237  /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1238  /* bit 14 */
1239  /* bit 15 */
1240  ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1241  ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1242  uchar max_host_qng; /* 15 maximum host queueing */
1243  uchar max_dvc_qng; /* maximum per device queuing */
1244  ushort dvc_cntl; /* 16 control bit for driver */
1245  ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1246  ushort serial_number_word1; /* 18 Board serial number word 1 */
1247  ushort serial_number_word2; /* 19 Board serial number word 2 */
1248  ushort serial_number_word3; /* 20 Board serial number word 3 */
1249  ushort check_sum; /* 21 EEP check sum */
1250  uchar oem_name[16]; /* 22 OEM name */
1251  ushort dvc_err_code; /* 30 last device driver error code */
1252  ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1253  ushort adv_err_addr; /* 32 last uc error address */
1254  ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1255  ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1256  ushort saved_adv_err_addr; /* 35 saved last uc error address */
1257  ushort reserved36; /* 36 reserved */
1258  ushort reserved37; /* 37 reserved */
1259  ushort reserved38; /* 38 reserved */
1260  ushort reserved39; /* 39 reserved */
1261  ushort reserved40; /* 40 reserved */
1262  ushort reserved41; /* 41 reserved */
1263  ushort reserved42; /* 42 reserved */
1264  ushort reserved43; /* 43 reserved */
1265  ushort reserved44; /* 44 reserved */
1266  ushort reserved45; /* 45 reserved */
1267  ushort reserved46; /* 46 reserved */
1268  ushort reserved47; /* 47 reserved */
1269  ushort reserved48; /* 48 reserved */
1270  ushort reserved49; /* 49 reserved */
1271  ushort reserved50; /* 50 reserved */
1272  ushort reserved51; /* 51 reserved */
1273  ushort reserved52; /* 52 reserved */
1274  ushort reserved53; /* 53 reserved */
1275  ushort reserved54; /* 54 reserved */
1276  ushort reserved55; /* 55 reserved */
1277  ushort cisptr_lsw; /* 56 CIS PTR LSW */
1278  ushort cisprt_msw; /* 57 CIS PTR MSW */
1279  ushort subsysvid; /* 58 SubSystem Vendor ID */
1280  ushort subsysid; /* 59 SubSystem ID */
1281  ushort reserved60; /* 60 reserved */
1282  ushort reserved61; /* 61 reserved */
1283  ushort reserved62; /* 62 reserved */
1284  ushort reserved63; /* 63 reserved */
1286 
1287 /*
1288  * EEPROM Commands
1289  */
1290 #define ASC_EEP_CMD_DONE 0x0200
1291 
1292 /* bios_ctrl */
1293 #define BIOS_CTRL_BIOS 0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1295 #define BIOS_CTRL_GT_2_DISK 0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1300 #define BIOS_CTRL_NO_SCAM 0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1303 #define BIOS_CTRL_SCSI_PARITY 0x1000
1304 #define BIOS_CTRL_AIPP_DIS 0x2000
1305 
1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1307 
1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1309 
1310 /*
1311  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312  * a special 16K Adv Library and Microcode version. After the issue is
1313  * resolved, should restore 32K support.
1314  *
1315  * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1316  */
1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1318 
1319 /*
1320  * Byte I/O register address from base of 'iop_base'.
1321  */
1322 #define IOPB_INTR_STATUS_REG 0x00
1323 #define IOPB_CHIP_ID_1 0x01
1324 #define IOPB_INTR_ENABLES 0x02
1325 #define IOPB_CHIP_TYPE_REV 0x03
1326 #define IOPB_RES_ADDR_4 0x04
1327 #define IOPB_RES_ADDR_5 0x05
1328 #define IOPB_RAM_DATA 0x06
1329 #define IOPB_RES_ADDR_7 0x07
1330 #define IOPB_FLAG_REG 0x08
1331 #define IOPB_RES_ADDR_9 0x09
1332 #define IOPB_RISC_CSR 0x0A
1333 #define IOPB_RES_ADDR_B 0x0B
1334 #define IOPB_RES_ADDR_C 0x0C
1335 #define IOPB_RES_ADDR_D 0x0D
1336 #define IOPB_SOFT_OVER_WR 0x0E
1337 #define IOPB_RES_ADDR_F 0x0F
1338 #define IOPB_MEM_CFG 0x10
1339 #define IOPB_RES_ADDR_11 0x11
1340 #define IOPB_GPIO_DATA 0x12
1341 #define IOPB_RES_ADDR_13 0x13
1342 #define IOPB_FLASH_PAGE 0x14
1343 #define IOPB_RES_ADDR_15 0x15
1344 #define IOPB_GPIO_CNTL 0x16
1345 #define IOPB_RES_ADDR_17 0x17
1346 #define IOPB_FLASH_DATA 0x18
1347 #define IOPB_RES_ADDR_19 0x19
1348 #define IOPB_RES_ADDR_1A 0x1A
1349 #define IOPB_RES_ADDR_1B 0x1B
1350 #define IOPB_RES_ADDR_1C 0x1C
1351 #define IOPB_RES_ADDR_1D 0x1D
1352 #define IOPB_RES_ADDR_1E 0x1E
1353 #define IOPB_RES_ADDR_1F 0x1F
1354 #define IOPB_DMA_CFG0 0x20
1355 #define IOPB_DMA_CFG1 0x21
1356 #define IOPB_TICKLE 0x22
1357 #define IOPB_DMA_REG_WR 0x23
1358 #define IOPB_SDMA_STATUS 0x24
1359 #define IOPB_SCSI_BYTE_CNT 0x25
1360 #define IOPB_HOST_BYTE_CNT 0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1362 #define IOPB_BYTE_TO_XFER_0 0x28
1363 #define IOPB_BYTE_TO_XFER_1 0x29
1364 #define IOPB_BYTE_TO_XFER_2 0x2A
1365 #define IOPB_BYTE_TO_XFER_3 0x2B
1366 #define IOPB_ACC_GRP 0x2C
1367 #define IOPB_RES_ADDR_2D 0x2D
1368 #define IOPB_DEV_ID 0x2E
1369 #define IOPB_RES_ADDR_2F 0x2F
1370 #define IOPB_SCSI_DATA 0x30
1371 #define IOPB_RES_ADDR_31 0x31
1372 #define IOPB_RES_ADDR_32 0x32
1373 #define IOPB_SCSI_DATA_HSHK 0x33
1374 #define IOPB_SCSI_CTRL 0x34
1375 #define IOPB_RES_ADDR_35 0x35
1376 #define IOPB_RES_ADDR_36 0x36
1377 #define IOPB_RES_ADDR_37 0x37
1378 #define IOPB_RAM_BIST 0x38
1379 #define IOPB_PLL_TEST 0x39
1380 #define IOPB_PCI_INT_CFG 0x3A
1381 #define IOPB_RES_ADDR_3B 0x3B
1382 #define IOPB_RFIFO_CNT 0x3C
1383 #define IOPB_RES_ADDR_3D 0x3D
1384 #define IOPB_RES_ADDR_3E 0x3E
1385 #define IOPB_RES_ADDR_3F 0x3F
1386 
1387 /*
1388  * Word I/O register address from base of 'iop_base'.
1389  */
1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1391 #define IOPW_CTRL_REG 0x02 /* CC */
1392 #define IOPW_RAM_ADDR 0x04 /* LA */
1393 #define IOPW_RAM_DATA 0x06 /* LD */
1394 #define IOPW_RES_ADDR_08 0x08
1395 #define IOPW_RISC_CSR 0x0A /* CSR */
1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1398 #define IOPW_RES_ADDR_10 0x10
1399 #define IOPW_SEL_MASK 0x12 /* SM */
1400 #define IOPW_RES_ADDR_14 0x14
1401 #define IOPW_FLASH_ADDR 0x16 /* FA */
1402 #define IOPW_RES_ADDR_18 0x18
1403 #define IOPW_EE_CMD 0x1A /* EC */
1404 #define IOPW_EE_DATA 0x1C /* ED */
1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1406 #define IOPW_RES_ADDR_20 0x20
1407 #define IOPW_Q_BASE 0x22 /* QB */
1408 #define IOPW_QP 0x24 /* QP */
1409 #define IOPW_IX 0x26 /* IX */
1410 #define IOPW_SP 0x28 /* SP */
1411 #define IOPW_PC 0x2A /* PC */
1412 #define IOPW_RES_ADDR_2C 0x2C
1413 #define IOPW_RES_ADDR_2E 0x2E
1414 #define IOPW_SCSI_DATA 0x30 /* SD */
1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1416 #define IOPW_SCSI_CTRL 0x34 /* SC */
1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1421 #define IOPW_RES_ADDR_3C 0x3C
1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1423 
1424 /*
1425  * Doubleword I/O register address from base of 'iop_base'.
1426  */
1427 #define IOPDW_RES_ADDR_0 0x00
1428 #define IOPDW_RAM_DATA 0x04
1429 #define IOPDW_RES_ADDR_8 0x08
1430 #define IOPDW_RES_ADDR_C 0x0C
1431 #define IOPDW_RES_ADDR_10 0x10
1432 #define IOPDW_COMMA 0x14
1433 #define IOPDW_COMMB 0x18
1434 #define IOPDW_RES_ADDR_1C 0x1C
1435 #define IOPDW_SDMA_ADDR0 0x20
1436 #define IOPDW_SDMA_ADDR1 0x24
1437 #define IOPDW_SDMA_COUNT 0x28
1438 #define IOPDW_SDMA_ERROR 0x2C
1439 #define IOPDW_RDMA_ADDR0 0x30
1440 #define IOPDW_RDMA_ADDR1 0x34
1441 #define IOPDW_RDMA_COUNT 0x38
1442 #define IOPDW_RDMA_ERROR 0x3C
1443 
1444 #define ADV_CHIP_ID_BYTE 0x25
1445 #define ADV_CHIP_ID_WORD 0x04C1
1446 
1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1452 #define ADV_INTR_ENABLE_RST_INTR 0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1455 
1456 #define ADV_INTR_STATUS_INTRA 0x01
1457 #define ADV_INTR_STATUS_INTRB 0x02
1458 #define ADV_INTR_STATUS_INTRC 0x04
1459 
1460 #define ADV_RISC_CSR_STOP (0x0000)
1461 #define ADV_RISC_TEST_COND (0x2000)
1462 #define ADV_RISC_CSR_RUN (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1464 
1465 #define ADV_CTRL_REG_HOST_INTR 0x0100
1466 #define ADV_CTRL_REG_SEL_INTR 0x0200
1467 #define ADV_CTRL_REG_DPR_INTR 0x0400
1468 #define ADV_CTRL_REG_RTA_INTR 0x0800
1469 #define ADV_CTRL_REG_RMA_INTR 0x1000
1470 #define ADV_CTRL_REG_RES_BIT14 0x2000
1471 #define ADV_CTRL_REG_DPE_INTR 0x4000
1472 #define ADV_CTRL_REG_POWER_DONE 0x8000
1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1474 
1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1480 
1481 #define ADV_TICKLE_NOP 0x00
1482 #define ADV_TICKLE_A 0x01
1483 #define ADV_TICKLE_B 0x02
1484 #define ADV_TICKLE_C 0x03
1485 
1486 #define AdvIsIntPending(port) \
1487  (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1488 
1489 /*
1490  * SCSI_CFG0 Register bit definitions
1491  */
1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1502 #define OUR_ID 0x000F /* SCSI ID */
1503 
1504 /*
1505  * SCSI_CFG1 Register bit definitions
1506  */
1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1522 
1523 /*
1524  * Addendum for ASC-38C0800 Chip
1525  *
1526  * The ASC-38C1600 Chip uses the same definitions except that the
1527  * bus mode override bits [12:10] have been moved to byte register
1528  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1533  */
1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1536 #define HVD 0x1000 /* HVD Device Detect */
1537 #define LVD 0x0800 /* LVD Device Detect */
1538 #define SE 0x0400 /* SE Device Detect */
1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1542 #define TERM_SE 0x0030 /* SE Termination Bits */
1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1551 
1552 #define CABLE_ILLEGAL_A 0x7
1553  /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1554 
1555 #define CABLE_ILLEGAL_B 0xB
1556  /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1557 
1558 /*
1559  * MEM_CFG Register bit definitions
1560  */
1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1564 #define RAM_SZ_2KB 0x00 /* 2 KB */
1565 #define RAM_SZ_4KB 0x04 /* 4 KB */
1566 #define RAM_SZ_8KB 0x08 /* 8 KB */
1567 #define RAM_SZ_16KB 0x0C /* 16 KB */
1568 #define RAM_SZ_32KB 0x10 /* 32 KB */
1569 #define RAM_SZ_64KB 0x14 /* 64 KB */
1570 
1571 /*
1572  * DMA_CFG0 Register bit definitions
1573  *
1574  * This register is only accessible to the host.
1575  */
1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1585 #define START_CTL 0x0C /* DMA start conditions */
1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1590 #define READ_CMD 0x03 /* Memory Read Method */
1591 #define READ_CMD_MR 0x00 /* Memory Read */
1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1594 
1595 /*
1596  * ASC-38C0800 RAM BIST Register bit definitions
1597  */
1598 #define RAM_TEST_MODE 0x80
1599 #define PRE_TEST_MODE 0x40
1600 #define NORMAL_MODE 0x00
1601 #define RAM_TEST_DONE 0x10
1602 #define RAM_TEST_STATUS 0x0F
1603 #define RAM_TEST_HOST_ERROR 0x08
1604 #define RAM_TEST_INTRAM_ERROR 0x04
1605 #define RAM_TEST_RISC_ERROR 0x02
1606 #define RAM_TEST_SCSI_ERROR 0x01
1607 #define RAM_TEST_SUCCESS 0x00
1608 #define PRE_TEST_VALUE 0x05
1609 #define NORMAL_VALUE 0x00
1610 
1611 /*
1612  * ASC38C1600 Definitions
1613  *
1614  * IOPB_PCI_INT_CFG Bit Field Definitions
1615  */
1616 
1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1618 
1619 /*
1620  * Bit 1 can be set to change the interrupt for the Function to operate in
1621  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623  * mode, otherwise the operating mode is undefined.
1624  */
1625 #define TOTEMPOLE 0x02
1626 
1627 /*
1628  * Bit 0 can be used to change the Int Pin for the Function. The value is
1629  * 0 by default for both Functions with Function 0 using INT A and Function
1630  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1631  * INT A is used.
1632  *
1633  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634  * value specified in the PCI Configuration Space.
1635  */
1636 #define INTAB 0x01
1637 
1638 /*
1639  * Adv Library Status Definitions
1640  */
1641 #define ADV_TRUE 1
1642 #define ADV_FALSE 0
1643 #define ADV_SUCCESS 1
1644 #define ADV_BUSY 0
1645 #define ADV_ERROR (-1)
1646 
1647 /*
1648  * ADV_DVC_VAR 'warn_code' values
1649  */
1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1654 
1655 #define ADV_MAX_TID 15 /* max. target identifier */
1656 #define ADV_MAX_LUN 7 /* max. logical unit number */
1657 
1658 /*
1659  * Fixed locations of microcode operating variables.
1660  */
1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE 0x009A
1675 #define ASC_MC_INTRB_CODE 0x009B
1676 #define ASC_MC_WDTR_ABLE 0x009C
1677 #define ASC_MC_SDTR_ABLE 0x009E
1678 #define ASC_MC_TAGQNG_ABLE 0x00A0
1679 #define ASC_MC_DISC_ENABLE 0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1681 #define ASC_MC_IDLE_CMD 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1687 #define ASC_MC_SDTR_DONE 0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE 0x0124
1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ 0x0160
1695 #define ASC_MC_IRQ 0x0164
1696 #define ASC_MC_PPR_ABLE 0x017A
1697 
1698 /*
1699  * BIOS LRAM variable absolute offsets.
1700  */
1701 #define BIOS_CODESEG 0x54
1702 #define BIOS_CODELEN 0x56
1703 #define BIOS_SIGNATURE 0x58
1704 #define BIOS_VERSION 0x5A
1705 
1706 /*
1707  * Microcode Control Flags
1708  *
1709  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710  * and handled by the microcode.
1711  */
1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1714 
1715 /*
1716  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1717  */
1718 #define HSHK_CFG_WIDE_XFR 0x8000
1719 #define HSHK_CFG_RATE 0x0F00
1720 #define HSHK_CFG_OFFSET 0x001F
1721 
1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1726 
1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1732 
1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1738 /*
1739  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1741  */
1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1744 
1745 /*
1746  * All fields here are accessed by the board microcode and need to be
1747  * little-endian.
1748  */
1749 typedef struct adv_carr_t {
1750  ADV_VADDR carr_va; /* Carrier Virtual Address */
1751  ADV_PADDR carr_pa; /* Carrier Physical Address */
1752  ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1753  /*
1754  * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1755  *
1756  * next_vpa [3:1] Reserved Bits
1757  * next_vpa [0] Done Flag set in Response Queue.
1758  */
1760 } ADV_CARR_T;
1761 
1762 /*
1763  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1764  */
1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1766 
1767 #define ASC_RQ_DONE 0x00000001
1768 #define ASC_RQ_GOOD 0x00000002
1769 #define ASC_CQ_STOPPER 0x00000000
1770 
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1772 
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774  (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1775 
1776 #define ADV_CARRIER_BUFSIZE \
1777  ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1778 
1779 /*
1780  * ASC_SCSI_REQ_Q 'a_flag' definitions
1781  *
1782  * The Adv Library should limit use to the lower nibble (4 bits) of
1783  * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1784  */
1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1786 #define ADV_SCSIQ_DONE 0x02 /* request done */
1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1788 
1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1792 
1793 /*
1794  * Adapter temporary configuration structure
1795  *
1796  * This structure can be discarded after initialization. Don't add
1797  * fields here needed after initialization.
1798  *
1799  * Field naming convention:
1800  *
1801  * *_enable indicates the field enables or disables a feature. The
1802  * value of the field is never reset.
1803  */
1804 typedef struct adv_dvc_cfg {
1805  ushort disc_enable; /* enable disconnection */
1806  uchar chip_version; /* chip version */
1807  uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808  ushort control_flag; /* Microcode Control Flag */
1809  ushort mcode_date; /* Microcode date */
1810  ushort mcode_version; /* Microcode version */
1811  ushort serial1; /* EEPROM serial number word 1 */
1812  ushort serial2; /* EEPROM serial number word 2 */
1813  ushort serial3; /* EEPROM serial number word 3 */
1814 } ADV_DVC_CFG;
1815 
1816 struct adv_dvc_var;
1817 struct adv_scsi_req_q;
1818 
1819 typedef struct asc_sg_block {
1823  uchar sg_cnt; /* Valid entries in block. */
1824  ADV_PADDR sg_ptr; /* Pointer to next sg block. */
1825  struct {
1826  ADV_PADDR sg_addr; /* SG element address. */
1827  ADV_DCNT sg_count; /* SG element count. */
1829 } ADV_SG_BLOCK;
1830 
1831 /*
1832  * ADV_SCSI_REQ_Q - microcode request structure
1833  *
1834  * All fields in this structure up to byte 60 are used by the microcode.
1835  * The microcode makes assumptions about the size and ordering of fields
1836  * in this structure. Do not change the structure definition here without
1837  * coordinating the change with the microcode.
1838  *
1839  * All fields accessed by microcode must be maintained in little_endian
1840  * order.
1841  */
1842 typedef struct adv_scsi_req_q {
1843  uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1845  uchar target_id; /* Device target identifier. */
1846  uchar target_lun; /* Device target logical unit number. */
1847  ADV_PADDR data_addr; /* Data buffer physical address. */
1848  ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */
1853  uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1855  uchar done_status; /* Completion status. */
1856  uchar scsi_status; /* SCSI status byte. */
1857  uchar host_status; /* Ucode host status. */
1859  uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1860  ADV_PADDR sg_real_addr; /* SG list physical address. */
1862  uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1865  /*
1866  * End of microcode structure - 60 bytes. The rest of the structure
1867  * is used by the Adv Library and ignored by the microcode.
1868  */
1870  ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1871  char *vdata_addr; /* Data buffer virtual address. */
1873  uchar pad[2]; /* Pad out to a word boundary. */
1874 } ADV_SCSI_REQ_Q;
1875 
1876 /*
1877  * The following two structures are used to process Wide Board requests.
1878  *
1879  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880  * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881  * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882  * Mid-Level SCSI request structure.
1883  *
1884  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886  * up to 255 scatter-gather elements may be used per request or
1887  * ADV_SCSI_REQ_Q.
1888  *
1889  * Both structures must be 32 byte aligned.
1890  */
1891 typedef struct adv_sgblk {
1892  ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1893  uchar align[32]; /* Sgblock structure padding. */
1894  struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1895 } adv_sgblk_t;
1896 
1897 typedef struct adv_req {
1898  ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1899  uchar align[32]; /* Request structure padding. */
1900  struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1901  adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1902  struct adv_req *next_reqp; /* Next Request Structure. */
1903 } adv_req_t;
1904 
1905 /*
1906  * Adapter operation variable structure.
1907  *
1908  * One structure is required per host adapter.
1909  *
1910  * Field naming convention:
1911  *
1912  * *_able indicates both whether a feature should be enabled or disabled
1913  * and whether a device isi capable of the feature. At initialization
1914  * this field may be set, but later if a device is found to be incapable
1915  * of the feature, the field is cleared.
1916  */
1917 typedef struct adv_dvc_var {
1918  AdvPortAddr iop_base; /* I/O port address */
1919  ushort err_code; /* fatal error code */
1920  ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1921  ushort wdtr_able; /* try WDTR for a device */
1922  ushort sdtr_able; /* try SDTR for a device */
1923  ushort ultra_able; /* try SDTR Ultra speed for a device */
1924  ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1925  ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1926  ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1927  ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1928  ushort tagqng_able; /* try tagged queuing with a device */
1929  ushort ppr_able; /* PPR message capable per TID bitmask. */
1930  uchar max_dvc_qng; /* maximum number of tagged commands per device */
1931  ushort start_motor; /* start motor command allowed */
1932  uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1933  uchar chip_no; /* should be assigned by caller */
1934  uchar max_host_qng; /* maximum number of Q'ed command allowed */
1935  ushort no_scam; /* scam_tolerant of EEPROM */
1936  struct asc_board *drv_ptr; /* driver pointer to private structure */
1937  uchar chip_scsi_id; /* chip SCSI target ID */
1941  ADV_CARR_T *carr_freelist; /* Carrier free list. */
1942  ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1943  ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1944  ushort carr_pending_cnt; /* Count of pending carriers. */
1945  struct adv_req *orig_reqp; /* adv_req_t memory block. */
1946  /*
1947  * Note: The following fields will not be used after initialization. The
1948  * driver may discard the buffer after initialization is done.
1949  */
1950  ADV_DVC_CFG *cfg; /* temporary configuration structure */
1951 } ADV_DVC_VAR;
1952 
1953 /*
1954  * Microcode idle loop commands
1955  */
1956 #define IDLE_CMD_COMPLETED 0
1957 #define IDLE_CMD_STOP_CHIP 0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1959 #define IDLE_CMD_SEND_INT 0x0004
1960 #define IDLE_CMD_ABORT 0x0008
1961 #define IDLE_CMD_DEVICE_RESET 0x0010
1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ 0x0080
1965 
1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1967 #define IDLE_CMD_STATUS_FAILURE 0x0002
1968 
1969 /*
1970  * AdvSendIdleCmd() flag definitions.
1971  */
1972 #define ADV_NOWAIT 0x01
1973 
1974 /*
1975  * Wait loop time out values.
1976  */
1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY 10 /* retry count */
1980 
1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1985 
1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1987 
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990  (ADV_MEM_READB((iop_base) + (reg_off)))
1991 
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994  (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1995 
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998  (ADV_MEM_READW((iop_base) + (reg_off)))
1999 
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002  (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2003 
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006  (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2007 
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2010 do { \
2011  ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012  (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2013 } while (0)
2014 
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017  (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018  ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2019 
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2022 do { \
2023  ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024  (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2025 } while (0)
2026 
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029  (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030  ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2031 
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035  ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036  ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037  cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038  (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039  ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040  cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2041 
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044  (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2045 
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048  (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2049 
2050 /*
2051  * Define macro to check for Condor signature.
2052  *
2053  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2055  */
2056 #define AdvFindSignature(iop_base) \
2057  (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058  ADV_CHIP_ID_BYTE) && \
2059  (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060  ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2061 
2062 /*
2063  * Define macro to Return the version number of the chip at 'iop_base'.
2064  *
2065  * The second parameter 'bus_type' is currently unused.
2066  */
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068  AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2069 
2070 /*
2071  * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072  * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2073  *
2074  * If the request has not yet been sent to the device it will simply be
2075  * aborted from RISC memory. If the request is disconnected it will be
2076  * aborted on reselection by sending an Abort Message to the target ID.
2077  *
2078  * Return value:
2079  * ADV_TRUE(1) - Queue was successfully aborted.
2080  * ADV_FALSE(0) - Queue was not found on the active queue list.
2081  */
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083  AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2084  (ADV_DCNT) (scsiq))
2085 
2086 /*
2087  * Send a Bus Device Reset Message to the specified target ID.
2088  *
2089  * All outstanding commands will be purged if sending the
2090  * Bus Device Reset Message is successful.
2091  *
2092  * Return Value:
2093  * ADV_TRUE(1) - All requests on the target are purged.
2094  * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2095  * are not purged.
2096  */
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098  AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099  (ADV_DCNT) (target_id))
2100 
2101 /*
2102  * SCSI Wide Type definition.
2103  */
2104 #define ADV_SCSI_BIT_ID_TYPE ushort
2105 
2106 /*
2107  * AdvInitScsiTarget() 'cntl_flag' options.
2108  */
2109 #define ADV_SCAN_LUN 0x01
2110 #define ADV_CAPINFO_NOLUN 0x02
2111 
2112 /*
2113  * Convert target id to target id bit mask.
2114  */
2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2116 
2117 /*
2118  * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2119  */
2120 
2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2122 #define QD_NO_ERROR 0x01
2123 #define QD_ABORTED_BY_HOST 0x02
2124 #define QD_WITH_ERROR 0x04
2125 
2126 #define QHSTA_NO_ERROR 0x00
2127 #define QHSTA_M_SEL_TIMEOUT 0x11
2128 #define QHSTA_M_DATA_OVER_RUN 0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED 0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT 0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2154 
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2159 
2160 /*
2161  * Total contiguous memory needed for driver SG blocks.
2162  *
2163  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164  * number of scatter-gather elements the driver supports in a
2165  * single request.
2166  */
2167 
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169  (sizeof(ADV_SG_BLOCK) * \
2170  ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2171 
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2174 
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2176 
2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2178 
2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2180 
2181 #ifdef CONFIG_PROC_FS
2182 /* /proc/scsi/advansys/[0...] related definitions */
2183 #define ASC_PRTBUF_SIZE 2048
2184 #define ASC_PRTLINE_SIZE 160
2185 
2186 #define ASC_PRT_NEXT() \
2187  if (cp) { \
2188  totlen += len; \
2189  leftlen -= len; \
2190  if (leftlen == 0) { \
2191  return totlen; \
2192  } \
2193  cp += len; \
2194  }
2195 #endif /* CONFIG_PROC_FS */
2196 
2197 /* Asc Library return codes */
2198 #define ASC_TRUE 1
2199 #define ASC_FALSE 0
2200 #define ASC_NOERROR 1
2201 #define ASC_BUSY 0
2202 #define ASC_ERROR (-1)
2203 
2204 /* struct scsi_cmnd function return codes */
2205 #define STATUS_BYTE(byte) (byte)
2206 #define MSG_BYTE(byte) ((byte) << 8)
2207 #define HOST_BYTE(byte) ((byte) << 16)
2208 #define DRIVER_BYTE(byte) ((byte) << 24)
2209 
2210 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2211 #ifndef ADVANSYS_STATS
2212 #define ASC_STATS_ADD(shost, counter, count)
2213 #else /* ADVANSYS_STATS */
2214 #define ASC_STATS_ADD(shost, counter, count) \
2215  (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2216 #endif /* ADVANSYS_STATS */
2217 
2218 /* If the result wraps when calculating tenths, return 0. */
2219 #define ASC_TENTHS(num, den) \
2220  (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2221  0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2222 
2223 /*
2224  * Display a message to the console.
2225  */
2226 #define ASC_PRINT(s) \
2227  { \
2228  printk("advansys: "); \
2229  printk(s); \
2230  }
2231 
2232 #define ASC_PRINT1(s, a1) \
2233  { \
2234  printk("advansys: "); \
2235  printk((s), (a1)); \
2236  }
2237 
2238 #define ASC_PRINT2(s, a1, a2) \
2239  { \
2240  printk("advansys: "); \
2241  printk((s), (a1), (a2)); \
2242  }
2243 
2244 #define ASC_PRINT3(s, a1, a2, a3) \
2245  { \
2246  printk("advansys: "); \
2247  printk((s), (a1), (a2), (a3)); \
2248  }
2249 
2250 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2251  { \
2252  printk("advansys: "); \
2253  printk((s), (a1), (a2), (a3), (a4)); \
2254  }
2255 
2256 #ifndef ADVANSYS_DEBUG
2257 
2258 #define ASC_DBG(lvl, s...)
2259 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2260 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2261 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2263 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2264 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2265 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2266 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2267 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2268 
2269 #else /* ADVANSYS_DEBUG */
2270 
2271 /*
2272  * Debugging Message Levels:
2273  * 0: Errors Only
2274  * 1: High-Level Tracing
2275  * 2-N: Verbose Tracing
2276  */
2277 
2278 #define ASC_DBG(lvl, format, arg...) { \
2279  if (asc_dbglvl >= (lvl)) \
2280  printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2281  __func__ , ## arg); \
2282 }
2283 
2284 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2285  { \
2286  if (asc_dbglvl >= (lvl)) { \
2287  asc_prt_scsi_host(s); \
2288  } \
2289  }
2290 
2291 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2292  { \
2293  if (asc_dbglvl >= (lvl)) { \
2294  asc_prt_asc_scsi_q(scsiqp); \
2295  } \
2296  }
2297 
2298 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2299  { \
2300  if (asc_dbglvl >= (lvl)) { \
2301  asc_prt_asc_qdone_info(qdone); \
2302  } \
2303  }
2304 
2305 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2306  { \
2307  if (asc_dbglvl >= (lvl)) { \
2308  asc_prt_adv_scsi_req_q(scsiqp); \
2309  } \
2310  }
2311 
2312 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2313  { \
2314  if (asc_dbglvl >= (lvl)) { \
2315  asc_prt_hex((name), (start), (length)); \
2316  } \
2317  }
2318 
2319 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2320  ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2321 
2322 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2323  ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2324 
2325 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2326  ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2327 #endif /* ADVANSYS_DEBUG */
2328 
2329 #ifdef ADVANSYS_STATS
2330 
2331 /* Per board statistics structure */
2332 struct asc_stats {
2333  /* Driver Entrypoint Statistics */
2334  ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */
2335  ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */
2336  ADV_DCNT biosparam; /* # calls to advansys_biosparam() */
2337  ADV_DCNT interrupt; /* # advansys_interrupt() calls */
2338  ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */
2339  ADV_DCNT done; /* # calls to request's scsi_done function */
2340  ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2341  ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2342  ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2343  /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2344  ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */
2345  ADV_DCNT exe_busy; /* # ASC_BUSY returns. */
2346  ADV_DCNT exe_error; /* # ASC_ERROR returns. */
2347  ADV_DCNT exe_unknown; /* # unknown returns. */
2348  /* Data Transfer Statistics */
2349  ADV_DCNT xfer_cnt; /* # I/O requests received */
2350  ADV_DCNT xfer_elem; /* # scatter-gather elements */
2351  ADV_DCNT xfer_sect; /* # 512-byte blocks */
2352 };
2353 #endif /* ADVANSYS_STATS */
2354 
2355 /*
2356  * Structure allocated for each board.
2357  *
2358  * This structure is allocated by scsi_host_alloc() at the end
2359  * of the 'Scsi_Host' structure starting at the 'hostdata'
2360  * field. It is guaranteed to be allocated from DMA-able memory.
2361  */
2362 struct asc_board {
2363  struct device *dev;
2364  uint flags; /* Board flags */
2365  unsigned int irq;
2366  union {
2367  ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2368  ADV_DVC_VAR adv_dvc_var; /* Wide board */
2369  } dvc_var;
2370  union {
2371  ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2372  ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2373  } dvc_cfg;
2374  ushort asc_n_io_port; /* Number I/O ports. */
2375  ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2376  ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2377  ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2378  ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2379  union {
2380  ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2381  ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2382  ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2383  ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2384  } eep_config;
2385  ulong last_reset; /* Saved last reset time */
2386  /* /proc/scsi/advansys/[0...] */
2387  char *prtbuf; /* /proc print buffer */
2388 #ifdef ADVANSYS_STATS
2389  struct asc_stats asc_stats; /* Board statistics */
2390 #endif /* ADVANSYS_STATS */
2391  /*
2392  * The following fields are used only for Narrow Boards.
2393  */
2394  uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2395  /*
2396  * The following fields are used only for Wide Boards.
2397  */
2398  void __iomem *ioremap_addr; /* I/O Memory remap address. */
2399  ushort ioport; /* I/O Port address. */
2400  adv_req_t *adv_reqp; /* Request structures. */
2401  adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */
2402  ushort bios_signature; /* BIOS Signature. */
2403  ushort bios_version; /* BIOS Version. */
2404  ushort bios_codeseg; /* BIOS Code Segment. */
2405  ushort bios_codelen; /* BIOS Code Segment Length. */
2406 };
2407 
2408 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2409  dvc_var.asc_dvc_var)
2410 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2411  dvc_var.adv_dvc_var)
2412 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2413 
2414 #ifdef ADVANSYS_DEBUG
2415 static int asc_dbglvl = 3;
2416 
2417 /*
2418  * asc_prt_asc_dvc_var()
2419  */
2420 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2421 {
2422  printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2423 
2424  printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2425  "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2426 
2427  printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2428  (unsigned)h->init_sdtr);
2429 
2430  printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2431  "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2432  (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2433  (unsigned)h->chip_no);
2434 
2435  printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2436  "%u,\n", (unsigned)h->queue_full_or_busy,
2437  (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2438 
2439  printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2440  "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2441  (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2442  (unsigned)h->in_critical_cnt);
2443 
2444  printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2445  "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2446  (unsigned)h->init_state, (unsigned)h->no_scam,
2447  (unsigned)h->pci_fix_asyn_xfer);
2448 
2449  printk(" cfg 0x%lx\n", (ulong)h->cfg);
2450 }
2451 
2452 /*
2453  * asc_prt_asc_dvc_cfg()
2454  */
2455 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2456 {
2457  printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2458 
2459  printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461  printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2462  h->disc_enable, h->sdtr_enable);
2463 
2464  printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2465  "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2466  h->isa_dma_channel, h->chip_version);
2467 
2468  printk(" mcode_date 0x%x, mcode_version %d\n",
2469  h->mcode_date, h->mcode_version);
2470 }
2471 
2472 /*
2473  * asc_prt_adv_dvc_var()
2474  *
2475  * Display an ADV_DVC_VAR structure.
2476  */
2477 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2478 {
2479  printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2480 
2481  printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2482  (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2483 
2484  printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2485  (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2486 
2487  printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2488  (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2489 
2490  printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2491  (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2492  (ulong)h->carr_freelist);
2493 
2494  printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2495  (ulong)h->icq_sp, (ulong)h->irq_sp);
2496 
2497  printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2498  (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2499 
2500  printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2501  (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2502 }
2503 
2504 /*
2505  * asc_prt_adv_dvc_cfg()
2506  *
2507  * Display an ADV_DVC_CFG structure.
2508  */
2509 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2510 {
2511  printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2512 
2513  printk(" disc_enable 0x%x, termination 0x%x\n",
2514  h->disc_enable, h->termination);
2515 
2516  printk(" chip_version 0x%x, mcode_date 0x%x\n",
2517  h->chip_version, h->mcode_date);
2518 
2519  printk(" mcode_version 0x%x, control_flag 0x%x\n",
2520  h->mcode_version, h->control_flag);
2521 }
2522 
2523 /*
2524  * asc_prt_scsi_host()
2525  */
2526 static void asc_prt_scsi_host(struct Scsi_Host *s)
2527 {
2528  struct asc_board *boardp = shost_priv(s);
2529 
2530  printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2531  printk(" host_busy %u, host_no %d, last_reset %d,\n",
2532  s->host_busy, s->host_no, (unsigned)s->last_reset);
2533 
2534  printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2535  (ulong)s->base, (ulong)s->io_port, boardp->irq);
2536 
2537  printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2538  s->dma_channel, s->this_id, s->can_queue);
2539 
2540  printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542 
2543  if (ASC_NARROW_BOARD(boardp)) {
2544  asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2545  asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2546  } else {
2547  asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2548  asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2549  }
2550 }
2551 
2552 /*
2553  * asc_prt_hex()
2554  *
2555  * Print hexadecimal output in 4 byte groupings 32 bytes
2556  * or 8 double-words per line.
2557  */
2558 static void asc_prt_hex(char *f, uchar *s, int l)
2559 {
2560  int i;
2561  int j;
2562  int k;
2563  int m;
2564 
2565  printk("%s: (%d bytes)\n", f, l);
2566 
2567  for (i = 0; i < l; i += 32) {
2568 
2569  /* Display a maximum of 8 double-words per line. */
2570  if ((k = (l - i) / 4) >= 8) {
2571  k = 8;
2572  m = 0;
2573  } else {
2574  m = (l - i) % 4;
2575  }
2576 
2577  for (j = 0; j < k; j++) {
2578  printk(" %2.2X%2.2X%2.2X%2.2X",
2579  (unsigned)s[i + (j * 4)],
2580  (unsigned)s[i + (j * 4) + 1],
2581  (unsigned)s[i + (j * 4) + 2],
2582  (unsigned)s[i + (j * 4) + 3]);
2583  }
2584 
2585  switch (m) {
2586  case 0:
2587  default:
2588  break;
2589  case 1:
2590  printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2591  break;
2592  case 2:
2593  printk(" %2.2X%2.2X",
2594  (unsigned)s[i + (j * 4)],
2595  (unsigned)s[i + (j * 4) + 1]);
2596  break;
2597  case 3:
2598  printk(" %2.2X%2.2X%2.2X",
2599  (unsigned)s[i + (j * 4) + 1],
2600  (unsigned)s[i + (j * 4) + 2],
2601  (unsigned)s[i + (j * 4) + 3]);
2602  break;
2603  }
2604 
2605  printk("\n");
2606  }
2607 }
2608 
2609 /*
2610  * asc_prt_asc_scsi_q()
2611  */
2612 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2613 {
2614  ASC_SG_HEAD *sgp;
2615  int i;
2616 
2617  printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2618 
2619  printk
2620  (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2621  q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2622  q->q2.tag_code);
2623 
2624  printk
2625  (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2629 
2630  printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2631  (ulong)q->cdbptr, q->q2.cdb_len,
2632  (ulong)q->sg_head, q->q1.sg_queue_cnt);
2633 
2634  if (q->sg_head) {
2635  sgp = q->sg_head;
2636  printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2637  printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2638  sgp->queue_cnt);
2639  for (i = 0; i < sgp->entry_cnt; i++) {
2640  printk(" [%u]: addr 0x%lx, bytes %lu\n",
2641  i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2642  (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2643  }
2644 
2645  }
2646 }
2647 
2648 /*
2649  * asc_prt_asc_qdone_info()
2650  */
2651 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2652 {
2653  printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2654  printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2655  (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2656  q->d2.tag_code);
2657  printk
2658  (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2659  q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2660 }
2661 
2662 /*
2663  * asc_prt_adv_sgblock()
2664  *
2665  * Display an ADV_SG_BLOCK structure.
2666  */
2667 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2668 {
2669  int i;
2670 
2671  printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2672  (ulong)b, sgblockno);
2673  printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2674  b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2676  if (b->sg_ptr != 0)
2678  for (i = 0; i < b->sg_cnt; i++) {
2679  printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2680  i, (ulong)b->sg_list[i].sg_addr,
2681  (ulong)b->sg_list[i].sg_count);
2682  }
2683 }
2684 
2685 /*
2686  * asc_prt_adv_scsi_req_q()
2687  *
2688  * Display an ADV_SCSI_REQ_Q structure.
2689  */
2690 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2691 {
2692  int sg_blk_cnt;
2693  struct asc_sg_block *sg_ptr;
2694 
2695  printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2696 
2697  printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2698  q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2699 
2700  printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702 
2703  printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2704  (ulong)le32_to_cpu(q->data_cnt),
2706 
2707  printk
2708  (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2709  q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2710 
2711  printk(" sg_working_ix 0x%x, target_cmd %u\n",
2712  q->sg_working_ix, q->target_cmd);
2713 
2714  printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2717 
2718  /* Display the request's ADV_SG_BLOCK structures. */
2719  if (q->sg_list_ptr != NULL) {
2720  sg_blk_cnt = 0;
2721  while (1) {
2722  /*
2723  * 'sg_ptr' is a physical address. Convert it to a virtual
2724  * address by indexing 'sg_blk_cnt' into the virtual address
2725  * array 'sg_list_ptr'.
2726  *
2727  * XXX - Assumes all SG physical blocks are virtually contiguous.
2728  */
2729  sg_ptr =
2730  &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2731  asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2732  if (sg_ptr->sg_ptr == 0) {
2733  break;
2734  }
2735  sg_blk_cnt++;
2736  }
2737  }
2738 }
2739 #endif /* ADVANSYS_DEBUG */
2740 
2741 /*
2742  * The advansys chip/microcode contains a 32-bit identifier for each command
2743  * known as the 'srb'. I don't know what it stands for. The driver used
2744  * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2745  * with bus_to_virt. Now the driver keeps a per-host map of integers to
2746  * pointers. It auto-expands when full, unless it can't allocate memory.
2747  * Note that an srb of 0 is treated specially by the chip/firmware, hence
2748  * the return of i+1 in this routine, and the corresponding subtraction in
2749  * the inverse routine.
2750  */
2751 #define BAD_SRB 0
2752 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2753 {
2754  int i;
2755  void **new_ptr;
2756 
2757  for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2758  if (!asc_dvc->ptr_map[i])
2759  goto out;
2760  }
2761 
2762  if (asc_dvc->ptr_map_count == 0)
2763  asc_dvc->ptr_map_count = 1;
2764  else
2765  asc_dvc->ptr_map_count *= 2;
2766 
2767  new_ptr = krealloc(asc_dvc->ptr_map,
2768  asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2769  if (!new_ptr)
2770  return BAD_SRB;
2771  asc_dvc->ptr_map = new_ptr;
2772  out:
2773  ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2774  asc_dvc->ptr_map[i] = ptr;
2775  return i + 1;
2776 }
2777 
2778 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2779 {
2780  void *ptr;
2781 
2782  srb--;
2783  if (srb >= asc_dvc->ptr_map_count) {
2784  printk("advansys: bad SRB %u, max %u\n", srb,
2785  asc_dvc->ptr_map_count);
2786  return NULL;
2787  }
2788  ptr = asc_dvc->ptr_map[srb];
2789  asc_dvc->ptr_map[srb] = NULL;
2790  ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2791  return ptr;
2792 }
2793 
2794 /*
2795  * advansys_info()
2796  *
2797  * Return suitable for printing on the console with the argument
2798  * adapter's configuration information.
2799  *
2800  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2801  * otherwise the static 'info' array will be overrun.
2802  */
2803 static const char *advansys_info(struct Scsi_Host *shost)
2804 {
2805  static char info[ASC_INFO_SIZE];
2806  struct asc_board *boardp = shost_priv(shost);
2807  ASC_DVC_VAR *asc_dvc_varp;
2808  ADV_DVC_VAR *adv_dvc_varp;
2809  char *busname;
2810  char *widename = NULL;
2811 
2812  if (ASC_NARROW_BOARD(boardp)) {
2813  asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2814  ASC_DBG(1, "begin\n");
2815  if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2816  if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2817  ASC_IS_ISAPNP) {
2818  busname = "ISA PnP";
2819  } else {
2820  busname = "ISA";
2821  }
2822  sprintf(info,
2823  "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2824  ASC_VERSION, busname,
2825  (ulong)shost->io_port,
2826  (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2827  boardp->irq, shost->dma_channel);
2828  } else {
2829  if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2830  busname = "VL";
2831  } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2832  busname = "EISA";
2833  } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2834  if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2835  == ASC_IS_PCI_ULTRA) {
2836  busname = "PCI Ultra";
2837  } else {
2838  busname = "PCI";
2839  }
2840  } else {
2841  busname = "?";
2842  shost_printk(KERN_ERR, shost, "unknown bus "
2843  "type %d\n", asc_dvc_varp->bus_type);
2844  }
2845  sprintf(info,
2846  "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2847  ASC_VERSION, busname, (ulong)shost->io_port,
2848  (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2849  boardp->irq);
2850  }
2851  } else {
2852  /*
2853  * Wide Adapter Information
2854  *
2855  * Memory-mapped I/O is used instead of I/O space to access
2856  * the adapter, but display the I/O Port range. The Memory
2857  * I/O address is displayed through the driver /proc file.
2858  */
2859  adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2860  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2861  widename = "Ultra-Wide";
2862  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2863  widename = "Ultra2-Wide";
2864  } else {
2865  widename = "Ultra3-Wide";
2866  }
2867  sprintf(info,
2868  "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2869  ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2870  (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2871  }
2872  BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2873  ASC_DBG(1, "end\n");
2874  return info;
2875 }
2876 
2877 #ifdef CONFIG_PROC_FS
2878 /*
2879  * asc_prt_line()
2880  *
2881  * If 'cp' is NULL print to the console, otherwise print to a buffer.
2882  *
2883  * Return 0 if printing to the console, otherwise return the number of
2884  * bytes written to the buffer.
2885  *
2886  * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2887  * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2888  */
2889 static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
2890 {
2891  va_list args;
2892  int ret;
2893  char s[ASC_PRTLINE_SIZE];
2894 
2895  va_start(args, fmt);
2896  ret = vsprintf(s, fmt, args);
2897  BUG_ON(ret >= ASC_PRTLINE_SIZE);
2898  if (buf == NULL) {
2899  (void)printk(s);
2900  ret = 0;
2901  } else {
2902  ret = min(buflen, ret);
2903  memcpy(buf, s, ret);
2904  }
2905  va_end(args);
2906  return ret;
2907 }
2908 
2909 /*
2910  * asc_prt_board_devices()
2911  *
2912  * Print driver information for devices attached to the board.
2913  *
2914  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2915  * cf. asc_prt_line().
2916  *
2917  * Return the number of characters copied into 'cp'. No more than
2918  * 'cplen' characters will be copied to 'cp'.
2919  */
2920 static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
2921 {
2922  struct asc_board *boardp = shost_priv(shost);
2923  int leftlen;
2924  int totlen;
2925  int len;
2926  int chip_scsi_id;
2927  int i;
2928 
2929  leftlen = cplen;
2930  totlen = len = 0;
2931 
2932  len = asc_prt_line(cp, leftlen,
2933  "\nDevice Information for AdvanSys SCSI Host %d:\n",
2934  shost->host_no);
2935  ASC_PRT_NEXT();
2936 
2937  if (ASC_NARROW_BOARD(boardp)) {
2938  chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2939  } else {
2940  chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2941  }
2942 
2943  len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
2944  ASC_PRT_NEXT();
2945  for (i = 0; i <= ADV_MAX_TID; i++) {
2946  if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
2947  len = asc_prt_line(cp, leftlen, " %X,", i);
2948  ASC_PRT_NEXT();
2949  }
2950  }
2951  len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
2952  ASC_PRT_NEXT();
2953 
2954  return totlen;
2955 }
2956 
2957 /*
2958  * Display Wide Board BIOS Information.
2959  */
2960 static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
2961 {
2962  struct asc_board *boardp = shost_priv(shost);
2963  int leftlen;
2964  int totlen;
2965  int len;
2966  ushort major, minor, letter;
2967 
2968  leftlen = cplen;
2969  totlen = len = 0;
2970 
2971  len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
2972  ASC_PRT_NEXT();
2973 
2974  /*
2975  * If the BIOS saved a valid signature, then fill in
2976  * the BIOS code segment base address.
2977  */
2978  if (boardp->bios_signature != 0x55AA) {
2979  len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
2980  ASC_PRT_NEXT();
2981  len = asc_prt_line(cp, leftlen,
2982  "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2983  ASC_PRT_NEXT();
2984  len = asc_prt_line(cp, leftlen,
2985  "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2986  ASC_PRT_NEXT();
2987  } else {
2988  major = (boardp->bios_version >> 12) & 0xF;
2989  minor = (boardp->bios_version >> 8) & 0xF;
2990  letter = (boardp->bios_version & 0xFF);
2991 
2992  len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
2993  major, minor,
2994  letter >= 26 ? '?' : letter + 'A');
2995  ASC_PRT_NEXT();
2996 
2997  /*
2998  * Current available ROM BIOS release is 3.1I for UW
2999  * and 3.2I for U2W. This code doesn't differentiate
3000  * UW and U2W boards.
3001  */
3002  if (major < 3 || (major <= 3 && minor < 1) ||
3003  (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
3004  len = asc_prt_line(cp, leftlen,
3005  "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3006  ASC_PRT_NEXT();
3007  len = asc_prt_line(cp, leftlen,
3008  "ftp://ftp.connectcom.net/pub\n");
3009  ASC_PRT_NEXT();
3010  }
3011  }
3012 
3013  return totlen;
3014 }
3015 
3016 /*
3017  * Add serial number to information bar if signature AAh
3018  * is found in at bit 15-9 (7 bits) of word 1.
3019  *
3020  * Serial Number consists fo 12 alpha-numeric digits.
3021  *
3022  * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
3023  * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
3024  * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
3025  * 5 - Product revision (A-J) Word0: " "
3026  *
3027  * Signature Word1: 15-9 (7 bits)
3028  * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3029  * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
3030  *
3031  * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3032  *
3033  * Note 1: Only production cards will have a serial number.
3034  *
3035  * Note 2: Signature is most significant 7 bits (0xFE).
3036  *
3037  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3038  */
3039 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
3040 {
3041  ushort w, num;
3042 
3043  if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
3044  return ASC_FALSE;
3045  } else {
3046  /*
3047  * First word - 6 digits.
3048  */
3049  w = serialnum[0];
3050 
3051  /* Product type - 1st digit. */
3052  if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
3053  /* Product type is P=Prototype */
3054  *cp += 0x8;
3055  }
3056  cp++;
3057 
3058  /* Manufacturing location - 2nd digit. */
3059  *cp++ = 'A' + ((w & 0x1C00) >> 10);
3060 
3061  /* Product ID - 3rd, 4th digits. */
3062  num = w & 0x3FF;
3063  *cp++ = '0' + (num / 100);
3064  num %= 100;
3065  *cp++ = '0' + (num / 10);
3066 
3067  /* Product revision - 5th digit. */
3068  *cp++ = 'A' + (num % 10);
3069 
3070  /*
3071  * Second word
3072  */
3073  w = serialnum[1];
3074 
3075  /*
3076  * Year - 6th digit.
3077  *
3078  * If bit 15 of third word is set, then the
3079  * last digit of the year is greater than 7.
3080  */
3081  if (serialnum[2] & 0x8000) {
3082  *cp++ = '8' + ((w & 0x1C0) >> 6);
3083  } else {
3084  *cp++ = '0' + ((w & 0x1C0) >> 6);
3085  }
3086 
3087  /* Week of year - 7th, 8th digits. */
3088  num = w & 0x003F;
3089  *cp++ = '0' + num / 10;
3090  num %= 10;
3091  *cp++ = '0' + num;
3092 
3093  /*
3094  * Third word
3095  */
3096  w = serialnum[2] & 0x7FFF;
3097 
3098  /* Serial number - 9th digit. */
3099  *cp++ = 'A' + (w / 1000);
3100 
3101  /* 10th, 11th, 12th digits. */
3102  num = w % 1000;
3103  *cp++ = '0' + num / 100;
3104  num %= 100;
3105  *cp++ = '0' + num / 10;
3106  num %= 10;
3107  *cp++ = '0' + num;
3108 
3109  *cp = '\0'; /* Null Terminate the string. */
3110  return ASC_TRUE;
3111  }
3112 }
3113 
3114 /*
3115  * asc_prt_asc_board_eeprom()
3116  *
3117  * Print board EEPROM configuration.
3118  *
3119  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3120  * cf. asc_prt_line().
3121  *
3122  * Return the number of characters copied into 'cp'. No more than
3123  * 'cplen' characters will be copied to 'cp'.
3124  */
3125 static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3126 {
3127  struct asc_board *boardp = shost_priv(shost);
3128  ASC_DVC_VAR *asc_dvc_varp;
3129  int leftlen;
3130  int totlen;
3131  int len;
3132  ASCEEP_CONFIG *ep;
3133  int i;
3134 #ifdef CONFIG_ISA
3135  int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3136 #endif /* CONFIG_ISA */
3137  uchar serialstr[13];
3138 
3139  asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3140  ep = &boardp->eep_config.asc_eep;
3141 
3142  leftlen = cplen;
3143  totlen = len = 0;
3144 
3145  len = asc_prt_line(cp, leftlen,
3146  "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3147  shost->host_no);
3148  ASC_PRT_NEXT();
3149 
3150  if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3151  == ASC_TRUE) {
3152  len =
3153  asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3154  serialstr);
3155  ASC_PRT_NEXT();
3156  } else {
3157  if (ep->adapter_info[5] == 0xBB) {
3158  len = asc_prt_line(cp, leftlen,
3159  " Default Settings Used for EEPROM-less Adapter.\n");
3160  ASC_PRT_NEXT();
3161  } else {
3162  len = asc_prt_line(cp, leftlen,
3163  " Serial Number Signature Not Present.\n");
3164  ASC_PRT_NEXT();
3165  }
3166  }
3167 
3168  len = asc_prt_line(cp, leftlen,
3169  " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171  ep->max_tag_qng);
3172  ASC_PRT_NEXT();
3173 
3174  len = asc_prt_line(cp, leftlen,
3175  " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3176  ASC_PRT_NEXT();
3177 
3178  len = asc_prt_line(cp, leftlen, " Target ID: ");
3179  ASC_PRT_NEXT();
3180  for (i = 0; i <= ASC_MAX_TID; i++) {
3181  len = asc_prt_line(cp, leftlen, " %d", i);
3182  ASC_PRT_NEXT();
3183  }
3184  len = asc_prt_line(cp, leftlen, "\n");
3185  ASC_PRT_NEXT();
3186 
3187  len = asc_prt_line(cp, leftlen, " Disconnects: ");
3188  ASC_PRT_NEXT();
3189  for (i = 0; i <= ASC_MAX_TID; i++) {
3190  len = asc_prt_line(cp, leftlen, " %c",
3191  (ep->
3192  disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3193  'N');
3194  ASC_PRT_NEXT();
3195  }
3196  len = asc_prt_line(cp, leftlen, "\n");
3197  ASC_PRT_NEXT();
3198 
3199  len = asc_prt_line(cp, leftlen, " Command Queuing: ");
3200  ASC_PRT_NEXT();
3201  for (i = 0; i <= ASC_MAX_TID; i++) {
3202  len = asc_prt_line(cp, leftlen, " %c",
3203  (ep->
3204  use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3205  'N');
3206  ASC_PRT_NEXT();
3207  }
3208  len = asc_prt_line(cp, leftlen, "\n");
3209  ASC_PRT_NEXT();
3210 
3211  len = asc_prt_line(cp, leftlen, " Start Motor: ");
3212  ASC_PRT_NEXT();
3213  for (i = 0; i <= ASC_MAX_TID; i++) {
3214  len = asc_prt_line(cp, leftlen, " %c",
3215  (ep->
3216  start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3217  'N');
3218  ASC_PRT_NEXT();
3219  }
3220  len = asc_prt_line(cp, leftlen, "\n");
3221  ASC_PRT_NEXT();
3222 
3223  len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3224  ASC_PRT_NEXT();
3225  for (i = 0; i <= ASC_MAX_TID; i++) {
3226  len = asc_prt_line(cp, leftlen, " %c",
3227  (ep->
3228  init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3229  'N');
3230  ASC_PRT_NEXT();
3231  }
3232  len = asc_prt_line(cp, leftlen, "\n");
3233  ASC_PRT_NEXT();
3234 
3235 #ifdef CONFIG_ISA
3236  if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3237  len = asc_prt_line(cp, leftlen,
3238  " Host ISA DMA speed: %d MB/S\n",
3239  isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3240  ASC_PRT_NEXT();
3241  }
3242 #endif /* CONFIG_ISA */
3243 
3244  return totlen;
3245 }
3246 
3247 /*
3248  * asc_prt_adv_board_eeprom()
3249  *
3250  * Print board EEPROM configuration.
3251  *
3252  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3253  * cf. asc_prt_line().
3254  *
3255  * Return the number of characters copied into 'cp'. No more than
3256  * 'cplen' characters will be copied to 'cp'.
3257  */
3258 static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3259 {
3260  struct asc_board *boardp = shost_priv(shost);
3261  ADV_DVC_VAR *adv_dvc_varp;
3262  int leftlen;
3263  int totlen;
3264  int len;
3265  int i;
3266  char *termstr;
3267  uchar serialstr[13];
3268  ADVEEP_3550_CONFIG *ep_3550 = NULL;
3269  ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3270  ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3271  ushort word;
3272  ushort *wordp;
3273  ushort sdtr_speed = 0;
3274 
3275  adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3276  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3277  ep_3550 = &boardp->eep_config.adv_3550_eep;
3278  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3279  ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3280  } else {
3281  ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3282  }
3283 
3284  leftlen = cplen;
3285  totlen = len = 0;
3286 
3287  len = asc_prt_line(cp, leftlen,
3288  "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3289  shost->host_no);
3290  ASC_PRT_NEXT();
3291 
3292  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3293  wordp = &ep_3550->serial_number_word1;
3294  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3295  wordp = &ep_38C0800->serial_number_word1;
3296  } else {
3297  wordp = &ep_38C1600->serial_number_word1;
3298  }
3299 
3300  if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
3301  len =
3302  asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3303  serialstr);
3304  ASC_PRT_NEXT();
3305  } else {
3306  len = asc_prt_line(cp, leftlen,
3307  " Serial Number Signature Not Present.\n");
3308  ASC_PRT_NEXT();
3309  }
3310 
3311  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3312  len = asc_prt_line(cp, leftlen,
3313  " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3314  ep_3550->adapter_scsi_id,
3315  ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3316  ASC_PRT_NEXT();
3317  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3318  len = asc_prt_line(cp, leftlen,
3319  " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3320  ep_38C0800->adapter_scsi_id,
3321  ep_38C0800->max_host_qng,
3322  ep_38C0800->max_dvc_qng);
3323  ASC_PRT_NEXT();
3324  } else {
3325  len = asc_prt_line(cp, leftlen,
3326  " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3327  ep_38C1600->adapter_scsi_id,
3328  ep_38C1600->max_host_qng,
3329  ep_38C1600->max_dvc_qng);
3330  ASC_PRT_NEXT();
3331  }
3332  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3333  word = ep_3550->termination;
3334  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3335  word = ep_38C0800->termination_lvd;
3336  } else {
3337  word = ep_38C1600->termination_lvd;
3338  }
3339  switch (word) {
3340  case 1:
3341  termstr = "Low Off/High Off";
3342  break;
3343  case 2:
3344  termstr = "Low Off/High On";
3345  break;
3346  case 3:
3347  termstr = "Low On/High On";
3348  break;
3349  default:
3350  case 0:
3351  termstr = "Automatic";
3352  break;
3353  }
3354 
3355  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3356  len = asc_prt_line(cp, leftlen,
3357  " termination: %u (%s), bios_ctrl: 0x%x\n",
3358  ep_3550->termination, termstr,
3359  ep_3550->bios_ctrl);
3360  ASC_PRT_NEXT();
3361  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3362  len = asc_prt_line(cp, leftlen,
3363  " termination: %u (%s), bios_ctrl: 0x%x\n",
3364  ep_38C0800->termination_lvd, termstr,
3365  ep_38C0800->bios_ctrl);
3366  ASC_PRT_NEXT();
3367  } else {
3368  len = asc_prt_line(cp, leftlen,
3369  " termination: %u (%s), bios_ctrl: 0x%x\n",
3370  ep_38C1600->termination_lvd, termstr,
3371  ep_38C1600->bios_ctrl);
3372  ASC_PRT_NEXT();
3373  }
3374 
3375  len = asc_prt_line(cp, leftlen, " Target ID: ");
3376  ASC_PRT_NEXT();
3377  for (i = 0; i <= ADV_MAX_TID; i++) {
3378  len = asc_prt_line(cp, leftlen, " %X", i);
3379  ASC_PRT_NEXT();
3380  }
3381  len = asc_prt_line(cp, leftlen, "\n");
3382  ASC_PRT_NEXT();
3383 
3384  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3385  word = ep_3550->disc_enable;
3386  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3387  word = ep_38C0800->disc_enable;
3388  } else {
3389  word = ep_38C1600->disc_enable;
3390  }
3391  len = asc_prt_line(cp, leftlen, " Disconnects: ");
3392  ASC_PRT_NEXT();
3393  for (i = 0; i <= ADV_MAX_TID; i++) {
3394  len = asc_prt_line(cp, leftlen, " %c",
3395  (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3396  ASC_PRT_NEXT();
3397  }
3398  len = asc_prt_line(cp, leftlen, "\n");
3399  ASC_PRT_NEXT();
3400 
3401  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3402  word = ep_3550->tagqng_able;
3403  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3404  word = ep_38C0800->tagqng_able;
3405  } else {
3406  word = ep_38C1600->tagqng_able;
3407  }
3408  len = asc_prt_line(cp, leftlen, " Command Queuing: ");
3409  ASC_PRT_NEXT();
3410  for (i = 0; i <= ADV_MAX_TID; i++) {
3411  len = asc_prt_line(cp, leftlen, " %c",
3412  (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3413  ASC_PRT_NEXT();
3414  }
3415  len = asc_prt_line(cp, leftlen, "\n");
3416  ASC_PRT_NEXT();
3417 
3418  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3419  word = ep_3550->start_motor;
3420  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3421  word = ep_38C0800->start_motor;
3422  } else {
3423  word = ep_38C1600->start_motor;
3424  }
3425  len = asc_prt_line(cp, leftlen, " Start Motor: ");
3426  ASC_PRT_NEXT();
3427  for (i = 0; i <= ADV_MAX_TID; i++) {
3428  len = asc_prt_line(cp, leftlen, " %c",
3429  (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3430  ASC_PRT_NEXT();
3431  }
3432  len = asc_prt_line(cp, leftlen, "\n");
3433  ASC_PRT_NEXT();
3434 
3435  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3436  len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3437  ASC_PRT_NEXT();
3438  for (i = 0; i <= ADV_MAX_TID; i++) {
3439  len = asc_prt_line(cp, leftlen, " %c",
3440  (ep_3550->
3441  sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3442  'Y' : 'N');
3443  ASC_PRT_NEXT();
3444  }
3445  len = asc_prt_line(cp, leftlen, "\n");
3446  ASC_PRT_NEXT();
3447  }
3448 
3449  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3450  len = asc_prt_line(cp, leftlen, " Ultra Transfer: ");
3451  ASC_PRT_NEXT();
3452  for (i = 0; i <= ADV_MAX_TID; i++) {
3453  len = asc_prt_line(cp, leftlen, " %c",
3454  (ep_3550->
3455  ultra_able & ADV_TID_TO_TIDMASK(i))
3456  ? 'Y' : 'N');
3457  ASC_PRT_NEXT();
3458  }
3459  len = asc_prt_line(cp, leftlen, "\n");
3460  ASC_PRT_NEXT();
3461  }
3462 
3463  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3464  word = ep_3550->wdtr_able;
3465  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3466  word = ep_38C0800->wdtr_able;
3467  } else {
3468  word = ep_38C1600->wdtr_able;
3469  }
3470  len = asc_prt_line(cp, leftlen, " Wide Transfer: ");
3471  ASC_PRT_NEXT();
3472  for (i = 0; i <= ADV_MAX_TID; i++) {
3473  len = asc_prt_line(cp, leftlen, " %c",
3474  (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3475  ASC_PRT_NEXT();
3476  }
3477  len = asc_prt_line(cp, leftlen, "\n");
3478  ASC_PRT_NEXT();
3479 
3480  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3481  adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3482  len = asc_prt_line(cp, leftlen,
3483  " Synchronous Transfer Speed (Mhz):\n ");
3484  ASC_PRT_NEXT();
3485  for (i = 0; i <= ADV_MAX_TID; i++) {
3486  char *speed_str;
3487 
3488  if (i == 0) {
3489  sdtr_speed = adv_dvc_varp->sdtr_speed1;
3490  } else if (i == 4) {
3491  sdtr_speed = adv_dvc_varp->sdtr_speed2;
3492  } else if (i == 8) {
3493  sdtr_speed = adv_dvc_varp->sdtr_speed3;
3494  } else if (i == 12) {
3495  sdtr_speed = adv_dvc_varp->sdtr_speed4;
3496  }
3497  switch (sdtr_speed & ADV_MAX_TID) {
3498  case 0:
3499  speed_str = "Off";
3500  break;
3501  case 1:
3502  speed_str = " 5";
3503  break;
3504  case 2:
3505  speed_str = " 10";
3506  break;
3507  case 3:
3508  speed_str = " 20";
3509  break;
3510  case 4:
3511  speed_str = " 40";
3512  break;
3513  case 5:
3514  speed_str = " 80";
3515  break;
3516  default:
3517  speed_str = "Unk";
3518  break;
3519  }
3520  len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
3521  ASC_PRT_NEXT();
3522  if (i == 7) {
3523  len = asc_prt_line(cp, leftlen, "\n ");
3524  ASC_PRT_NEXT();
3525  }
3526  sdtr_speed >>= 4;
3527  }
3528  len = asc_prt_line(cp, leftlen, "\n");
3529  ASC_PRT_NEXT();
3530  }
3531 
3532  return totlen;
3533 }
3534 
3535 /*
3536  * asc_prt_driver_conf()
3537  *
3538  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3539  * cf. asc_prt_line().
3540  *
3541  * Return the number of characters copied into 'cp'. No more than
3542  * 'cplen' characters will be copied to 'cp'.
3543  */
3544 static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
3545 {
3546  struct asc_board *boardp = shost_priv(shost);
3547  int leftlen;
3548  int totlen;
3549  int len;
3550  int chip_scsi_id;
3551 
3552  leftlen = cplen;
3553  totlen = len = 0;
3554 
3555  len = asc_prt_line(cp, leftlen,
3556  "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3557  shost->host_no);
3558  ASC_PRT_NEXT();
3559 
3560  len = asc_prt_line(cp, leftlen,
3561  " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3562  shost->host_busy, shost->last_reset, shost->max_id,
3563  shost->max_lun, shost->max_channel);
3564  ASC_PRT_NEXT();
3565 
3566  len = asc_prt_line(cp, leftlen,
3567  " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3568  shost->unique_id, shost->can_queue, shost->this_id,
3569  shost->sg_tablesize, shost->cmd_per_lun);
3570  ASC_PRT_NEXT();
3571 
3572  len = asc_prt_line(cp, leftlen,
3573  " unchecked_isa_dma %d, use_clustering %d\n",
3574  shost->unchecked_isa_dma, shost->use_clustering);
3575  ASC_PRT_NEXT();
3576 
3577  len = asc_prt_line(cp, leftlen,
3578  " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3579  boardp->flags, boardp->last_reset, jiffies,
3580  boardp->asc_n_io_port);
3581  ASC_PRT_NEXT();
3582 
3583  len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
3584  ASC_PRT_NEXT();
3585 
3586  if (ASC_NARROW_BOARD(boardp)) {
3587  chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3588  } else {
3589  chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3590  }
3591 
3592  return totlen;
3593 }
3594 
3595 /*
3596  * asc_prt_asc_board_info()
3597  *
3598  * Print dynamic board configuration information.
3599  *
3600  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3601  * cf. asc_prt_line().
3602  *
3603  * Return the number of characters copied into 'cp'. No more than
3604  * 'cplen' characters will be copied to 'cp'.
3605  */
3606 static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3607 {
3608  struct asc_board *boardp = shost_priv(shost);
3609  int chip_scsi_id;
3610  int leftlen;
3611  int totlen;
3612  int len;
3613  ASC_DVC_VAR *v;
3614  ASC_DVC_CFG *c;
3615  int i;
3616  int renegotiate = 0;
3617 
3618  v = &boardp->dvc_var.asc_dvc_var;
3619  c = &boardp->dvc_cfg.asc_dvc_cfg;
3620  chip_scsi_id = c->chip_scsi_id;
3621 
3622  leftlen = cplen;
3623  totlen = len = 0;
3624 
3625  len = asc_prt_line(cp, leftlen,
3626  "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3627  shost->host_no);
3628  ASC_PRT_NEXT();
3629 
3630  len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3631  "mcode_version 0x%x, err_code %u\n",
3633  v->err_code);
3634  ASC_PRT_NEXT();
3635 
3636  /* Current number of commands waiting for the host. */
3637  len = asc_prt_line(cp, leftlen,
3638  " Total Command Pending: %d\n", v->cur_total_qng);
3639  ASC_PRT_NEXT();
3640 
3641  len = asc_prt_line(cp, leftlen, " Command Queuing:");
3642  ASC_PRT_NEXT();
3643  for (i = 0; i <= ASC_MAX_TID; i++) {
3644  if ((chip_scsi_id == i) ||
3645  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3646  continue;
3647  }
3648  len = asc_prt_line(cp, leftlen, " %X:%c",
3649  i,
3650  (v->
3651  use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
3652  'Y' : 'N');
3653  ASC_PRT_NEXT();
3654  }
3655  len = asc_prt_line(cp, leftlen, "\n");
3656  ASC_PRT_NEXT();
3657 
3658  /* Current number of commands waiting for a device. */
3659  len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
3660  ASC_PRT_NEXT();
3661  for (i = 0; i <= ASC_MAX_TID; i++) {
3662  if ((chip_scsi_id == i) ||
3663  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3664  continue;
3665  }
3666  len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
3667  ASC_PRT_NEXT();
3668  }
3669  len = asc_prt_line(cp, leftlen, "\n");
3670  ASC_PRT_NEXT();
3671 
3672  /* Current limit on number of commands that can be sent to a device. */
3673  len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
3674  ASC_PRT_NEXT();
3675  for (i = 0; i <= ASC_MAX_TID; i++) {
3676  if ((chip_scsi_id == i) ||
3677  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3678  continue;
3679  }
3680  len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
3681  ASC_PRT_NEXT();
3682  }
3683  len = asc_prt_line(cp, leftlen, "\n");
3684  ASC_PRT_NEXT();
3685 
3686  /* Indicate whether the device has returned queue full status. */
3687  len = asc_prt_line(cp, leftlen, " Command Queue Full:");
3688  ASC_PRT_NEXT();
3689  for (i = 0; i <= ASC_MAX_TID; i++) {
3690  if ((chip_scsi_id == i) ||
3691  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3692  continue;
3693  }
3694  if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
3695  len = asc_prt_line(cp, leftlen, " %X:Y-%d",
3696  i, boardp->queue_full_cnt[i]);
3697  } else {
3698  len = asc_prt_line(cp, leftlen, " %X:N", i);
3699  }
3700  ASC_PRT_NEXT();
3701  }
3702  len = asc_prt_line(cp, leftlen, "\n");
3703  ASC_PRT_NEXT();
3704 
3705  len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3706  ASC_PRT_NEXT();
3707  for (i = 0; i <= ASC_MAX_TID; i++) {
3708  if ((chip_scsi_id == i) ||
3709  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3710  continue;
3711  }
3712  len = asc_prt_line(cp, leftlen, " %X:%c",
3713  i,
3714  (v->
3715  sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3716  'N');
3717  ASC_PRT_NEXT();
3718  }
3719  len = asc_prt_line(cp, leftlen, "\n");
3720  ASC_PRT_NEXT();
3721 
3722  for (i = 0; i <= ASC_MAX_TID; i++) {
3723  uchar syn_period_ix;
3724 
3725  if ((chip_scsi_id == i) ||
3726  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3727  ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3728  continue;
3729  }
3730 
3731  len = asc_prt_line(cp, leftlen, " %X:", i);
3732  ASC_PRT_NEXT();
3733 
3734  if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3735  len = asc_prt_line(cp, leftlen, " Asynchronous");
3736  ASC_PRT_NEXT();
3737  } else {
3738  syn_period_ix =
3739  (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3740  1);
3741 
3742  len = asc_prt_line(cp, leftlen,
3743  " Transfer Period Factor: %d (%d.%d Mhz),",
3744  v->sdtr_period_tbl[syn_period_ix],
3745  250 /
3746  v->sdtr_period_tbl[syn_period_ix],
3747  ASC_TENTHS(250,
3748  v->
3749  sdtr_period_tbl
3750  [syn_period_ix]));
3751  ASC_PRT_NEXT();
3752 
3753  len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
3754  boardp->
3755  sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3756  ASC_PRT_NEXT();
3757  }
3758 
3759  if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3760  len = asc_prt_line(cp, leftlen, "*\n");
3761  renegotiate = 1;
3762  } else {
3763  len = asc_prt_line(cp, leftlen, "\n");
3764  }
3765  ASC_PRT_NEXT();
3766  }
3767 
3768  if (renegotiate) {
3769  len = asc_prt_line(cp, leftlen,
3770  " * = Re-negotiation pending before next command.\n");
3771  ASC_PRT_NEXT();
3772  }
3773 
3774  return totlen;
3775 }
3776 
3777 /*
3778  * asc_prt_adv_board_info()
3779  *
3780  * Print dynamic board configuration information.
3781  *
3782  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3783  * cf. asc_prt_line().
3784  *
3785  * Return the number of characters copied into 'cp'. No more than
3786  * 'cplen' characters will be copied to 'cp'.
3787  */
3788 static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3789 {
3790  struct asc_board *boardp = shost_priv(shost);
3791  int leftlen;
3792  int totlen;
3793  int len;
3794  int i;
3795  ADV_DVC_VAR *v;
3796  ADV_DVC_CFG *c;
3797  AdvPortAddr iop_base;
3798  ushort chip_scsi_id;
3799  ushort lramword;
3800  uchar lrambyte;
3801  ushort tagqng_able;
3802  ushort sdtr_able, wdtr_able;
3803  ushort wdtr_done, sdtr_done;
3804  ushort period = 0;
3805  int renegotiate = 0;
3806 
3807  v = &boardp->dvc_var.adv_dvc_var;
3808  c = &boardp->dvc_cfg.adv_dvc_cfg;
3809  iop_base = v->iop_base;
3810  chip_scsi_id = v->chip_scsi_id;
3811 
3812  leftlen = cplen;
3813  totlen = len = 0;
3814 
3815  len = asc_prt_line(cp, leftlen,
3816  "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3817  shost->host_no);
3818  ASC_PRT_NEXT();
3819 
3820  len = asc_prt_line(cp, leftlen,
3821  " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3822  v->iop_base,
3823  AdvReadWordRegister(iop_base,
3825  v->err_code);
3826  ASC_PRT_NEXT();
3827 
3828  len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3829  "mcode_version 0x%x\n", c->chip_version,
3830  c->mcode_date, c->mcode_version);
3831  ASC_PRT_NEXT();
3832 
3833  AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3834  len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
3835  ASC_PRT_NEXT();
3836  for (i = 0; i <= ADV_MAX_TID; i++) {
3837  if ((chip_scsi_id == i) ||
3838  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3839  continue;
3840  }
3841 
3842  len = asc_prt_line(cp, leftlen, " %X:%c",
3843  i,
3844  (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3845  'N');
3846  ASC_PRT_NEXT();
3847  }
3848  len = asc_prt_line(cp, leftlen, "\n");
3849  ASC_PRT_NEXT();
3850 
3851  len = asc_prt_line(cp, leftlen, " Queue Limit:");
3852  ASC_PRT_NEXT();
3853  for (i = 0; i <= ADV_MAX_TID; i++) {
3854  if ((chip_scsi_id == i) ||
3855  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3856  continue;
3857  }
3858 
3860  lrambyte);
3861 
3862  len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3863  ASC_PRT_NEXT();
3864  }
3865  len = asc_prt_line(cp, leftlen, "\n");
3866  ASC_PRT_NEXT();
3867 
3868  len = asc_prt_line(cp, leftlen, " Command Pending:");
3869  ASC_PRT_NEXT();
3870  for (i = 0; i <= ADV_MAX_TID; i++) {
3871  if ((chip_scsi_id == i) ||
3872  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3873  continue;
3874  }
3875 
3877  lrambyte);
3878 
3879  len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3880  ASC_PRT_NEXT();
3881  }
3882  len = asc_prt_line(cp, leftlen, "\n");
3883  ASC_PRT_NEXT();
3884 
3885  AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3886  len = asc_prt_line(cp, leftlen, " Wide Enabled:");
3887  ASC_PRT_NEXT();
3888  for (i = 0; i <= ADV_MAX_TID; i++) {
3889  if ((chip_scsi_id == i) ||
3890  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3891  continue;
3892  }
3893 
3894  len = asc_prt_line(cp, leftlen, " %X:%c",
3895  i,
3896  (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3897  'N');
3898  ASC_PRT_NEXT();
3899  }
3900  len = asc_prt_line(cp, leftlen, "\n");
3901  ASC_PRT_NEXT();
3902 
3903  AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3904  len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
3905  ASC_PRT_NEXT();
3906  for (i = 0; i <= ADV_MAX_TID; i++) {
3907  if ((chip_scsi_id == i) ||
3908  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3909  continue;
3910  }
3911 
3912  AdvReadWordLram(iop_base,
3913  ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3914  lramword);
3915 
3916  len = asc_prt_line(cp, leftlen, " %X:%d",
3917  i, (lramword & 0x8000) ? 16 : 8);
3918  ASC_PRT_NEXT();
3919 
3920  if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3921  (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3922  len = asc_prt_line(cp, leftlen, "*");
3923  ASC_PRT_NEXT();
3924  renegotiate = 1;
3925  }
3926  }
3927  len = asc_prt_line(cp, leftlen, "\n");
3928  ASC_PRT_NEXT();
3929 
3930  AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3931  len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
3932  ASC_PRT_NEXT();
3933  for (i = 0; i <= ADV_MAX_TID; i++) {
3934  if ((chip_scsi_id == i) ||
3935  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3936  continue;
3937  }
3938 
3939  len = asc_prt_line(cp, leftlen, " %X:%c",
3940  i,
3941  (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3942  'N');
3943  ASC_PRT_NEXT();
3944  }
3945  len = asc_prt_line(cp, leftlen, "\n");
3946  ASC_PRT_NEXT();
3947 
3948  AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3949  for (i = 0; i <= ADV_MAX_TID; i++) {
3950 
3951  AdvReadWordLram(iop_base,
3952  ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3953  lramword);
3954  lramword &= ~0x8000;
3955 
3956  if ((chip_scsi_id == i) ||
3957  ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3958  ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3959  continue;
3960  }
3961 
3962  len = asc_prt_line(cp, leftlen, " %X:", i);
3963  ASC_PRT_NEXT();
3964 
3965  if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3966  len = asc_prt_line(cp, leftlen, " Asynchronous");
3967  ASC_PRT_NEXT();
3968  } else {
3969  len =
3970  asc_prt_line(cp, leftlen,
3971  " Transfer Period Factor: ");
3972  ASC_PRT_NEXT();
3973 
3974  if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3975  len =
3976  asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
3977  ASC_PRT_NEXT();
3978  } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3979  len =
3980  asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
3981  ASC_PRT_NEXT();
3982  } else { /* 20 Mhz or below. */
3983 
3984  period = (((lramword >> 8) * 25) + 50) / 4;
3985 
3986  if (period == 0) { /* Should never happen. */
3987  len =
3988  asc_prt_line(cp, leftlen,
3989  "%d (? Mhz), ");
3990  ASC_PRT_NEXT();
3991  } else {
3992  len = asc_prt_line(cp, leftlen,
3993  "%d (%d.%d Mhz),",
3994  period, 250 / period,
3995  ASC_TENTHS(250,
3996  period));
3997  ASC_PRT_NEXT();
3998  }
3999  }
4000 
4001  len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
4002  lramword & 0x1F);
4003  ASC_PRT_NEXT();
4004  }
4005 
4006  if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
4007  len = asc_prt_line(cp, leftlen, "*\n");
4008  renegotiate = 1;
4009  } else {
4010  len = asc_prt_line(cp, leftlen, "\n");
4011  }
4012  ASC_PRT_NEXT();
4013  }
4014 
4015  if (renegotiate) {
4016  len = asc_prt_line(cp, leftlen,
4017  " * = Re-negotiation pending before next command.\n");
4018  ASC_PRT_NEXT();
4019  }
4020 
4021  return totlen;
4022 }
4023 
4024 /*
4025  * asc_proc_copy()
4026  *
4027  * Copy proc information to a read buffer taking into account the current
4028  * read offset in the file and the remaining space in the read buffer.
4029  */
4030 static int
4031 asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
4032  char *cp, int cplen)
4033 {
4034  int cnt = 0;
4035 
4036  ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4037  (unsigned)offset, (unsigned)advoffset, cplen);
4038  if (offset <= advoffset) {
4039  /* Read offset below current offset, copy everything. */
4040  cnt = min(cplen, leftlen);
4041  ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4042  (ulong)curbuf, (ulong)cp, cnt);
4043  memcpy(curbuf, cp, cnt);
4044  } else if (offset < advoffset + cplen) {
4045  /* Read offset within current range, partial copy. */
4046  cnt = (advoffset + cplen) - offset;
4047  cp = (cp + cplen) - cnt;
4048  cnt = min(cnt, leftlen);
4049  ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4050  (ulong)curbuf, (ulong)cp, cnt);
4051  memcpy(curbuf, cp, cnt);
4052  }
4053  return cnt;
4054 }
4055 
4056 #ifdef ADVANSYS_STATS
4057 /*
4058  * asc_prt_board_stats()
4059  *
4060  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4061  * cf. asc_prt_line().
4062  *
4063  * Return the number of characters copied into 'cp'. No more than
4064  * 'cplen' characters will be copied to 'cp'.
4065  */
4066 static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
4067 {
4068  struct asc_board *boardp = shost_priv(shost);
4069  struct asc_stats *s = &boardp->asc_stats;
4070 
4071  int leftlen = cplen;
4072  int len, totlen = 0;
4073 
4074  len = asc_prt_line(cp, leftlen,
4075  "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4076  shost->host_no);
4077  ASC_PRT_NEXT();
4078 
4079  len = asc_prt_line(cp, leftlen,
4080  " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4081  s->queuecommand, s->reset, s->biosparam,
4082  s->interrupt);
4083  ASC_PRT_NEXT();
4084 
4085  len = asc_prt_line(cp, leftlen,
4086  " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4087  s->callback, s->done, s->build_error,
4089  ASC_PRT_NEXT();
4090 
4091  len = asc_prt_line(cp, leftlen,
4092  " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4093  s->exe_noerror, s->exe_busy, s->exe_error,
4094  s->exe_unknown);
4095  ASC_PRT_NEXT();
4096 
4097  /*
4098  * Display data transfer statistics.
4099  */
4100  if (s->xfer_cnt > 0) {
4101  len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
4102  s->xfer_cnt, s->xfer_elem);
4103  ASC_PRT_NEXT();
4104 
4105  len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
4106  s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
4107  ASC_PRT_NEXT();
4108 
4109  /* Scatter gather transfer statistics */
4110  len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
4111  s->xfer_elem / s->xfer_cnt,
4112  ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
4113  ASC_PRT_NEXT();
4114 
4115  len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
4116  (s->xfer_sect / 2) / s->xfer_elem,
4117  ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
4118  ASC_PRT_NEXT();
4119 
4120  len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
4121  (s->xfer_sect / 2) / s->xfer_cnt,
4122  ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
4123  ASC_PRT_NEXT();
4124  }
4125 
4126  return totlen;
4127 }
4128 #endif /* ADVANSYS_STATS */
4129 
4130 /*
4131  * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4132  *
4133  * *buffer: I/O buffer
4134  * **start: if inout == FALSE pointer into buffer where user read should start
4135  * offset: current offset into a /proc/scsi/advansys/[0...] file
4136  * length: length of buffer
4137  * hostno: Scsi_Host host_no
4138  * inout: TRUE - user is writing; FALSE - user is reading
4139  *
4140  * Return the number of bytes read from or written to a
4141  * /proc/scsi/advansys/[0...] file.
4142  *
4143  * Note: This function uses the per board buffer 'prtbuf' which is
4144  * allocated when the board is initialized in advansys_detect(). The
4145  * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4146  * used to write to the buffer. The way asc_proc_copy() is written
4147  * if 'prtbuf' is too small it will not be overwritten. Instead the
4148  * user just won't get all the available statistics.
4149  */
4150 static int
4151 advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
4152  off_t offset, int length, int inout)
4153 {
4154  struct asc_board *boardp = shost_priv(shost);
4155  char *cp;
4156  int cplen;
4157  int cnt;
4158  int totcnt;
4159  int leftlen;
4160  char *curbuf;
4161  off_t advoffset;
4162 
4163  ASC_DBG(1, "begin\n");
4164 
4165  /*
4166  * User write not supported.
4167  */
4168  if (inout == TRUE)
4169  return -ENOSYS;
4170 
4171  /*
4172  * User read of /proc/scsi/advansys/[0...] file.
4173  */
4174 
4175  /* Copy read data starting at the beginning of the buffer. */
4176  *start = buffer;
4177  curbuf = buffer;
4178  advoffset = 0;
4179  totcnt = 0;
4180  leftlen = length;
4181 
4182  /*
4183  * Get board configuration information.
4184  *
4185  * advansys_info() returns the board string from its own static buffer.
4186  */
4187  cp = (char *)advansys_info(shost);
4188  strcat(cp, "\n");
4189  cplen = strlen(cp);
4190  /* Copy board information. */
4191  cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4192  totcnt += cnt;
4193  leftlen -= cnt;
4194  if (leftlen == 0) {
4195  ASC_DBG(1, "totcnt %d\n", totcnt);
4196  return totcnt;
4197  }
4198  advoffset += cplen;
4199  curbuf += cnt;
4200 
4201  /*
4202  * Display Wide Board BIOS Information.
4203  */
4204  if (!ASC_NARROW_BOARD(boardp)) {
4205  cp = boardp->prtbuf;
4206  cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
4207  BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4208  cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
4209  cplen);
4210  totcnt += cnt;
4211  leftlen -= cnt;
4212  if (leftlen == 0) {
4213  ASC_DBG(1, "totcnt %d\n", totcnt);
4214  return totcnt;
4215  }
4216  advoffset += cplen;
4217  curbuf += cnt;
4218  }
4219 
4220  /*
4221  * Display driver information for each device attached to the board.
4222  */
4223  cp = boardp->prtbuf;
4224  cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
4225  BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4226  cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4227  totcnt += cnt;
4228  leftlen -= cnt;
4229  if (leftlen == 0) {
4230  ASC_DBG(1, "totcnt %d\n", totcnt);
4231  return totcnt;
4232  }
4233  advoffset += cplen;
4234  curbuf += cnt;
4235 
4236  /*
4237  * Display EEPROM configuration for the board.
4238  */
4239  cp = boardp->prtbuf;
4240  if (ASC_NARROW_BOARD(boardp)) {
4241  cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4242  } else {
4243  cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4244  }
4245  BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4246  cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4247  totcnt += cnt;
4248  leftlen -= cnt;
4249  if (leftlen == 0) {
4250  ASC_DBG(1, "totcnt %d\n", totcnt);
4251  return totcnt;
4252  }
4253  advoffset += cplen;
4254  curbuf += cnt;
4255 
4256  /*
4257  * Display driver configuration and information for the board.
4258  */
4259  cp = boardp->prtbuf;
4260  cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
4261  BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4262  cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4263  totcnt += cnt;
4264  leftlen -= cnt;
4265  if (leftlen == 0) {
4266  ASC_DBG(1, "totcnt %d\n", totcnt);
4267  return totcnt;
4268  }
4269  advoffset += cplen;
4270  curbuf += cnt;
4271 
4272 #ifdef ADVANSYS_STATS
4273  /*
4274  * Display driver statistics for the board.
4275  */
4276  cp = boardp->prtbuf;
4277  cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
4278  BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4279  cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4280  totcnt += cnt;
4281  leftlen -= cnt;
4282  if (leftlen == 0) {
4283  ASC_DBG(1, "totcnt %d\n", totcnt);
4284  return totcnt;
4285  }
4286  advoffset += cplen;
4287  curbuf += cnt;
4288 #endif /* ADVANSYS_STATS */
4289 
4290  /*
4291  * Display Asc Library dynamic configuration information
4292  * for the board.
4293  */
4294  cp = boardp->prtbuf;
4295  if (ASC_NARROW_BOARD(boardp)) {
4296  cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
4297  } else {
4298  cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
4299  }
4300  BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4301  cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4302  totcnt += cnt;
4303  leftlen -= cnt;
4304  if (leftlen == 0) {
4305  ASC_DBG(1, "totcnt %d\n", totcnt);
4306  return totcnt;
4307  }
4308  advoffset += cplen;
4309  curbuf += cnt;
4310 
4311  ASC_DBG(1, "totcnt %d\n", totcnt);
4312 
4313  return totcnt;
4314 }
4315 #endif /* CONFIG_PROC_FS */
4316 
4317 static void asc_scsi_done(struct scsi_cmnd *scp)
4318 {
4319  scsi_dma_unmap(scp);
4320  ASC_STATS(scp->device->host, done);
4321  scp->scsi_done(scp);
4322 }
4323 
4324 static void AscSetBank(PortAddr iop_base, uchar bank)
4325 {
4326  uchar val;
4327 
4328  val = AscGetChipControl(iop_base) &
4329  (~
4331  CC_CHIP_RESET));
4332  if (bank == 1) {
4333  val |= CC_BANK_ONE;
4334  } else if (bank == 2) {
4335  val |= CC_DIAG | CC_BANK_ONE;
4336  } else {
4337  val &= ~CC_BANK_ONE;
4338  }
4339  AscSetChipControl(iop_base, val);
4340 }
4341 
4342 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
4343 {
4344  AscSetBank(iop_base, 1);
4345  AscWriteChipIH(iop_base, ins_code);
4346  AscSetBank(iop_base, 0);
4347 }
4348 
4349 static int AscStartChip(PortAddr iop_base)
4350 {
4351  AscSetChipControl(iop_base, 0);
4352  if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4353  return (0);
4354  }
4355  return (1);
4356 }
4357 
4358 static int AscStopChip(PortAddr iop_base)
4359 {
4360  uchar cc_val;
4361 
4362  cc_val =
4363  AscGetChipControl(iop_base) &
4364  (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
4365  AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
4366  AscSetChipIH(iop_base, INS_HALT);
4367  AscSetChipIH(iop_base, INS_RFLAG_WTM);
4368  if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
4369  return (0);
4370  }
4371  return (1);
4372 }
4373 
4374 static int AscIsChipHalted(PortAddr iop_base)
4375 {
4376  if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4377  if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
4378  return (1);
4379  }
4380  }
4381  return (0);
4382 }
4383 
4384 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
4385 {
4386  PortAddr iop_base;
4387  int i = 10;
4388 
4389  iop_base = asc_dvc->iop_base;
4390  while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
4391  && (i-- > 0)) {
4392  mdelay(100);
4393  }
4394  AscStopChip(iop_base);
4395  AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
4396  udelay(60);
4397  AscSetChipIH(iop_base, INS_RFLAG_WTM);
4398  AscSetChipIH(iop_base, INS_HALT);
4399  AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
4400  AscSetChipControl(iop_base, CC_HALT);
4401  mdelay(200);
4403  AscSetChipStatus(iop_base, 0);
4404  return (AscIsChipHalted(iop_base));
4405 }
4406 
4407 static int AscFindSignature(PortAddr iop_base)
4408 {
4409  ushort sig_word;
4410 
4411  ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4412  iop_base, AscGetChipSignatureByte(iop_base));
4413  if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
4414  ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4415  iop_base, AscGetChipSignatureWord(iop_base));
4416  sig_word = AscGetChipSignatureWord(iop_base);
4417  if ((sig_word == (ushort)ASC_1000_ID0W) ||
4418  (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
4419  return (1);
4420  }
4421  }
4422  return (0);
4423 }
4424 
4425 static void AscEnableInterrupt(PortAddr iop_base)
4426 {
4427  ushort cfg;
4428 
4429  cfg = AscGetChipCfgLsw(iop_base);
4430  AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
4431 }
4432 
4433 static void AscDisableInterrupt(PortAddr iop_base)
4434 {
4435  ushort cfg;
4436 
4437  cfg = AscGetChipCfgLsw(iop_base);
4438  AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
4439 }
4440 
4441 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
4442 {
4443  unsigned char byte_data;
4444  unsigned short word_data;
4445 
4446  if (isodd_word(addr)) {
4447  AscSetChipLramAddr(iop_base, addr - 1);
4448  word_data = AscGetChipLramData(iop_base);
4449  byte_data = (word_data >> 8) & 0xFF;
4450  } else {
4451  AscSetChipLramAddr(iop_base, addr);
4452  word_data = AscGetChipLramData(iop_base);
4453  byte_data = word_data & 0xFF;
4454  }
4455  return byte_data;
4456 }
4457 
4458 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
4459 {
4460  ushort word_data;
4461 
4462  AscSetChipLramAddr(iop_base, addr);
4463  word_data = AscGetChipLramData(iop_base);
4464  return (word_data);
4465 }
4466 
4467 #if CC_VERY_LONG_SG_LIST
4468 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
4469 {
4470  ushort val_low, val_high;
4471  ASC_DCNT dword_data;
4472 
4473  AscSetChipLramAddr(iop_base, addr);
4474  val_low = AscGetChipLramData(iop_base);
4475  val_high = AscGetChipLramData(iop_base);
4476  dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
4477  return (dword_data);
4478 }
4479 #endif /* CC_VERY_LONG_SG_LIST */
4480 
4481 static void
4482 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
4483 {
4484  int i;
4485 
4486  AscSetChipLramAddr(iop_base, s_addr);
4487  for (i = 0; i < words; i++) {
4488  AscSetChipLramData(iop_base, set_wval);
4489  }
4490 }
4491 
4492 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4493 {
4494  AscSetChipLramAddr(iop_base, addr);
4495  AscSetChipLramData(iop_base, word_val);
4496 }
4497 
4498 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4499 {
4500  ushort word_data;
4501 
4502  if (isodd_word(addr)) {
4503  addr--;
4504  word_data = AscReadLramWord(iop_base, addr);
4505  word_data &= 0x00FF;
4506  word_data |= (((ushort)byte_val << 8) & 0xFF00);
4507  } else {
4508  word_data = AscReadLramWord(iop_base, addr);
4509  word_data &= 0xFF00;
4510  word_data |= ((ushort)byte_val & 0x00FF);
4511  }
4512  AscWriteLramWord(iop_base, addr, word_data);
4513 }
4514 
4515 /*
4516  * Copy 2 bytes to LRAM.
4517  *
4518  * The source data is assumed to be in little-endian order in memory
4519  * and is maintained in little-endian order when written to LRAM.
4520  */
4521 static void
4522 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4523  const uchar *s_buffer, int words)
4524 {
4525  int i;
4526 
4527  AscSetChipLramAddr(iop_base, s_addr);
4528  for (i = 0; i < 2 * words; i += 2) {
4529  /*
4530  * On a little-endian system the second argument below
4531  * produces a little-endian ushort which is written to
4532  * LRAM in little-endian order. On a big-endian system
4533  * the second argument produces a big-endian ushort which
4534  * is "transparently" byte-swapped by outpw() and written
4535  * in little-endian order to LRAM.
4536  */
4537  outpw(iop_base + IOP_RAM_DATA,
4538  ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4539  }
4540 }
4541 
4542 /*
4543  * Copy 4 bytes to LRAM.
4544  *
4545  * The source data is assumed to be in little-endian order in memory
4546  * and is maintained in little-endian order when written to LRAM.
4547  */
4548 static void
4549 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4550  ushort s_addr, uchar *s_buffer, int dwords)
4551 {
4552  int i;
4553 
4554  AscSetChipLramAddr(iop_base, s_addr);
4555  for (i = 0; i < 4 * dwords; i += 4) {
4556  outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
4557  outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
4558  }
4559 }
4560 
4561 /*
4562  * Copy 2 bytes from LRAM.
4563  *
4564  * The source data is assumed to be in little-endian order in LRAM
4565  * and is maintained in little-endian order when written to memory.
4566  */
4567 static void
4568 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4569  ushort s_addr, uchar *d_buffer, int words)
4570 {
4571  int i;
4572  ushort word;
4573 
4574  AscSetChipLramAddr(iop_base, s_addr);
4575  for (i = 0; i < 2 * words; i += 2) {
4576  word = inpw(iop_base + IOP_RAM_DATA);
4577  d_buffer[i] = word & 0xff;
4578  d_buffer[i + 1] = (word >> 8) & 0xff;
4579  }
4580 }
4581 
4582 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4583 {
4584  ASC_DCNT sum;
4585  int i;
4586 
4587  sum = 0L;
4588  for (i = 0; i < words; i++, s_addr += 2) {
4589  sum += AscReadLramWord(iop_base, s_addr);
4590  }
4591  return (sum);
4592 }
4593 
4594 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4595 {
4596  uchar i;
4597  ushort s_addr;
4598  PortAddr iop_base;
4599  ushort warn_code;
4600 
4601  iop_base = asc_dvc->iop_base;
4602  warn_code = 0;
4603  AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4604  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4605  64) >> 1));
4606  i = ASC_MIN_ACTIVE_QNO;
4607  s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4608  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4609  (uchar)(i + 1));
4610  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4611  (uchar)(asc_dvc->max_total_qng));
4612  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4613  (uchar)i);
4614  i++;
4615  s_addr += ASC_QBLK_SIZE;
4616  for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4617  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4618  (uchar)(i + 1));
4619  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4620  (uchar)(i - 1));
4621  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4622  (uchar)i);
4623  }
4624  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4625  (uchar)ASC_QLINK_END);
4626  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4627  (uchar)(asc_dvc->max_total_qng - 1));
4628  AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4629  (uchar)asc_dvc->max_total_qng);
4630  i++;
4631  s_addr += ASC_QBLK_SIZE;
4632  for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4633  i++, s_addr += ASC_QBLK_SIZE) {
4634  AscWriteLramByte(iop_base,
4635  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4636  AscWriteLramByte(iop_base,
4637  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4638  AscWriteLramByte(iop_base,
4639  (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4640  }
4641  return warn_code;
4642 }
4643 
4644 static ASC_DCNT
4645 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4646  const uchar *mcode_buf, ushort mcode_size)
4647 {
4648  ASC_DCNT chksum;
4649  ushort mcode_word_size;
4650  ushort mcode_chksum;
4651 
4652  /* Write the microcode buffer starting at LRAM address 0. */
4653  mcode_word_size = (ushort)(mcode_size >> 1);
4654  AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4655  AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4656 
4657  chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4658  ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4659  mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4661  (ushort)((mcode_size -
4662  s_addr - (ushort)
4663  ASC_CODE_SEC_BEG) /
4664  2));
4665  ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4666  AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4667  AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4668  return chksum;
4669 }
4670 
4671 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4672 {
4673  PortAddr iop_base;
4674  int i;
4675  ushort lram_addr;
4676 
4677  iop_base = asc_dvc->iop_base;
4678  AscPutRiscVarFreeQHead(iop_base, 1);
4679  AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4680  AscPutVarFreeQHead(iop_base, 1);
4681  AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4682  AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4683  (uchar)((int)asc_dvc->max_total_qng + 1));
4684  AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4685  (uchar)((int)asc_dvc->max_total_qng + 2));
4686  AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4687  asc_dvc->max_total_qng);
4688  AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4689  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4690  AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4691  AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4692  AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4693  AscPutQDoneInProgress(iop_base, 0);
4694  lram_addr = ASC_QADR_BEG;
4695  for (i = 0; i < 32; i++, lram_addr += 2) {
4696  AscWriteLramWord(iop_base, lram_addr, 0);
4697  }
4698 }
4699 
4700 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4701 {
4702  int i;
4703  ushort warn_code;
4704  PortAddr iop_base;
4705  ASC_PADDR phy_addr;
4706  ASC_DCNT phy_size;
4707  struct asc_board *board = asc_dvc_to_board(asc_dvc);
4708 
4709  iop_base = asc_dvc->iop_base;
4710  warn_code = 0;
4711  for (i = 0; i <= ASC_MAX_TID; i++) {
4712  AscPutMCodeInitSDTRAtID(iop_base, i,
4713  asc_dvc->cfg->sdtr_period_offset[i]);
4714  }
4715 
4716  AscInitQLinkVar(asc_dvc);
4717  AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4718  asc_dvc->cfg->disc_enable);
4719  AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4721 
4722  /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4723  BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4724  asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4726  if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4727  warn_code = -ENOMEM;
4728  goto err_dma_map;
4729  }
4730  phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4731  AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4732  (uchar *)&phy_addr, 1);
4733  phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4734  AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4735  (uchar *)&phy_size, 1);
4736 
4737  asc_dvc->cfg->mcode_date =
4738  AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4739  asc_dvc->cfg->mcode_version =
4740  AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4741 
4743  if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4744  asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4745  warn_code = UW_ERR;
4746  goto err_mcode_start;
4747  }
4748  if (AscStartChip(iop_base) != 1) {
4749  asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4750  warn_code = UW_ERR;
4751  goto err_mcode_start;
4752  }
4753 
4754  return warn_code;
4755 
4756 err_mcode_start:
4757  dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4759 err_dma_map:
4760  asc_dvc->overrun_dma = 0;
4761  return warn_code;
4762 }
4763 
4764 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4765 {
4766  const struct firmware *fw;
4767  const char fwname[] = "advansys/mcode.bin";
4768  int err;
4769  unsigned long chksum;
4770  ushort warn_code;
4771  PortAddr iop_base;
4772 
4773  iop_base = asc_dvc->iop_base;
4774  warn_code = 0;
4775  if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4776  !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4777  AscResetChipAndScsiBus(asc_dvc);
4778  mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4779  }
4781  if (asc_dvc->err_code != 0)
4782  return UW_ERR;
4783  if (!AscFindSignature(asc_dvc->iop_base)) {
4784  asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4785  return warn_code;
4786  }
4787  AscDisableInterrupt(iop_base);
4788  warn_code |= AscInitLram(asc_dvc);
4789  if (asc_dvc->err_code != 0)
4790  return UW_ERR;
4791 
4792  err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4793  if (err) {
4794  printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4795  fwname, err);
4796  asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4797  return err;
4798  }
4799  if (fw->size < 4) {
4800  printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4801  fw->size, fwname);
4802  release_firmware(fw);
4803  asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4804  return -EINVAL;
4805  }
4806  chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4807  (fw->data[1] << 8) | fw->data[0];
4808  ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4809  if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4810  fw->size - 4) != chksum) {
4811  asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4812  release_firmware(fw);
4813  return warn_code;
4814  }
4815  release_firmware(fw);
4816  warn_code |= AscInitMicroCodeVar(asc_dvc);
4817  if (!asc_dvc->overrun_dma)
4818  return warn_code;
4820  AscEnableInterrupt(iop_base);
4821  return warn_code;
4822 }
4823 
4824 /*
4825  * Load the Microcode
4826  *
4827  * Write the microcode image to RISC memory starting at address 0.
4828  *
4829  * The microcode is stored compressed in the following format:
4830  *
4831  * 254 word (508 byte) table indexed by byte code followed
4832  * by the following byte codes:
4833  *
4834  * 1-Byte Code:
4835  * 00: Emit word 0 in table.
4836  * 01: Emit word 1 in table.
4837  * .
4838  * FD: Emit word 253 in table.
4839  *
4840  * Multi-Byte Code:
4841  * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4842  * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4843  *
4844  * Returns 0 or an error if the checksum doesn't match
4845  */
4846 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4847  int size, int memsize, int chksum)
4848 {
4849  int i, j, end, len = 0;
4850  ADV_DCNT sum;
4851 
4852  AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4853 
4854  for (i = 253 * 2; i < size; i++) {
4855  if (buf[i] == 0xff) {
4856  unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4857  for (j = 0; j < buf[i + 1]; j++) {
4858  AdvWriteWordAutoIncLram(iop_base, word);
4859  len += 2;
4860  }
4861  i += 3;
4862  } else if (buf[i] == 0xfe) {
4863  unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4864  AdvWriteWordAutoIncLram(iop_base, word);
4865  i += 2;
4866  len += 2;
4867  } else {
4868  unsigned int off = buf[i] * 2;
4869  unsigned short word = (buf[off + 1] << 8) | buf[off];
4870  AdvWriteWordAutoIncLram(iop_base, word);
4871  len += 2;
4872  }
4873  }
4874 
4875  end = len;
4876 
4877  while (len < memsize) {
4878  AdvWriteWordAutoIncLram(iop_base, 0);
4879  len += 2;
4880  }
4881 
4882  /* Verify the microcode checksum. */
4883  sum = 0;
4884  AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4885 
4886  for (len = 0; len < end; len += 2) {
4887  sum += AdvReadWordAutoIncLram(iop_base);
4888  }
4889 
4890  if (sum != chksum)
4891  return ASC_IERR_MCODE_CHKSUM;
4892 
4893  return 0;
4894 }
4895 
4896 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4897 {
4898  ADV_CARR_T *carrp;
4900  ADV_PADDR carr_paddr;
4901 
4902  carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4903  asc_dvc->carr_freelist = NULL;
4904  if (carrp == asc_dvc->carrier_buf) {
4905  buf_size = ADV_CARRIER_BUFSIZE;
4906  } else {
4907  buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4908  }
4909 
4910  do {
4911  /* Get physical address of the carrier 'carrp'. */
4912  carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4913 
4914  buf_size -= sizeof(ADV_CARR_T);
4915 
4916  carrp->carr_pa = carr_paddr;
4917  carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4918 
4919  /*
4920  * Insert the carrier at the beginning of the freelist.
4921  */
4922  carrp->next_vpa =
4924  asc_dvc->carr_freelist = carrp;
4925 
4926  carrp++;
4927  } while (buf_size > 0);
4928 }
4929 
4930 /*
4931  * Send an idle command to the chip and wait for completion.
4932  *
4933  * Command completion is polled for once per microsecond.
4934  *
4935  * The function can be called from anywhere including an interrupt handler.
4936  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4937  * functions to prevent reentrancy.
4938  *
4939  * Return Values:
4940  * ADV_TRUE - command completed successfully
4941  * ADV_FALSE - command failed
4942  * ADV_ERROR - command timed out
4943  */
4944 static int
4945 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4946  ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4947 {
4948  int result;
4949  ADV_DCNT i, j;
4950  AdvPortAddr iop_base;
4951 
4952  iop_base = asc_dvc->iop_base;
4953 
4954  /*
4955  * Clear the idle command status which is set by the microcode
4956  * to a non-zero value to indicate when the command is completed.
4957  * The non-zero result is one of the IDLE_CMD_STATUS_* values
4958  */
4960 
4961  /*
4962  * Write the idle command value after the idle command parameter
4963  * has been written to avoid a race condition. If the order is not
4964  * followed, the microcode may process the idle command before the
4965  * parameters have been written to LRAM.
4966  */
4968  cpu_to_le32(idle_cmd_parameter));
4969  AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4970 
4971  /*
4972  * Tickle the RISC to tell it to process the idle command.
4973  */
4975  if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4976  /*
4977  * Clear the tickle value. In the ASC-3550 the RISC flag
4978  * command 'clr_tickle_b' does not work unless the host
4979  * value is cleared.
4980  */
4982  }
4983 
4984  /* Wait for up to 100 millisecond for the idle command to timeout. */
4985  for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4986  /* Poll once each microsecond for command completion. */
4987  for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4989  result);
4990  if (result != 0)
4991  return result;
4992  udelay(1);
4993  }
4994  }
4995 
4996  BUG(); /* The idle command should never timeout. */
4997  return ADV_ERROR;
4998 }
4999 
5000 /*
5001  * Reset SCSI Bus and purge all outstanding requests.
5002  *
5003  * Return Value:
5004  * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
5005  * ADV_FALSE(0) - Microcode command failed.
5006  * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
5007  * may be hung which requires driver recovery.
5008  */
5009 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
5010 {
5011  int status;
5012 
5013  /*
5014  * Send the SCSI Bus Reset idle start idle command which asserts
5015  * the SCSI Bus Reset signal.
5016  */
5017  status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
5018  if (status != ADV_TRUE) {
5019  return status;
5020  }
5021 
5022  /*
5023  * Delay for the specified SCSI Bus Reset hold time.
5024  *
5025  * The hold time delay is done on the host because the RISC has no
5026  * microsecond accurate timer.
5027  */
5029 
5030  /*
5031  * Send the SCSI Bus Reset end idle command which de-asserts
5032  * the SCSI Bus Reset signal and purges any pending requests.
5033  */
5034  status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
5035  if (status != ADV_TRUE) {
5036  return status;
5037  }
5038 
5039  mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
5040 
5041  return status;
5042 }
5043 
5044 /*
5045  * Initialize the ASC-3550.
5046  *
5047  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5048  *
5049  * For a non-fatal error return a warning code. If there are no warnings
5050  * then 0 is returned.
5051  *
5052  * Needed after initialization for error recovery.
5053  */
5054 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
5055 {
5056  const struct firmware *fw;
5057  const char fwname[] = "advansys/3550.bin";
5058  AdvPortAddr iop_base;
5059  ushort warn_code;
5060  int begin_addr;
5061  int end_addr;
5062  ushort code_sum;
5063  int word;
5064  int i;
5065  int err;
5066  unsigned long chksum;
5067  ushort scsi_cfg1;
5068  uchar tid;
5069  ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5070  ushort wdtr_able = 0, sdtr_able, tagqng_able;
5071  uchar max_cmd[ADV_MAX_TID + 1];
5072 
5073  /* If there is already an error, don't continue. */
5074  if (asc_dvc->err_code != 0)
5075  return ADV_ERROR;
5076 
5077  /*
5078  * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5079  */
5080  if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
5081  asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5082  return ADV_ERROR;
5083  }
5084 
5085  warn_code = 0;
5086  iop_base = asc_dvc->iop_base;
5087 
5088  /*
5089  * Save the RISC memory BIOS region before writing the microcode.
5090  * The BIOS may already be loaded and using its RISC LRAM region
5091  * so its region must be saved and restored.
5092  *
5093  * Note: This code makes the assumption, which is currently true,
5094  * that a chip reset does not clear RISC LRAM.
5095  */
5096  for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5097  AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5098  bios_mem[i]);
5099  }
5100 
5101  /*
5102  * Save current per TID negotiated values.
5103  */
5104  if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
5105  ushort bios_version, major, minor;
5106 
5107  bios_version =
5108  bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
5109  major = (bios_version >> 12) & 0xF;
5110  minor = (bios_version >> 8) & 0xF;
5111  if (major < 3 || (major == 3 && minor == 1)) {
5112  /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5113  AdvReadWordLram(iop_base, 0x120, wdtr_able);
5114  } else {
5115  AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5116  }
5117  }
5118  AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5119  AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5120  for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5121  AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5122  max_cmd[tid]);
5123  }
5124 
5125  err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5126  if (err) {
5127  printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5128  fwname, err);
5129  asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5130  return err;
5131  }
5132  if (fw->size < 4) {
5133  printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5134  fw->size, fwname);
5135  release_firmware(fw);
5136  asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5137  return -EINVAL;
5138  }
5139  chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5140  (fw->data[1] << 8) | fw->data[0];
5141  asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5142  fw->size - 4, ADV_3550_MEMSIZE,
5143  chksum);
5144  release_firmware(fw);
5145  if (asc_dvc->err_code)
5146  return ADV_ERROR;
5147 
5148  /*
5149  * Restore the RISC memory BIOS region.
5150  */
5151  for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5152  AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5153  bios_mem[i]);
5154  }
5155 
5156  /*
5157  * Calculate and write the microcode code checksum to the microcode
5158  * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5159  */
5160  AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5161  AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5162  code_sum = 0;
5163  AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5164  for (word = begin_addr; word < end_addr; word += 2) {
5165  code_sum += AdvReadWordAutoIncLram(iop_base);
5166  }
5167  AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5168 
5169  /*
5170  * Read and save microcode version and date.
5171  */
5173  asc_dvc->cfg->mcode_date);
5175  asc_dvc->cfg->mcode_version);
5176 
5177  /*
5178  * Set the chip type to indicate the ASC3550.
5179  */
5181 
5182  /*
5183  * If the PCI Configuration Command Register "Parity Error Response
5184  * Control" Bit was clear (0), then set the microcode variable
5185  * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5186  * to ignore DMA parity errors.
5187  */
5188  if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5189  AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5190  word |= CONTROL_FLAG_IGNORE_PERR;
5191  AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5192  }
5193 
5194  /*
5195  * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5196  * threshold of 128 bytes. This register is only accessible to the host.
5197  */
5200 
5201  /*
5202  * Microcode operating variables for WDTR, SDTR, and command tag
5203  * queuing will be set in slave_configure() based on what a
5204  * device reports it is capable of in Inquiry byte 7.
5205  *
5206  * If SCSI Bus Resets have been disabled, then directly set
5207  * SDTR and WDTR from the EEPROM configuration. This will allow
5208  * the BIOS and warm boot to work without a SCSI bus hang on
5209  * the Inquiry caused by host and target mismatched DTR values.
5210  * Without the SCSI Bus Reset, before an Inquiry a device can't
5211  * be assumed to be in Asynchronous, Narrow mode.
5212  */
5213  if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5215  asc_dvc->wdtr_able);
5217  asc_dvc->sdtr_able);
5218  }
5219 
5220  /*
5221  * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5222  * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5223  * bitmask. These values determine the maximum SDTR speed negotiated
5224  * with a device.
5225  *
5226  * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5227  * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5228  * without determining here whether the device supports SDTR.
5229  *
5230  * 4-bit speed SDTR speed name
5231  * =========== ===============
5232  * 0000b (0x0) SDTR disabled
5233  * 0001b (0x1) 5 Mhz
5234  * 0010b (0x2) 10 Mhz
5235  * 0011b (0x3) 20 Mhz (Ultra)
5236  * 0100b (0x4) 40 Mhz (LVD/Ultra2)
5237  * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
5238  * 0110b (0x6) Undefined
5239  * .
5240  * 1111b (0xF) Undefined
5241  */
5242  word = 0;
5243  for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5244  if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
5245  /* Set Ultra speed for TID 'tid'. */
5246  word |= (0x3 << (4 * (tid % 4)));
5247  } else {
5248  /* Set Fast speed for TID 'tid'. */
5249  word |= (0x2 << (4 * (tid % 4)));
5250  }
5251  if (tid == 3) { /* Check if done with sdtr_speed1. */
5252  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
5253  word = 0;
5254  } else if (tid == 7) { /* Check if done with sdtr_speed2. */
5255  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
5256  word = 0;
5257  } else if (tid == 11) { /* Check if done with sdtr_speed3. */
5258  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
5259  word = 0;
5260  } else if (tid == 15) { /* Check if done with sdtr_speed4. */
5261  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
5262  /* End of loop. */
5263  }
5264  }
5265 
5266  /*
5267  * Set microcode operating variable for the disconnect per TID bitmask.
5268  */
5270  asc_dvc->cfg->disc_enable);
5271 
5272  /*
5273  * Set SCSI_CFG0 Microcode Default Value.
5274  *
5275  * The microcode will set the SCSI_CFG0 register using this value
5276  * after it is started below.
5277  */
5280  asc_dvc->chip_scsi_id);
5281 
5282  /*
5283  * Determine SCSI_CFG1 Microcode Default Value.
5284  *
5285  * The microcode will set the SCSI_CFG1 register using this value
5286  * after it is started below.
5287  */
5288 
5289  /* Read current SCSI_CFG1 Register value. */
5290  scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5291 
5292  /*
5293  * If all three connectors are in use, return an error.
5294  */
5295  if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
5296  (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
5298  return ADV_ERROR;
5299  }
5300 
5301  /*
5302  * If the internal narrow cable is reversed all of the SCSI_CTRL
5303  * register signals will be set. Check for and return an error if
5304  * this condition is found.
5305  */
5306  if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5307  asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5308  return ADV_ERROR;
5309  }
5310 
5311  /*
5312  * If this is a differential board and a single-ended device
5313  * is attached to one of the connectors, return an error.
5314  */
5315  if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
5317  return ADV_ERROR;
5318  }
5319 
5320  /*
5321  * If automatic termination control is enabled, then set the
5322  * termination value based on a table listed in a_condor.h.
5323  *
5324  * If manual termination was specified with an EEPROM setting
5325  * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5326  * is ready to be 'ored' into SCSI_CFG1.
5327  */
5328  if (asc_dvc->cfg->termination == 0) {
5329  /*
5330  * The software always controls termination by setting TERM_CTL_SEL.
5331  * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5332  */
5333  asc_dvc->cfg->termination |= TERM_CTL_SEL;
5334 
5335  switch (scsi_cfg1 & CABLE_DETECT) {
5336  /* TERM_CTL_H: on, TERM_CTL_L: on */
5337  case 0x3:
5338  case 0x7:
5339  case 0xB:
5340  case 0xD:
5341  case 0xE:
5342  case 0xF:
5343  asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
5344  break;
5345 
5346  /* TERM_CTL_H: on, TERM_CTL_L: off */
5347  case 0x1:
5348  case 0x5:
5349  case 0x9:
5350  case 0xA:
5351  case 0xC:
5352  asc_dvc->cfg->termination |= TERM_CTL_H;
5353  break;
5354 
5355  /* TERM_CTL_H: off, TERM_CTL_L: off */
5356  case 0x2:
5357  case 0x6:
5358  break;
5359  }
5360  }
5361 
5362  /*
5363  * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5364  */
5365  scsi_cfg1 &= ~TERM_CTL;
5366 
5367  /*
5368  * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5369  * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5370  * referenced, because the hardware internally inverts
5371  * the Termination High and Low bits if TERM_POL is set.
5372  */
5373  scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
5374 
5375  /*
5376  * Set SCSI_CFG1 Microcode Default Value
5377  *
5378  * Set filter value and possibly modified termination control
5379  * bits in the Microcode SCSI_CFG1 Register Value.
5380  *
5381  * The microcode will set the SCSI_CFG1 register using this value
5382  * after it is started below.
5383  */
5385  FLTR_DISABLE | scsi_cfg1);
5386 
5387  /*
5388  * Set MEM_CFG Microcode Default Value
5389  *
5390  * The microcode will set the MEM_CFG register using this value
5391  * after it is started below.
5392  *
5393  * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5394  * are defined.
5395  *
5396  * ASC-3550 has 8KB internal memory.
5397  */
5399  BIOS_EN | RAM_SZ_8KB);
5400 
5401  /*
5402  * Set SEL_MASK Microcode Default Value
5403  *
5404  * The microcode will set the SEL_MASK register using this value
5405  * after it is started below.
5406  */
5408  ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5409 
5410  AdvBuildCarrierFreelist(asc_dvc);
5411 
5412  /*
5413  * Set-up the Host->RISC Initiator Command Queue (ICQ).
5414  */
5415 
5416  if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5417  asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5418  return ADV_ERROR;
5419  }
5420  asc_dvc->carr_freelist = (ADV_CARR_T *)
5422 
5423  /*
5424  * The first command issued will be placed in the stopper carrier.
5425  */
5427 
5428  /*
5429  * Set RISC ICQ physical address start value.
5430  */
5431  AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5432 
5433  /*
5434  * Set-up the RISC->Host Initiator Response Queue (IRQ).
5435  */
5436  if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5437  asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5438  return ADV_ERROR;
5439  }
5440  asc_dvc->carr_freelist = (ADV_CARR_T *)
5442 
5443  /*
5444  * The first command completed by the RISC will be placed in
5445  * the stopper.
5446  *
5447  * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5448  * completed the RISC will set the ASC_RQ_STOPPER bit.
5449  */
5451 
5452  /*
5453  * Set RISC IRQ physical address start value.
5454  */
5455  AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5456  asc_dvc->carr_pending_cnt = 0;
5457 
5461 
5462  AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5463  AdvWriteWordRegister(iop_base, IOPW_PC, word);
5464 
5465  /* finally, finally, gentlemen, start your engine */
5467 
5468  /*
5469  * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5470  * Resets should be performed. The RISC has to be running
5471  * to issue a SCSI Bus Reset.
5472  */
5473  if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5474  /*
5475  * If the BIOS Signature is present in memory, restore the
5476  * BIOS Handshake Configuration Table and do not perform
5477  * a SCSI Bus Reset.
5478  */
5479  if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5480  0x55AA) {
5481  /*
5482  * Restore per TID negotiated values.
5483  */
5484  AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5485  AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5487  tagqng_able);
5488  for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5489  AdvWriteByteLram(iop_base,
5491  max_cmd[tid]);
5492  }
5493  } else {
5494  if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5495  warn_code = ASC_WARN_BUSRESET_ERROR;
5496  }
5497  }
5498  }
5499 
5500  return warn_code;
5501 }
5502 
5503 /*
5504  * Initialize the ASC-38C0800.
5505  *
5506  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5507  *
5508  * For a non-fatal error return a warning code. If there are no warnings
5509  * then 0 is returned.
5510  *
5511  * Needed after initialization for error recovery.
5512  */
5513 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5514 {
5515  const struct firmware *fw;
5516  const char fwname[] = "advansys/38C0800.bin";
5517  AdvPortAddr iop_base;
5518  ushort warn_code;
5519  int begin_addr;
5520  int end_addr;
5521  ushort code_sum;
5522  int word;
5523  int i;
5524  int err;
5525  unsigned long chksum;
5526  ushort scsi_cfg1;
5527  uchar byte;
5528  uchar tid;
5529  ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5530  ushort wdtr_able, sdtr_able, tagqng_able;
5531  uchar max_cmd[ADV_MAX_TID + 1];
5532 
5533  /* If there is already an error, don't continue. */
5534  if (asc_dvc->err_code != 0)
5535  return ADV_ERROR;
5536 
5537  /*
5538  * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5539  */
5540  if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5541  asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5542  return ADV_ERROR;
5543  }
5544 
5545  warn_code = 0;
5546  iop_base = asc_dvc->iop_base;
5547 
5548  /*
5549  * Save the RISC memory BIOS region before writing the microcode.
5550  * The BIOS may already be loaded and using its RISC LRAM region
5551  * so its region must be saved and restored.
5552  *
5553  * Note: This code makes the assumption, which is currently true,
5554  * that a chip reset does not clear RISC LRAM.
5555  */
5556  for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5557  AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5558  bios_mem[i]);
5559  }
5560 
5561  /*
5562  * Save current per TID negotiated values.
5563  */
5564  AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5565  AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5566  AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5567  for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5568  AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5569  max_cmd[tid]);
5570  }
5571 
5572  /*
5573  * RAM BIST (RAM Built-In Self Test)
5574  *
5575  * Address : I/O base + offset 0x38h register (byte).
5576  * Function: Bit 7-6(RW) : RAM mode
5577  * Normal Mode : 0x00
5578  * Pre-test Mode : 0x40
5579  * RAM Test Mode : 0x80
5580  * Bit 5 : unused
5581  * Bit 4(RO) : Done bit
5582  * Bit 3-0(RO) : Status
5583  * Host Error : 0x08
5584  * Int_RAM Error : 0x04
5585  * RISC Error : 0x02
5586  * SCSI Error : 0x01
5587  * No Error : 0x00
5588  *
5589  * Note: RAM BIST code should be put right here, before loading the
5590  * microcode and after saving the RISC memory BIOS region.
5591  */
5592 
5593  /*
5594  * LRAM Pre-test
5595  *
5596  * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5597  * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5598  * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5599  * to NORMAL_MODE, return an error too.
5600  */
5601  for (i = 0; i < 2; i++) {
5603  mdelay(10); /* Wait for 10ms before reading back. */
5604  byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5605  if ((byte & RAM_TEST_DONE) == 0
5606  || (byte & 0x0F) != PRE_TEST_VALUE) {
5607  asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5608  return ADV_ERROR;
5609  }
5610 
5612  mdelay(10); /* Wait for 10ms before reading back. */
5613  if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5614  != NORMAL_VALUE) {
5615  asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5616  return ADV_ERROR;
5617  }
5618  }
5619 
5620  /*
5621  * LRAM Test - It takes about 1.5 ms to run through the test.
5622  *
5623  * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5624  * If Done bit not set or Status not 0, save register byte, set the
5625  * err_code, and return an error.
5626  */
5628  mdelay(10); /* Wait for 10ms before checking status. */
5629 
5630  byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5631  if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5632  /* Get here if Done bit not set or Status not 0. */
5633  asc_dvc->bist_err_code = byte; /* for BIOS display message */
5634  asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5635  return ADV_ERROR;
5636  }
5637 
5638  /* We need to reset back to normal mode after LRAM test passes. */
5640 
5641  err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5642  if (err) {
5643  printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5644  fwname, err);
5645  asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5646  return err;
5647  }
5648  if (fw->size < 4) {
5649  printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5650  fw->size, fwname);
5651  release_firmware(fw);
5652  asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5653  return -EINVAL;
5654  }
5655  chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5656  (fw->data[1] << 8) | fw->data[0];
5657  asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5658  fw->size - 4, ADV_38C0800_MEMSIZE,
5659  chksum);
5660  release_firmware(fw);
5661  if (asc_dvc->err_code)
5662  return ADV_ERROR;
5663 
5664  /*
5665  * Restore the RISC memory BIOS region.
5666  */
5667  for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5668  AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5669  bios_mem[i]);
5670  }
5671 
5672  /*
5673  * Calculate and write the microcode code checksum to the microcode
5674  * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5675  */
5676  AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5677  AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5678  code_sum = 0;
5679  AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5680  for (word = begin_addr; word < end_addr; word += 2) {
5681  code_sum += AdvReadWordAutoIncLram(iop_base);
5682  }
5683  AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5684 
5685  /*
5686  * Read microcode version and date.
5687  */
5689  asc_dvc->cfg->mcode_date);
5691  asc_dvc->cfg->mcode_version);
5692 
5693  /*
5694  * Set the chip type to indicate the ASC38C0800.
5695  */
5697 
5698  /*
5699  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5700  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5701  * cable detection and then we are able to read C_DET[3:0].
5702  *
5703  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5704  * Microcode Default Value' section below.
5705  */
5706  scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5708  scsi_cfg1 | DIS_TERM_DRV);
5709 
5710  /*
5711  * If the PCI Configuration Command Register "Parity Error Response
5712  * Control" Bit was clear (0), then set the microcode variable
5713  * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5714  * to ignore DMA parity errors.
5715  */
5716  if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5717  AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5718  word |= CONTROL_FLAG_IGNORE_PERR;
5719  AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5720  }
5721 
5722  /*
5723  * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5724  * bits for the default FIFO threshold.
5725  *
5726  * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5727  *
5728  * For DMA Errata #4 set the BC_THRESH_ENB bit.
5729  */
5732  READ_CMD_MRM);
5733 
5734  /*
5735  * Microcode operating variables for WDTR, SDTR, and command tag
5736  * queuing will be set in slave_configure() based on what a
5737  * device reports it is capable of in Inquiry byte 7.
5738  *
5739  * If SCSI Bus Resets have been disabled, then directly set
5740  * SDTR and WDTR from the EEPROM configuration. This will allow
5741  * the BIOS and warm boot to work without a SCSI bus hang on
5742  * the Inquiry caused by host and target mismatched DTR values.
5743  * Without the SCSI Bus Reset, before an Inquiry a device can't
5744  * be assumed to be in Asynchronous, Narrow mode.
5745  */
5746  if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5748  asc_dvc->wdtr_able);
5750  asc_dvc->sdtr_able);
5751  }
5752 
5753  /*
5754  * Set microcode operating variables for DISC and SDTR_SPEED1,
5755  * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5756  * configuration values.
5757  *
5758  * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5759  * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5760  * without determining here whether the device supports SDTR.
5761  */
5763  asc_dvc->cfg->disc_enable);
5764  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5765  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5766  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5767  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5768 
5769  /*
5770  * Set SCSI_CFG0 Microcode Default Value.
5771  *
5772  * The microcode will set the SCSI_CFG0 register using this value
5773  * after it is started below.
5774  */
5777  asc_dvc->chip_scsi_id);
5778 
5779  /*
5780  * Determine SCSI_CFG1 Microcode Default Value.
5781  *
5782  * The microcode will set the SCSI_CFG1 register using this value
5783  * after it is started below.
5784  */
5785 
5786  /* Read current SCSI_CFG1 Register value. */
5787  scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5788 
5789  /*
5790  * If the internal narrow cable is reversed all of the SCSI_CTRL
5791  * register signals will be set. Check for and return an error if
5792  * this condition is found.
5793  */
5794  if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5795  asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5796  return ADV_ERROR;
5797  }
5798 
5799  /*
5800  * All kind of combinations of devices attached to one of four
5801  * connectors are acceptable except HVD device attached. For example,
5802  * LVD device can be attached to SE connector while SE device attached
5803  * to LVD connector. If LVD device attached to SE connector, it only
5804  * runs up to Ultra speed.
5805  *
5806  * If an HVD device is attached to one of LVD connectors, return an
5807  * error. However, there is no way to detect HVD device attached to
5808  * SE connectors.
5809  */
5810  if (scsi_cfg1 & HVD) {
5811  asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5812  return ADV_ERROR;
5813  }
5814 
5815  /*
5816  * If either SE or LVD automatic termination control is enabled, then
5817  * set the termination value based on a table listed in a_condor.h.
5818  *
5819  * If manual termination was specified with an EEPROM setting then
5820  * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5821  * to be 'ored' into SCSI_CFG1.
5822  */
5823  if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5824  /* SE automatic termination control is enabled. */
5825  switch (scsi_cfg1 & C_DET_SE) {
5826  /* TERM_SE_HI: on, TERM_SE_LO: on */
5827  case 0x1:
5828  case 0x2:
5829  case 0x3:
5830  asc_dvc->cfg->termination |= TERM_SE;
5831  break;
5832 
5833  /* TERM_SE_HI: on, TERM_SE_LO: off */
5834  case 0x0:
5835  asc_dvc->cfg->termination |= TERM_SE_HI;
5836  break;
5837  }
5838  }
5839 
5840  if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5841  /* LVD automatic termination control is enabled. */
5842  switch (scsi_cfg1 & C_DET_LVD) {
5843  /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5844  case 0x4:
5845  case 0x8:
5846  case 0xC:
5847  asc_dvc->cfg->termination |= TERM_LVD;
5848  break;
5849 
5850  /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5851  case 0x0:
5852  break;
5853  }
5854  }
5855 
5856  /*
5857  * Clear any set TERM_SE and TERM_LVD bits.
5858  */
5859  scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5860 
5861  /*
5862  * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5863  */
5864  scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5865 
5866  /*
5867  * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5868  * bits and set possibly modified termination control bits in the
5869  * Microcode SCSI_CFG1 Register Value.
5870  */
5871  scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5872 
5873  /*
5874  * Set SCSI_CFG1 Microcode Default Value
5875  *
5876  * Set possibly modified termination control and reset DIS_TERM_DRV
5877  * bits in the Microcode SCSI_CFG1 Register Value.
5878  *
5879  * The microcode will set the SCSI_CFG1 register using this value
5880  * after it is started below.
5881  */
5882  AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5883 
5884  /*
5885  * Set MEM_CFG Microcode Default Value
5886  *
5887  * The microcode will set the MEM_CFG register using this value
5888  * after it is started below.
5889  *
5890  * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5891  * are defined.
5892  *
5893  * ASC-38C0800 has 16KB internal memory.
5894  */
5896  BIOS_EN | RAM_SZ_16KB);
5897 
5898  /*
5899  * Set SEL_MASK Microcode Default Value
5900  *
5901  * The microcode will set the SEL_MASK register using this value
5902  * after it is started below.
5903  */
5905  ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5906 
5907  AdvBuildCarrierFreelist(asc_dvc);
5908 
5909  /*
5910  * Set-up the Host->RISC Initiator Command Queue (ICQ).
5911  */
5912 
5913  if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5914  asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5915  return ADV_ERROR;
5916  }
5917  asc_dvc->carr_freelist = (ADV_CARR_T *)
5919 
5920  /*
5921  * The first command issued will be placed in the stopper carrier.
5922  */
5924 
5925  /*
5926  * Set RISC ICQ physical address start value.
5927  * carr_pa is LE, must be native before write
5928  */
5929  AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5930 
5931  /*
5932  * Set-up the RISC->Host Initiator Response Queue (IRQ).
5933  */
5934  if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5935  asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5936  return ADV_ERROR;
5937  }
5938  asc_dvc->carr_freelist = (ADV_CARR_T *)
5940 
5941  /*
5942  * The first command completed by the RISC will be placed in
5943  * the stopper.
5944  *
5945  * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5946  * completed the RISC will set the ASC_RQ_STOPPER bit.
5947  */
5949 
5950  /*
5951  * Set RISC IRQ physical address start value.
5952  *
5953  * carr_pa is LE, must be native before write *
5954  */
5955  AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5956  asc_dvc->carr_pending_cnt = 0;
5957 
5961 
5962  AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5963  AdvWriteWordRegister(iop_base, IOPW_PC, word);
5964 
5965  /* finally, finally, gentlemen, start your engine */
5967 
5968  /*
5969  * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5970  * Resets should be performed. The RISC has to be running
5971  * to issue a SCSI Bus Reset.
5972  */
5973  if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5974  /*
5975  * If the BIOS Signature is present in memory, restore the
5976  * BIOS Handshake Configuration Table and do not perform
5977  * a SCSI Bus Reset.
5978  */
5979  if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5980  0x55AA) {
5981  /*
5982  * Restore per TID negotiated values.
5983  */
5984  AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5985  AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5987  tagqng_able);
5988  for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5989  AdvWriteByteLram(iop_base,
5991  max_cmd[tid]);
5992  }
5993  } else {
5994  if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5995  warn_code = ASC_WARN_BUSRESET_ERROR;
5996  }
5997  }
5998  }
5999 
6000  return warn_code;
6001 }
6002 
6003 /*
6004  * Initialize the ASC-38C1600.
6005  *
6006  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
6007  *
6008  * For a non-fatal error return a warning code. If there are no warnings
6009  * then 0 is returned.
6010  *
6011  * Needed after initialization for error recovery.
6012  */
6013 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
6014 {
6015  const struct firmware *fw;
6016  const char fwname[] = "advansys/38C1600.bin";
6017  AdvPortAddr iop_base;
6018  ushort warn_code;
6019  int begin_addr;
6020  int end_addr;
6021  ushort code_sum;
6022  long word;
6023  int i;
6024  int err;
6025  unsigned long chksum;
6026  ushort scsi_cfg1;
6027  uchar byte;
6028  uchar tid;
6029  ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
6030  ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
6031  uchar max_cmd[ASC_MAX_TID + 1];
6032 
6033  /* If there is already an error, don't continue. */
6034  if (asc_dvc->err_code != 0) {
6035  return ADV_ERROR;
6036  }
6037 
6038  /*
6039  * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6040  */
6041  if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
6042  asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
6043  return ADV_ERROR;
6044  }
6045 
6046  warn_code = 0;
6047  iop_base = asc_dvc->iop_base;
6048 
6049  /*
6050  * Save the RISC memory BIOS region before writing the microcode.
6051  * The BIOS may already be loaded and using its RISC LRAM region
6052  * so its region must be saved and restored.
6053  *
6054  * Note: This code makes the assumption, which is currently true,
6055  * that a chip reset does not clear RISC LRAM.
6056  */
6057  for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6058  AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6059  bios_mem[i]);
6060  }
6061 
6062  /*
6063  * Save current per TID negotiated values.
6064  */
6065  AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6066  AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6067  AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6068  AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6069  for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6070  AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6071  max_cmd[tid]);
6072  }
6073 
6074  /*
6075  * RAM BIST (Built-In Self Test)
6076  *
6077  * Address : I/O base + offset 0x38h register (byte).
6078  * Function: Bit 7-6(RW) : RAM mode
6079  * Normal Mode : 0x00
6080  * Pre-test Mode : 0x40
6081  * RAM Test Mode : 0x80
6082  * Bit 5 : unused
6083  * Bit 4(RO) : Done bit
6084  * Bit 3-0(RO) : Status
6085  * Host Error : 0x08
6086  * Int_RAM Error : 0x04
6087  * RISC Error : 0x02
6088  * SCSI Error : 0x01
6089  * No Error : 0x00
6090  *
6091  * Note: RAM BIST code should be put right here, before loading the
6092  * microcode and after saving the RISC memory BIOS region.
6093  */
6094 
6095  /*
6096  * LRAM Pre-test
6097  *
6098  * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6099  * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6100  * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6101  * to NORMAL_MODE, return an error too.
6102  */
6103  for (i = 0; i < 2; i++) {
6105  mdelay(10); /* Wait for 10ms before reading back. */
6106  byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6107  if ((byte & RAM_TEST_DONE) == 0
6108  || (byte & 0x0F) != PRE_TEST_VALUE) {
6109  asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6110  return ADV_ERROR;
6111  }
6112 
6114  mdelay(10); /* Wait for 10ms before reading back. */
6115  if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
6116  != NORMAL_VALUE) {
6117  asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6118  return ADV_ERROR;
6119  }
6120  }
6121 
6122  /*
6123  * LRAM Test - It takes about 1.5 ms to run through the test.
6124  *
6125  * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6126  * If Done bit not set or Status not 0, save register byte, set the
6127  * err_code, and return an error.
6128  */
6130  mdelay(10); /* Wait for 10ms before checking status. */
6131 
6132  byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6133  if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
6134  /* Get here if Done bit not set or Status not 0. */
6135  asc_dvc->bist_err_code = byte; /* for BIOS display message */
6136  asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
6137  return ADV_ERROR;
6138  }
6139 
6140  /* We need to reset back to normal mode after LRAM test passes. */
6142 
6143  err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
6144  if (err) {
6145  printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
6146  fwname, err);
6147  asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6148  return err;
6149  }
6150  if (fw->size < 4) {
6151  printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
6152  fw->size, fwname);
6153  release_firmware(fw);
6154  asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6155  return -EINVAL;
6156  }
6157  chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
6158  (fw->data[1] << 8) | fw->data[0];
6159  asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
6160  fw->size - 4, ADV_38C1600_MEMSIZE,
6161  chksum);
6162  release_firmware(fw);
6163  if (asc_dvc->err_code)
6164  return ADV_ERROR;
6165 
6166  /*
6167  * Restore the RISC memory BIOS region.
6168  */
6169  for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6170  AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6171  bios_mem[i]);
6172  }
6173 
6174  /*
6175  * Calculate and write the microcode code checksum to the microcode
6176  * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6177  */
6178  AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
6179  AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
6180  code_sum = 0;
6181  AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
6182  for (word = begin_addr; word < end_addr; word += 2) {
6183  code_sum += AdvReadWordAutoIncLram(iop_base);
6184  }
6185  AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
6186 
6187  /*
6188  * Read microcode version and date.
6189  */
6191  asc_dvc->cfg->mcode_date);
6193  asc_dvc->cfg->mcode_version);
6194 
6195  /*
6196  * Set the chip type to indicate the ASC38C1600.
6197  */
6199 
6200  /*
6201  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6202  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6203  * cable detection and then we are able to read C_DET[3:0].
6204  *
6205  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6206  * Microcode Default Value' section below.
6207  */
6208  scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6210  scsi_cfg1 | DIS_TERM_DRV);
6211 
6212  /*
6213  * If the PCI Configuration Command Register "Parity Error Response
6214  * Control" Bit was clear (0), then set the microcode variable
6215  * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6216  * to ignore DMA parity errors.
6217  */
6218  if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
6219  AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6220  word |= CONTROL_FLAG_IGNORE_PERR;
6221  AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6222  }
6223 
6224  /*
6225  * If the BIOS control flag AIPP (Asynchronous Information
6226  * Phase Protection) disable bit is not set, then set the firmware
6227  * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6228  * AIPP checking and encoding.
6229  */
6230  if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
6231  AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6232  word |= CONTROL_FLAG_ENABLE_AIPP;
6233  AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6234  }
6235 
6236  /*
6237  * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6238  * and START_CTL_TH [3:2].
6239  */
6242 
6243  /*
6244  * Microcode operating variables for WDTR, SDTR, and command tag
6245  * queuing will be set in slave_configure() based on what a
6246  * device reports it is capable of in Inquiry byte 7.
6247  *
6248  * If SCSI Bus Resets have been disabled, then directly set
6249  * SDTR and WDTR from the EEPROM configuration. This will allow
6250  * the BIOS and warm boot to work without a SCSI bus hang on
6251  * the Inquiry caused by host and target mismatched DTR values.
6252  * Without the SCSI Bus Reset, before an Inquiry a device can't
6253  * be assumed to be in Asynchronous, Narrow mode.
6254  */
6255  if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
6257  asc_dvc->wdtr_able);
6259  asc_dvc->sdtr_able);
6260  }
6261 
6262  /*
6263  * Set microcode operating variables for DISC and SDTR_SPEED1,
6264  * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6265  * configuration values.
6266  *
6267  * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6268  * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6269  * without determining here whether the device supports SDTR.
6270  */
6272  asc_dvc->cfg->disc_enable);
6273  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
6274  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
6275  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
6276  AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
6277 
6278  /*
6279  * Set SCSI_CFG0 Microcode Default Value.
6280  *
6281  * The microcode will set the SCSI_CFG0 register using this value
6282  * after it is started below.
6283  */
6286  asc_dvc->chip_scsi_id);
6287 
6288  /*
6289  * Calculate SCSI_CFG1 Microcode Default Value.
6290  *
6291  * The microcode will set the SCSI_CFG1 register using this value
6292  * after it is started below.
6293  *
6294  * Each ASC-38C1600 function has only two cable detect bits.
6295  * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6296  */
6297  scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6298 
6299  /*
6300  * If the cable is reversed all of the SCSI_CTRL register signals
6301  * will be set. Check for and return an error if this condition is
6302  * found.
6303  */
6304  if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
6305  asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
6306  return ADV_ERROR;
6307  }
6308 
6309  /*
6310  * Each ASC-38C1600 function has two connectors. Only an HVD device
6311  * can not be connected to either connector. An LVD device or SE device
6312  * may be connected to either connecor. If an SE device is connected,
6313  * then at most Ultra speed (20 Mhz) can be used on both connectors.
6314  *
6315  * If an HVD device is attached, return an error.
6316  */
6317  if (scsi_cfg1 & HVD) {
6318  asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
6319  return ADV_ERROR;
6320  }
6321 
6322  /*
6323  * Each function in the ASC-38C1600 uses only the SE cable detect and
6324  * termination because there are two connectors for each function. Each
6325  * function may use either LVD or SE mode. Corresponding the SE automatic
6326  * termination control EEPROM bits are used for each function. Each
6327  * function has its own EEPROM. If SE automatic control is enabled for
6328  * the function, then set the termination value based on a table listed
6329  * in a_condor.h.
6330  *
6331  * If manual termination is specified in the EEPROM for the function,
6332  * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6333  * ready to be 'ored' into SCSI_CFG1.
6334  */
6335  if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
6336  struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
6337  /* SE automatic termination control is enabled. */
6338  switch (scsi_cfg1 & C_DET_SE) {
6339  /* TERM_SE_HI: on, TERM_SE_LO: on */
6340  case 0x1:
6341  case 0x2:
6342  case 0x3:
6343  asc_dvc->cfg->termination |= TERM_SE;
6344  break;
6345 
6346  case 0x0:
6347  if (PCI_FUNC(pdev->devfn) == 0) {
6348  /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6349  } else {
6350  /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6351  asc_dvc->cfg->termination |= TERM_SE_HI;
6352  }
6353  break;
6354  }
6355  }
6356 
6357  /*
6358  * Clear any set TERM_SE bits.
6359  */
6360  scsi_cfg1 &= ~TERM_SE;
6361 
6362  /*
6363  * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6364  */
6365  scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
6366 
6367  /*
6368  * Clear Big Endian and Terminator Polarity bits and set possibly
6369  * modified termination control bits in the Microcode SCSI_CFG1
6370  * Register Value.
6371  *
6372  * Big Endian bit is not used even on big endian machines.
6373  */
6374  scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
6375 
6376  /*
6377  * Set SCSI_CFG1 Microcode Default Value
6378  *
6379  * Set possibly modified termination control bits in the Microcode
6380  * SCSI_CFG1 Register Value.
6381  *
6382  * The microcode will set the SCSI_CFG1 register using this value
6383  * after it is started below.
6384  */
6385  AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
6386 
6387  /*
6388  * Set MEM_CFG Microcode Default Value
6389  *
6390  * The microcode will set the MEM_CFG register using this value
6391  * after it is started below.
6392  *
6393  * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6394  * are defined.
6395  *
6396  * ASC-38C1600 has 32KB internal memory.
6397  *
6398  * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6399  * out a special 16K Adv Library and Microcode version. After the issue
6400  * resolved, we should turn back to the 32K support. Both a_condor.h and
6401  * mcode.sas files also need to be updated.
6402  *
6403  * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6404  * BIOS_EN | RAM_SZ_32KB);
6405  */
6407  BIOS_EN | RAM_SZ_16KB);
6408 
6409  /*
6410  * Set SEL_MASK Microcode Default Value
6411  *
6412  * The microcode will set the SEL_MASK register using this value
6413  * after it is started below.
6414  */
6416  ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
6417 
6418  AdvBuildCarrierFreelist(asc_dvc);
6419 
6420  /*
6421  * Set-up the Host->RISC Initiator Command Queue (ICQ).
6422  */
6423  if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
6424  asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6425  return ADV_ERROR;
6426  }
6427  asc_dvc->carr_freelist = (ADV_CARR_T *)
6429 
6430  /*
6431  * The first command issued will be placed in the stopper carrier.
6432  */
6434 
6435  /*
6436  * Set RISC ICQ physical address start value. Initialize the
6437  * COMMA register to the same value otherwise the RISC will
6438  * prematurely detect a command is available.
6439  */
6440  AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
6442  le32_to_cpu(asc_dvc->icq_sp->carr_pa));
6443 
6444  /*
6445  * Set-up the RISC->Host Initiator Response Queue (IRQ).
6446  */
6447  if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
6448  asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6449  return ADV_ERROR;
6450  }
6451  asc_dvc->carr_freelist = (ADV_CARR_T *)
6453 
6454  /*
6455  * The first command completed by the RISC will be placed in
6456  * the stopper.
6457  *
6458  * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6459  * completed the RISC will set the ASC_RQ_STOPPER bit.
6460  */
6462 
6463  /*
6464  * Set RISC IRQ physical address start value.
6465  */
6466  AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
6467  asc_dvc->carr_pending_cnt = 0;
6468 
6472  AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
6473  AdvWriteWordRegister(iop_base, IOPW_PC, word);
6474 
6475  /* finally, finally, gentlemen, start your engine */
6477 
6478  /*
6479  * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6480  * Resets should be performed. The RISC has to be running
6481  * to issue a SCSI Bus Reset.
6482  */
6483  if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
6484  /*
6485  * If the BIOS Signature is present in memory, restore the
6486  * per TID microcode operating variables.
6487  */
6488  if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
6489  0x55AA) {
6490  /*
6491  * Restore per TID negotiated values.
6492  */
6493  AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6494  AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6495  AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6497  tagqng_able);
6498  for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6499  AdvWriteByteLram(iop_base,
6501  max_cmd[tid]);
6502  }
6503  } else {
6504  if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6505  warn_code = ASC_WARN_BUSRESET_ERROR;
6506  }
6507  }
6508  }
6509 
6510  return warn_code;
6511 }
6512 
6513 /*
6514  * Reset chip and SCSI Bus.
6515  *
6516  * Return Value:
6517  * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6518  * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6519  */
6520 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6521 {
6522  int status;
6523  ushort wdtr_able, sdtr_able, tagqng_able;
6524  ushort ppr_able = 0;
6525  uchar tid, max_cmd[ADV_MAX_TID + 1];
6526  AdvPortAddr iop_base;
6527  ushort bios_sig;
6528 
6529  iop_base = asc_dvc->iop_base;
6530 
6531  /*
6532  * Save current per TID negotiated values.
6533  */
6534  AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6535  AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6536  if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6537  AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6538  }
6539  AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6540  for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6541  AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6542  max_cmd[tid]);
6543  }
6544 
6545  /*
6546  * Force the AdvInitAsc3550/38C0800Driver() function to
6547  * perform a SCSI Bus Reset by clearing the BIOS signature word.
6548  * The initialization functions assumes a SCSI Bus Reset is not
6549  * needed if the BIOS signature word is present.
6550  */
6551  AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6553 
6554  /*
6555  * Stop chip and reset it.
6556  */
6559  mdelay(100);
6562 
6563  /*
6564  * Reset Adv Library error code, if any, and try
6565  * re-initializing the chip.
6566  */
6567  asc_dvc->err_code = 0;
6568  if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6569  status = AdvInitAsc38C1600Driver(asc_dvc);
6570  } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6571  status = AdvInitAsc38C0800Driver(asc_dvc);
6572  } else {
6573  status = AdvInitAsc3550Driver(asc_dvc);
6574  }
6575 
6576  /* Translate initialization return value to status value. */
6577  if (status == 0) {
6578  status = ADV_TRUE;
6579  } else {
6580  status = ADV_FALSE;
6581  }
6582 
6583  /*
6584  * Restore the BIOS signature word.
6585  */
6586  AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6587 
6588  /*
6589  * Restore per TID negotiated values.
6590  */
6591  AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6592  AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6593  if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6594  AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6595  }
6596  AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6597  for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6599  max_cmd[tid]);
6600  }
6601 
6602  return status;
6603 }
6604 
6605 /*
6606  * adv_async_callback() - Adv Library asynchronous event callback function.
6607  */
6608 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6609 {
6610  switch (code) {
6612  /*
6613  * The firmware detected a SCSI Bus reset.
6614  */
6615  ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6616  break;
6617 
6619  /*
6620  * Handle RDMA failure by resetting the SCSI Bus and
6621  * possibly the chip if it is unresponsive. Log the error
6622  * with a unique code.
6623  */
6624  ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6625  AdvResetChipAndSB(adv_dvc_varp);
6626  break;
6627 
6629  /*
6630  * Host generated SCSI bus reset occurred.
6631  */
6632  ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6633  break;
6634 
6635  default:
6636  ASC_DBG(0, "unknown code 0x%x\n", code);
6637  break;
6638  }
6639 }
6640 
6641 /*
6642  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6643  *
6644  * Callback function for the Wide SCSI Adv Library.
6645  */
6646 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6647 {
6648  struct asc_board *boardp;
6649  adv_req_t *reqp;
6650  adv_sgblk_t *sgblkp;
6651  struct scsi_cmnd *scp;
6652  struct Scsi_Host *shost;
6653  ADV_DCNT resid_cnt;
6654 
6655  ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6656  (ulong)adv_dvc_varp, (ulong)scsiqp);
6657  ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6658 
6659  /*
6660  * Get the adv_req_t structure for the command that has been
6661  * completed. The adv_req_t structure actually contains the
6662  * completed ADV_SCSI_REQ_Q structure.
6663  */
6664  reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6665  ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6666  if (reqp == NULL) {
6667  ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6668  return;
6669  }
6670 
6671  /*
6672  * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6673  * command that has been completed.
6674  *
6675  * Note: The adv_req_t request structure and adv_sgblk_t structure,
6676  * if any, are dropped, because a board structure pointer can not be
6677  * determined.
6678  */
6679  scp = reqp->cmndp;
6680  ASC_DBG(1, "scp 0x%p\n", scp);
6681  if (scp == NULL) {
6682  ASC_PRINT
6683  ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6684  return;
6685  }
6686  ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6687 
6688  shost = scp->device->host;
6689  ASC_STATS(shost, callback);
6690  ASC_DBG(1, "shost 0x%p\n", shost);
6691 
6692  boardp = shost_priv(shost);
6693  BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6694 
6695  /*
6696  * 'done_status' contains the command's ending status.
6697  */
6698  switch (scsiqp->done_status) {
6699  case QD_NO_ERROR:
6700  ASC_DBG(2, "QD_NO_ERROR\n");
6701  scp->result = 0;
6702 
6703  /*
6704  * Check for an underrun condition.
6705  *
6706  * If there was no error and an underrun condition, then
6707  * then return the number of underrun bytes.
6708  */
6709  resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6710  if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6711  resid_cnt <= scsi_bufflen(scp)) {
6712  ASC_DBG(1, "underrun condition %lu bytes\n",
6713  (ulong)resid_cnt);
6714  scsi_set_resid(scp, resid_cnt);
6715  }
6716  break;
6717 
6718  case QD_WITH_ERROR:
6719  ASC_DBG(2, "QD_WITH_ERROR\n");
6720  switch (scsiqp->host_status) {
6721  case QHSTA_NO_ERROR:
6722  if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6723  ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6726  /*
6727  * Note: The 'status_byte()' macro used by
6728  * target drivers defined in scsi.h shifts the
6729  * status byte returned by host drivers right
6730  * by 1 bit. This is why target drivers also
6731  * use right shifted status byte definitions.
6732  * For instance target drivers use
6733  * CHECK_CONDITION, defined to 0x1, instead of
6734  * the SCSI defined check condition value of
6735  * 0x2. Host drivers are supposed to return
6736  * the status byte as it is defined by SCSI.
6737  */
6738  scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6739  STATUS_BYTE(scsiqp->scsi_status);
6740  } else {
6741  scp->result = STATUS_BYTE(scsiqp->scsi_status);
6742  }
6743  break;
6744 
6745  default:
6746  /* Some other QHSTA error occurred. */
6747  ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6749  break;
6750  }
6751  break;
6752 
6753  case QD_ABORTED_BY_HOST:
6754  ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6755  scp->result =
6757  break;
6758 
6759  default:
6760  ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6761  scp->result =
6763  break;
6764  }
6765 
6766  /*
6767  * If the 'init_tidmask' bit isn't already set for the target and the
6768  * current request finished normally, then set the bit for the target
6769  * to indicate that a device is present.
6770  */
6771  if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6772  scsiqp->done_status == QD_NO_ERROR &&
6773  scsiqp->host_status == QHSTA_NO_ERROR) {
6774  boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6775  }
6776 
6777  asc_scsi_done(scp);
6778 
6779  /*
6780  * Free all 'adv_sgblk_t' structures allocated for the request.
6781  */
6782  while ((sgblkp = reqp->sgblkp) != NULL) {
6783  /* Remove 'sgblkp' from the request list. */
6784  reqp->sgblkp = sgblkp->next_sgblkp;
6785 
6786  /* Add 'sgblkp' to the board free list. */
6787  sgblkp->next_sgblkp = boardp->adv_sgblkp;
6788  boardp->adv_sgblkp = sgblkp;
6789  }
6790 
6791  /*
6792  * Free the adv_req_t structure used with the command by adding
6793  * it back to the board free list.
6794  */
6795  reqp->next_reqp = boardp->adv_reqp;
6796  boardp->adv_reqp = reqp;
6797 
6798  ASC_DBG(1, "done\n");
6799 }
6800 
6801 /*
6802  * Adv Library Interrupt Service Routine
6803  *
6804  * This function is called by a driver's interrupt service routine.
6805  * The function disables and re-enables interrupts.
6806  *
6807  * When a microcode idle command is completed, the ADV_DVC_VAR
6808  * 'idle_cmd_done' field is set to ADV_TRUE.
6809  *
6810  * Note: AdvISR() can be called when interrupts are disabled or even
6811  * when there is no hardware interrupt condition present. It will
6812  * always check for completed idle commands and microcode requests.
6813  * This is an important feature that shouldn't be changed because it
6814  * allows commands to be completed from polling mode loops.
6815  *
6816  * Return:
6817  * ADV_TRUE(1) - interrupt was pending
6818  * ADV_FALSE(0) - no interrupt was pending
6819  */
6820 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6821 {
6822  AdvPortAddr iop_base;
6823  uchar int_stat;
6824  ushort target_bit;
6825  ADV_CARR_T *free_carrp;
6826  ADV_VADDR irq_next_vpa;
6827  ADV_SCSI_REQ_Q *scsiq;
6828 
6829  iop_base = asc_dvc->iop_base;
6830 
6831  /* Reading the register clears the interrupt. */
6832  int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6833 
6834  if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6835  ADV_INTR_STATUS_INTRC)) == 0) {
6836  return ADV_FALSE;
6837  }
6838 
6839  /*
6840  * Notify the driver of an asynchronous microcode condition by
6841  * calling the adv_async_callback function. The function
6842  * is passed the microcode ASC_MC_INTRB_CODE byte value.
6843  */
6844  if (int_stat & ADV_INTR_STATUS_INTRB) {
6845  uchar intrb_code;
6846 
6847  AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6848 
6849  if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6850  asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6851  if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6852  asc_dvc->carr_pending_cnt != 0) {
6854  ADV_TICKLE_A);
6855  if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6856  AdvWriteByteRegister(iop_base,
6857  IOPB_TICKLE,
6858  ADV_TICKLE_NOP);
6859  }
6860  }
6861  }
6862 
6863  adv_async_callback(asc_dvc, intrb_code);
6864  }
6865 
6866  /*
6867  * Check if the IRQ stopper carrier contains a completed request.
6868  */
6869  while (((irq_next_vpa =
6870  le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6871  /*
6872  * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6873  * The RISC will have set 'areq_vpa' to a virtual address.
6874  *
6875  * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6876  * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6877  * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6878  * in AdvExeScsiQueue().
6879  */
6880  scsiq = (ADV_SCSI_REQ_Q *)
6882 
6883  /*
6884  * Request finished with good status and the queue was not
6885  * DMAed to host memory by the firmware. Set all status fields
6886  * to indicate good status.
6887  */
6888  if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6889  scsiq->done_status = QD_NO_ERROR;
6890  scsiq->host_status = scsiq->scsi_status = 0;
6891  scsiq->data_cnt = 0L;
6892  }
6893 
6894  /*
6895  * Advance the stopper pointer to the next carrier
6896  * ignoring the lower four bits. Free the previous
6897  * stopper carrier.
6898  */
6899  free_carrp = asc_dvc->irq_sp;
6900  asc_dvc->irq_sp = (ADV_CARR_T *)
6901  ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6902 
6903  free_carrp->next_vpa =
6905  asc_dvc->carr_freelist = free_carrp;
6906  asc_dvc->carr_pending_cnt--;
6907 
6908  target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6909 
6910  /*
6911  * Clear request microcode control flag.
6912  */
6913  scsiq->cntl = 0;
6914 
6915  /*
6916  * Notify the driver of the completed request by passing
6917  * the ADV_SCSI_REQ_Q pointer to its callback function.
6918  */
6919  scsiq->a_flag |= ADV_SCSIQ_DONE;
6920  adv_isr_callback(asc_dvc, scsiq);
6921  /*
6922  * Note: After the driver callback function is called, 'scsiq'
6923  * can no longer be referenced.
6924  *
6925  * Fall through and continue processing other completed
6926  * requests...
6927  */
6928  }
6929  return ADV_TRUE;
6930 }
6931 
6932 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6933 {
6934  if (asc_dvc->err_code == 0) {
6935  asc_dvc->err_code = err_code;
6936  AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6937  err_code);
6938  }
6939  return err_code;
6940 }
6941 
6942 static void AscAckInterrupt(PortAddr iop_base)
6943 {
6944  uchar host_flag;
6945  uchar risc_flag;
6946  ushort loop;
6947 
6948  loop = 0;
6949  do {
6950  risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6951  if (loop++ > 0x7FFF) {
6952  break;
6953  }
6954  } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6955  host_flag =
6956  AscReadLramByte(iop_base,
6958  AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6959  (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6960  AscSetChipStatus(iop_base, CIW_INT_ACK);
6961  loop = 0;
6962  while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6963  AscSetChipStatus(iop_base, CIW_INT_ACK);
6964  if (loop++ > 3) {
6965  break;
6966  }
6967  }
6968  AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6969 }
6970 
6971 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6972 {
6973  const uchar *period_table;
6974  int max_index;
6975  int min_index;
6976  int i;
6977 
6978  period_table = asc_dvc->sdtr_period_tbl;
6979  max_index = (int)asc_dvc->max_sdtr_index;
6980  min_index = (int)asc_dvc->min_sdtr_index;
6981  if ((syn_time <= period_table[max_index])) {
6982  for (i = min_index; i < (max_index - 1); i++) {
6983  if (syn_time <= period_table[i]) {
6984  return (uchar)i;
6985  }
6986  }
6987  return (uchar)max_index;
6988  } else {
6989  return (uchar)(max_index + 1);
6990  }
6991 }
6992 
6993 static uchar
6994 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6995 {
6996  EXT_MSG sdtr_buf;
6997  uchar sdtr_period_index;
6998  PortAddr iop_base;
6999 
7000  iop_base = asc_dvc->iop_base;
7001  sdtr_buf.msg_type = EXTENDED_MESSAGE;
7002  sdtr_buf.msg_len = MS_SDTR_LEN;
7003  sdtr_buf.msg_req = EXTENDED_SDTR;
7004  sdtr_buf.xfer_period = sdtr_period;
7005  sdtr_offset &= ASC_SYN_MAX_OFFSET;
7006  sdtr_buf.req_ack_offset = sdtr_offset;
7007  sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7008  if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
7009  AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7010  (uchar *)&sdtr_buf,
7011  sizeof(EXT_MSG) >> 1);
7012  return ((sdtr_period_index << 4) | sdtr_offset);
7013  } else {
7014  sdtr_buf.req_ack_offset = 0;
7015  AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7016  (uchar *)&sdtr_buf,
7017  sizeof(EXT_MSG) >> 1);
7018  return 0;
7019  }
7020 }
7021 
7022 static uchar
7023 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
7024 {
7025  uchar byte;
7026  uchar sdtr_period_ix;
7027 
7028  sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7029  if (sdtr_period_ix > asc_dvc->max_sdtr_index)
7030  return 0xFF;
7031  byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
7032  return byte;
7033 }
7034 
7035 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
7036 {
7037  ASC_SCSI_BIT_ID_TYPE org_id;
7038  int i;
7039  int sta = TRUE;
7040 
7041  AscSetBank(iop_base, 1);
7042  org_id = AscReadChipDvcID(iop_base);
7043  for (i = 0; i <= ASC_MAX_TID; i++) {
7044  if (org_id == (0x01 << i))
7045  break;
7046  }
7047  org_id = (ASC_SCSI_BIT_ID_TYPE) i;
7048  AscWriteChipDvcID(iop_base, id);
7049  if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
7050  AscSetBank(iop_base, 0);
7051  AscSetChipSyn(iop_base, sdtr_data);
7052  if (AscGetChipSyn(iop_base) != sdtr_data) {
7053  sta = FALSE;
7054  }
7055  } else {
7056  sta = FALSE;
7057  }
7058  AscSetBank(iop_base, 1);
7059  AscWriteChipDvcID(iop_base, org_id);
7060  AscSetBank(iop_base, 0);
7061  return (sta);
7062 }
7063 
7064 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
7065 {
7066  AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7067  AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
7068 }
7069 
7070 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
7071 {
7072  EXT_MSG ext_msg;
7073  EXT_MSG out_msg;
7074  ushort halt_q_addr;
7075  int sdtr_accept;
7076  ushort int_halt_code;
7077  ASC_SCSI_BIT_ID_TYPE scsi_busy;
7079  PortAddr iop_base;
7080  uchar tag_code;
7081  uchar q_status;
7082  uchar halt_qp;
7083  uchar sdtr_data;
7084  uchar target_ix;
7085  uchar q_cntl, tid_no;
7086  uchar cur_dvc_qng;
7087  uchar asyn_sdtr;
7089  struct asc_board *boardp;
7090 
7091  BUG_ON(!asc_dvc->drv_ptr);
7092  boardp = asc_dvc->drv_ptr;
7093 
7094  iop_base = asc_dvc->iop_base;
7095  int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
7096 
7097  halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
7098  halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
7099  target_ix = AscReadLramByte(iop_base,
7100  (ushort)(halt_q_addr +
7102  q_cntl = AscReadLramByte(iop_base,
7103  (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7104  tid_no = ASC_TIX_TO_TID(target_ix);
7105  target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
7106  if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7107  asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
7108  } else {
7109  asyn_sdtr = 0;
7110  }
7111  if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
7112  if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7113  AscSetChipSDTR(iop_base, 0, tid_no);
7114  boardp->sdtr_data[tid_no] = 0;
7115  }
7116  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7117  return (0);
7118  } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
7119  if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7120  AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7121  boardp->sdtr_data[tid_no] = asyn_sdtr;
7122  }
7123  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7124  return (0);
7125  } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
7126  AscMemWordCopyPtrFromLram(iop_base,
7128  (uchar *)&ext_msg,
7129  sizeof(EXT_MSG) >> 1);
7130 
7131  if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7132  ext_msg.msg_req == EXTENDED_SDTR &&
7133  ext_msg.msg_len == MS_SDTR_LEN) {
7134  sdtr_accept = TRUE;
7135  if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
7136 
7137  sdtr_accept = FALSE;
7138  ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
7139  }
7140  if ((ext_msg.xfer_period <
7141  asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
7142  || (ext_msg.xfer_period >
7143  asc_dvc->sdtr_period_tbl[asc_dvc->
7144  max_sdtr_index])) {
7145  sdtr_accept = FALSE;
7146  ext_msg.xfer_period =
7147  asc_dvc->sdtr_period_tbl[asc_dvc->
7148  min_sdtr_index];
7149  }
7150  if (sdtr_accept) {
7151  sdtr_data =
7152  AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
7153  ext_msg.req_ack_offset);
7154  if ((sdtr_data == 0xFF)) {
7155 
7156  q_cntl |= QC_MSG_OUT;
7157  asc_dvc->init_sdtr &= ~target_id;
7158  asc_dvc->sdtr_done &= ~target_id;
7159  AscSetChipSDTR(iop_base, asyn_sdtr,
7160  tid_no);
7161  boardp->sdtr_data[tid_no] = asyn_sdtr;
7162  }
7163  }
7164  if (ext_msg.req_ack_offset == 0) {
7165 
7166  q_cntl &= ~QC_MSG_OUT;
7167  asc_dvc->init_sdtr &= ~target_id;
7168  asc_dvc->sdtr_done &= ~target_id;
7169  AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7170  } else {
7171  if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
7172  q_cntl &= ~QC_MSG_OUT;
7173  asc_dvc->sdtr_done |= target_id;
7174  asc_dvc->init_sdtr |= target_id;
7175  asc_dvc->pci_fix_asyn_xfer &=
7176  ~target_id;
7177  sdtr_data =
7178  AscCalSDTRData(asc_dvc,
7179  ext_msg.xfer_period,
7180  ext_msg.
7181  req_ack_offset);
7182  AscSetChipSDTR(iop_base, sdtr_data,
7183  tid_no);
7184  boardp->sdtr_data[tid_no] = sdtr_data;
7185  } else {
7186  q_cntl |= QC_MSG_OUT;
7187  AscMsgOutSDTR(asc_dvc,
7188  ext_msg.xfer_period,
7189  ext_msg.req_ack_offset);
7190  asc_dvc->pci_fix_asyn_xfer &=
7191  ~target_id;
7192  sdtr_data =
7193  AscCalSDTRData(asc_dvc,
7194  ext_msg.xfer_period,
7195  ext_msg.
7196  req_ack_offset);
7197  AscSetChipSDTR(iop_base, sdtr_data,
7198  tid_no);
7199  boardp->sdtr_data[tid_no] = sdtr_data;
7200  asc_dvc->sdtr_done |= target_id;
7201  asc_dvc->init_sdtr |= target_id;
7202  }
7203  }
7204 
7205  AscWriteLramByte(iop_base,
7206  (ushort)(halt_q_addr +
7208  q_cntl);
7209  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7210  return (0);
7211  } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7212  ext_msg.msg_req == EXTENDED_WDTR &&
7213  ext_msg.msg_len == MS_WDTR_LEN) {
7214 
7215  ext_msg.wdtr_width = 0;
7216  AscMemWordCopyPtrToLram(iop_base,
7218  (uchar *)&ext_msg,
7219  sizeof(EXT_MSG) >> 1);
7220  q_cntl |= QC_MSG_OUT;
7221  AscWriteLramByte(iop_base,
7222  (ushort)(halt_q_addr +
7224  q_cntl);
7225  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7226  return (0);
7227  } else {
7228 
7229  ext_msg.msg_type = MESSAGE_REJECT;
7230  AscMemWordCopyPtrToLram(iop_base,
7232  (uchar *)&ext_msg,
7233  sizeof(EXT_MSG) >> 1);
7234  q_cntl |= QC_MSG_OUT;
7235  AscWriteLramByte(iop_base,
7236  (ushort)(halt_q_addr +
7238  q_cntl);
7239  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7240  return (0);
7241  }
7242  } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
7243 
7244  q_cntl |= QC_REQ_SENSE;
7245 
7246  if ((asc_dvc->init_sdtr & target_id) != 0) {
7247 
7248  asc_dvc->sdtr_done &= ~target_id;
7249 
7250  sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7251  q_cntl |= QC_MSG_OUT;
7252  AscMsgOutSDTR(asc_dvc,
7253  asc_dvc->
7254  sdtr_period_tbl[(sdtr_data >> 4) &
7255  (uchar)(asc_dvc->
7256  max_sdtr_index -
7257  1)],
7258  (uchar)(sdtr_data & (uchar)
7259  ASC_SYN_MAX_OFFSET));
7260  }
7261 
7262  AscWriteLramByte(iop_base,
7263  (ushort)(halt_q_addr +
7264  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7265 
7266  tag_code = AscReadLramByte(iop_base,
7267  (ushort)(halt_q_addr + (ushort)
7269  tag_code &= 0xDC;
7270  if ((asc_dvc->pci_fix_asyn_xfer & target_id)
7271  && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
7272  ) {
7273 
7274  tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7276 
7277  }
7278  AscWriteLramByte(iop_base,
7279  (ushort)(halt_q_addr +
7281  tag_code);
7282 
7283  q_status = AscReadLramByte(iop_base,
7284  (ushort)(halt_q_addr + (ushort)
7286  q_status |= (QS_READY | QS_BUSY);
7287  AscWriteLramByte(iop_base,
7288  (ushort)(halt_q_addr +
7290  q_status);
7291 
7292  scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
7293  scsi_busy &= ~target_id;
7294  AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7295 
7296  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7297  return (0);
7298  } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
7299 
7300  AscMemWordCopyPtrFromLram(iop_base,
7302  (uchar *)&out_msg,
7303  sizeof(EXT_MSG) >> 1);
7304 
7305  if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
7306  (out_msg.msg_len == MS_SDTR_LEN) &&
7307  (out_msg.msg_req == EXTENDED_SDTR)) {
7308 
7309  asc_dvc->init_sdtr &= ~target_id;
7310  asc_dvc->sdtr_done &= ~target_id;
7311  AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7312  boardp->sdtr_data[tid_no] = asyn_sdtr;
7313  }
7314  q_cntl &= ~QC_MSG_OUT;
7315  AscWriteLramByte(iop_base,
7316  (ushort)(halt_q_addr +
7317  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7318  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7319  return (0);
7320  } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
7321 
7322  scsi_status = AscReadLramByte(iop_base,
7323  (ushort)((ushort)halt_q_addr +
7324  (ushort)
7326  cur_dvc_qng =
7327  AscReadLramByte(iop_base,
7329  (ushort)target_ix));
7330  if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
7331 
7332  scsi_busy = AscReadLramByte(iop_base,
7334  scsi_busy |= target_id;
7335  AscWriteLramByte(iop_base,
7336  (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7337  asc_dvc->queue_full_or_busy |= target_id;
7338 
7339  if (scsi_status == SAM_STAT_TASK_SET_FULL) {
7340  if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
7341  cur_dvc_qng -= 1;
7342  asc_dvc->max_dvc_qng[tid_no] =
7343  cur_dvc_qng;
7344 
7345  AscWriteLramByte(iop_base,
7346  (ushort)((ushort)
7348  + (ushort)
7349  tid_no),
7350  cur_dvc_qng);
7351 
7352  /*
7353  * Set the device queue depth to the
7354  * number of active requests when the
7355  * QUEUE FULL condition was encountered.
7356  */
7357  boardp->queue_full |= target_id;
7358  boardp->queue_full_cnt[tid_no] =
7359  cur_dvc_qng;
7360  }
7361  }
7362  }
7363  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7364  return (0);
7365  }
7366 #if CC_VERY_LONG_SG_LIST
7367  else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
7368  uchar q_no;
7369  ushort q_addr;
7370  uchar sg_wk_q_no;
7371  uchar first_sg_wk_q_no;
7372  ASC_SCSI_Q *scsiq; /* Ptr to driver request. */
7373  ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */
7374  ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */
7375  ushort sg_list_dwords;
7376  ushort sg_entry_cnt;
7377  uchar next_qp;
7378  int i;
7379 
7380  q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
7381  if (q_no == ASC_QLINK_END)
7382  return 0;
7383 
7384  q_addr = ASC_QNO_TO_QADDR(q_no);
7385 
7386  /*
7387  * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7388  * structure pointer using a macro provided by the driver.
7389  * The ASC_SCSI_REQ pointer provides a pointer to the
7390  * host ASC_SG_HEAD structure.
7391  */
7392  /* Read request's SRB pointer. */
7393  scsiq = (ASC_SCSI_Q *)
7394  ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
7395  (ushort)
7396  (q_addr +
7397  ASC_SCSIQ_D_SRBPTR))));
7398 
7399  /*
7400  * Get request's first and working SG queue.
7401  */
7402  sg_wk_q_no = AscReadLramByte(iop_base,
7403  (ushort)(q_addr +
7405 
7406  first_sg_wk_q_no = AscReadLramByte(iop_base,
7407  (ushort)(q_addr +
7409 
7410  /*
7411  * Reset request's working SG queue back to the
7412  * first SG queue.
7413  */
7414  AscWriteLramByte(iop_base,
7415  (ushort)(q_addr +
7417  first_sg_wk_q_no);
7418 
7419  sg_head = scsiq->sg_head;
7420 
7421  /*
7422  * Set sg_entry_cnt to the number of SG elements
7423  * that will be completed on this interrupt.
7424  *
7425  * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7426  * SG elements. The data_cnt and data_addr fields which
7427  * add 1 to the SG element capacity are not used when
7428  * restarting SG handling after a halt.
7429  */
7430  if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
7431  sg_entry_cnt = ASC_MAX_SG_LIST - 1;
7432 
7433  /*
7434  * Keep track of remaining number of SG elements that
7435  * will need to be handled on the next interrupt.
7436  */
7437  scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
7438  } else {
7439  sg_entry_cnt = scsiq->remain_sg_entry_cnt;
7440  scsiq->remain_sg_entry_cnt = 0;
7441  }
7442 
7443  /*
7444  * Copy SG elements into the list of allocated SG queues.
7445  *
7446  * Last index completed is saved in scsiq->next_sg_index.
7447  */
7448  next_qp = first_sg_wk_q_no;
7449  q_addr = ASC_QNO_TO_QADDR(next_qp);
7450  scsi_sg_q.sg_head_qp = q_no;
7451  scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7452  for (i = 0; i < sg_head->queue_cnt; i++) {
7453  scsi_sg_q.seq_no = i + 1;
7454  if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7455  sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7456  sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7457  /*
7458  * After very first SG queue RISC FW uses next
7459  * SG queue first element then checks sg_list_cnt
7460  * against zero and then decrements, so set
7461  * sg_list_cnt 1 less than number of SG elements
7462  * in each SG queue.
7463  */
7464  scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
7465  scsi_sg_q.sg_cur_list_cnt =
7466  ASC_SG_LIST_PER_Q - 1;
7467  } else {
7468  /*
7469  * This is the last SG queue in the list of
7470  * allocated SG queues. If there are more
7471  * SG elements than will fit in the allocated
7472  * queues, then set the QCSG_SG_XFER_MORE flag.
7473  */
7474  if (scsiq->remain_sg_entry_cnt != 0) {
7475  scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
7476  } else {
7477  scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7478  }
7479  /* equals sg_entry_cnt * 2 */
7480  sg_list_dwords = sg_entry_cnt << 1;
7481  scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
7482  scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
7483  sg_entry_cnt = 0;
7484  }
7485 
7486  scsi_sg_q.q_no = next_qp;
7487  AscMemWordCopyPtrToLram(iop_base,
7488  q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7489  (uchar *)&scsi_sg_q,
7490  sizeof(ASC_SG_LIST_Q) >> 1);
7491 
7492  AscMemDWordCopyPtrToLram(iop_base,
7493  q_addr + ASC_SGQ_LIST_BEG,
7494  (uchar *)&sg_head->
7495  sg_list[scsiq->next_sg_index],
7496  sg_list_dwords);
7497 
7498  scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7499 
7500  /*
7501  * If the just completed SG queue contained the
7502  * last SG element, then no more SG queues need
7503  * to be written.
7504  */
7505  if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7506  break;
7507  }
7508 
7509  next_qp = AscReadLramByte(iop_base,
7510  (ushort)(q_addr +
7511  ASC_SCSIQ_B_FWD));
7512  q_addr = ASC_QNO_TO_QADDR(next_qp);
7513  }
7514 
7515  /*
7516  * Clear the halt condition so the RISC will be restarted
7517  * after the return.
7518  */
7519  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7520  return (0);
7521  }
7522 #endif /* CC_VERY_LONG_SG_LIST */
7523  return (0);
7524 }
7525 
7526 /*
7527  * void
7528  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7529  *
7530  * Calling/Exit State:
7531  * none
7532  *
7533  * Description:
7534  * Input an ASC_QDONE_INFO structure from the chip
7535  */
7536 static void
7537 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7538 {
7539  int i;
7540  ushort word;
7541 
7542  AscSetChipLramAddr(iop_base, s_addr);
7543  for (i = 0; i < 2 * words; i += 2) {
7544  if (i == 10) {
7545  continue;
7546  }
7547  word = inpw(iop_base + IOP_RAM_DATA);
7548  inbuf[i] = word & 0xff;
7549  inbuf[i + 1] = (word >> 8) & 0xff;
7550  }
7551  ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7552 }
7553 
7554 static uchar
7555 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7556  ushort q_addr,
7557  ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7558 {
7559  ushort _val;
7560  uchar sg_queue_cnt;
7561 
7562  DvcGetQinfo(iop_base,
7563  q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7564  (uchar *)scsiq,
7565  (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7566 
7567  _val = AscReadLramWord(iop_base,
7568  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7569  scsiq->q_status = (uchar)_val;
7570  scsiq->q_no = (uchar)(_val >> 8);
7571  _val = AscReadLramWord(iop_base,
7572  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7573  scsiq->cntl = (uchar)_val;
7574  sg_queue_cnt = (uchar)(_val >> 8);
7575  _val = AscReadLramWord(iop_base,
7576  (ushort)(q_addr +
7578  scsiq->sense_len = (uchar)_val;
7579  scsiq->extra_bytes = (uchar)(_val >> 8);
7580 
7581  /*
7582  * Read high word of remain bytes from alternate location.
7583  */
7584  scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7585  (ushort)(q_addr +
7586  (ushort)
7588  << 16);
7589  /*
7590  * Read low word of remain bytes from original location.
7591  */
7592  scsiq->remain_bytes += AscReadLramWord(iop_base,
7593  (ushort)(q_addr + (ushort)
7595 
7596  scsiq->remain_bytes &= max_dma_count;
7597  return sg_queue_cnt;
7598 }
7599 
7600 /*
7601  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7602  *
7603  * Interrupt callback function for the Narrow SCSI Asc Library.
7604  */
7605 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7606 {
7607  struct asc_board *boardp;
7608  struct scsi_cmnd *scp;
7609  struct Scsi_Host *shost;
7610 
7611  ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7612  ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7613 
7614  scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7615  if (!scp)
7616  return;
7617 
7618  ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7619 
7620  shost = scp->device->host;
7621  ASC_STATS(shost, callback);
7622  ASC_DBG(1, "shost 0x%p\n", shost);
7623 
7624  boardp = shost_priv(shost);
7625  BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7626 
7627  dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7629  /*
7630  * 'qdonep' contains the command's ending status.
7631  */
7632  switch (qdonep->d3.done_stat) {
7633  case QD_NO_ERROR:
7634  ASC_DBG(2, "QD_NO_ERROR\n");
7635  scp->result = 0;
7636 
7637  /*
7638  * Check for an underrun condition.
7639  *
7640  * If there was no error and an underrun condition, then
7641  * return the number of underrun bytes.
7642  */
7643  if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7644  qdonep->remain_bytes <= scsi_bufflen(scp)) {
7645  ASC_DBG(1, "underrun condition %u bytes\n",
7646  (unsigned)qdonep->remain_bytes);
7647  scsi_set_resid(scp, qdonep->remain_bytes);
7648  }
7649  break;
7650 
7651  case QD_WITH_ERROR:
7652  ASC_DBG(2, "QD_WITH_ERROR\n");
7653  switch (qdonep->d3.host_stat) {
7654  case QHSTA_NO_ERROR:
7655  if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7656  ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7659  /*
7660  * Note: The 'status_byte()' macro used by
7661  * target drivers defined in scsi.h shifts the
7662  * status byte returned by host drivers right
7663  * by 1 bit. This is why target drivers also
7664  * use right shifted status byte definitions.
7665  * For instance target drivers use
7666  * CHECK_CONDITION, defined to 0x1, instead of
7667  * the SCSI defined check condition value of
7668  * 0x2. Host drivers are supposed to return
7669  * the status byte as it is defined by SCSI.
7670  */
7671  scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7672  STATUS_BYTE(qdonep->d3.scsi_stat);
7673  } else {
7674  scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7675  }
7676  break;
7677 
7678  default:
7679  /* QHSTA error occurred */
7680  ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7682  break;
7683  }
7684  break;
7685 
7686  case QD_ABORTED_BY_HOST:
7687  ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7688  scp->result =
7689  HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7690  scsi_msg) |
7691  STATUS_BYTE(qdonep->d3.scsi_stat);
7692  break;
7693 
7694  default:
7695  ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7696  scp->result =
7697  HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7698  scsi_msg) |
7699  STATUS_BYTE(qdonep->d3.scsi_stat);
7700  break;
7701  }
7702 
7703  /*
7704  * If the 'init_tidmask' bit isn't already set for the target and the
7705  * current request finished normally, then set the bit for the target
7706  * to indicate that a device is present.
7707  */
7708  if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7709  qdonep->d3.done_stat == QD_NO_ERROR &&
7710  qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7711  boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7712  }
7713 
7714  asc_scsi_done(scp);
7715 }
7716 
7717 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7718 {
7719  uchar next_qp;
7720  uchar n_q_used;
7721  uchar sg_list_qp;
7722  uchar sg_queue_cnt;
7723  uchar q_cnt;
7724  uchar done_q_tail;
7725  uchar tid_no;
7726  ASC_SCSI_BIT_ID_TYPE scsi_busy;
7728  PortAddr iop_base;
7729  ushort q_addr;
7730  ushort sg_q_addr;
7731  uchar cur_target_qng;
7732  ASC_QDONE_INFO scsiq_buf;
7733  ASC_QDONE_INFO *scsiq;
7734  int false_overrun;
7735 
7736  iop_base = asc_dvc->iop_base;
7737  n_q_used = 1;
7738  scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7739  done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7740  q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7741  next_qp = AscReadLramByte(iop_base,
7742  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7743  if (next_qp != ASC_QLINK_END) {
7744  AscPutVarDoneQTail(iop_base, next_qp);
7745  q_addr = ASC_QNO_TO_QADDR(next_qp);
7746  sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7747  asc_dvc->max_dma_count);
7748  AscWriteLramByte(iop_base,
7749  (ushort)(q_addr +
7751  (uchar)(scsiq->
7752  q_status & (uchar)~(QS_READY |
7753  QS_ABORTED)));
7754  tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7755  target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7756  if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7757  sg_q_addr = q_addr;
7758  sg_list_qp = next_qp;
7759  for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7760  sg_list_qp = AscReadLramByte(iop_base,
7761  (ushort)(sg_q_addr
7762  + (ushort)
7763  ASC_SCSIQ_B_FWD));
7764  sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7765  if (sg_list_qp == ASC_QLINK_END) {
7766  AscSetLibErrorCode(asc_dvc,
7768  scsiq->d3.done_stat = QD_WITH_ERROR;
7769  scsiq->d3.host_stat =
7771  goto FATAL_ERR_QDONE;
7772  }
7773  AscWriteLramByte(iop_base,
7774  (ushort)(sg_q_addr + (ushort)
7775  ASC_SCSIQ_B_STATUS),
7776  QS_FREE);
7777  }
7778  n_q_used = sg_queue_cnt + 1;
7779  AscPutVarDoneQTail(iop_base, sg_list_qp);
7780  }
7781  if (asc_dvc->queue_full_or_busy & target_id) {
7782  cur_target_qng = AscReadLramByte(iop_base,
7783  (ushort)((ushort)
7784  ASC_QADR_BEG
7785  + (ushort)
7786  scsiq->d2.
7787  target_ix));
7788  if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7789  scsi_busy = AscReadLramByte(iop_base, (ushort)
7790  ASCV_SCSIBUSY_B);
7791  scsi_busy &= ~target_id;
7792  AscWriteLramByte(iop_base,
7794  scsi_busy);
7795  asc_dvc->queue_full_or_busy &= ~target_id;
7796  }
7797  }
7798  if (asc_dvc->cur_total_qng >= n_q_used) {
7799  asc_dvc->cur_total_qng -= n_q_used;
7800  if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7801  asc_dvc->cur_dvc_qng[tid_no]--;
7802  }
7803  } else {
7804  AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7805  scsiq->d3.done_stat = QD_WITH_ERROR;
7806  goto FATAL_ERR_QDONE;
7807  }
7808  if ((scsiq->d2.srb_ptr == 0UL) ||
7809  ((scsiq->q_status & QS_ABORTED) != 0)) {
7810  return (0x11);
7811  } else if (scsiq->q_status == QS_DONE) {
7812  false_overrun = FALSE;
7813  if (scsiq->extra_bytes != 0) {
7814  scsiq->remain_bytes +=
7815  (ADV_DCNT)scsiq->extra_bytes;
7816  }
7817  if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7818  if (scsiq->d3.host_stat ==
7820  if ((scsiq->
7821  cntl & (QC_DATA_IN | QC_DATA_OUT))
7822  == 0) {
7823  scsiq->d3.done_stat =
7824  QD_NO_ERROR;
7825  scsiq->d3.host_stat =
7827  } else if (false_overrun) {
7828  scsiq->d3.done_stat =
7829  QD_NO_ERROR;
7830  scsiq->d3.host_stat =
7832  }
7833  } else if (scsiq->d3.host_stat ==
7835  AscStopChip(iop_base);
7836  AscSetChipControl(iop_base,
7838  | CC_HALT));
7839  udelay(60);
7840  AscSetChipControl(iop_base, CC_HALT);
7841  AscSetChipStatus(iop_base,
7843  AscSetChipStatus(iop_base, 0);
7844  AscSetChipControl(iop_base, 0);
7845  }
7846  }
7847  if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7848  asc_isr_callback(asc_dvc, scsiq);
7849  } else {
7850  if ((AscReadLramByte(iop_base,
7851  (ushort)(q_addr + (ushort)
7853  == START_STOP)) {
7854  asc_dvc->unit_not_ready &= ~target_id;
7855  if (scsiq->d3.done_stat != QD_NO_ERROR) {
7856  asc_dvc->start_motor &=
7857  ~target_id;
7858  }
7859  }
7860  }
7861  return (1);
7862  } else {
7863  AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7864  FATAL_ERR_QDONE:
7865  if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7866  asc_isr_callback(asc_dvc, scsiq);
7867  }
7868  return (0x80);
7869  }
7870  }
7871  return (0);
7872 }
7873 
7874 static int AscISR(ASC_DVC_VAR *asc_dvc)
7875 {
7876  ASC_CS_TYPE chipstat;
7877  PortAddr iop_base;
7878  ushort saved_ram_addr;
7879  uchar ctrl_reg;
7880  uchar saved_ctrl_reg;
7881  int int_pending;
7882  int status;
7883  uchar host_flag;
7884 
7885  iop_base = asc_dvc->iop_base;
7886  int_pending = FALSE;
7887 
7888  if (AscIsIntPending(iop_base) == 0)
7889  return int_pending;
7890 
7891  if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7892  return ERR;
7893  }
7894  if (asc_dvc->in_critical_cnt != 0) {
7895  AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7896  return ERR;
7897  }
7898  if (asc_dvc->is_in_int) {
7899  AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7900  return ERR;
7901  }
7902  asc_dvc->is_in_int = TRUE;
7903  ctrl_reg = AscGetChipControl(iop_base);
7904  saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7906  chipstat = AscGetChipStatus(iop_base);
7907  if (chipstat & CSW_SCSI_RESET_LATCH) {
7908  if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7909  int i = 10;
7910  int_pending = TRUE;
7911  asc_dvc->sdtr_done = 0;
7912  saved_ctrl_reg &= (uchar)(~CC_HALT);
7913  while ((AscGetChipStatus(iop_base) &
7914  CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7915  mdelay(100);
7916  }
7917  AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7918  AscSetChipControl(iop_base, CC_HALT);
7920  AscSetChipStatus(iop_base, 0);
7921  chipstat = AscGetChipStatus(iop_base);
7922  }
7923  }
7924  saved_ram_addr = AscGetChipLramAddr(iop_base);
7925  host_flag = AscReadLramByte(iop_base,
7926  ASCV_HOST_FLAG_B) &
7928  AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7929  (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7930  if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7931  AscAckInterrupt(iop_base);
7932  int_pending = TRUE;
7933  if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7934  if (AscIsrChipHalted(asc_dvc) == ERR) {
7935  goto ISR_REPORT_QDONE_FATAL_ERROR;
7936  } else {
7937  saved_ctrl_reg &= (uchar)(~CC_HALT);
7938  }
7939  } else {
7940  ISR_REPORT_QDONE_FATAL_ERROR:
7941  if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7942  while (((status =
7943  AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7944  }
7945  } else {
7946  do {
7947  if ((status =
7948  AscIsrQDone(asc_dvc)) == 1) {
7949  break;
7950  }
7951  } while (status == 0x11);
7952  }
7953  if ((status & 0x80) != 0)
7954  int_pending = ERR;
7955  }
7956  }
7957  AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7958  AscSetChipLramAddr(iop_base, saved_ram_addr);
7959  AscSetChipControl(iop_base, saved_ctrl_reg);
7960  asc_dvc->is_in_int = FALSE;
7961  return int_pending;
7962 }
7963 
7964 /*
7965  * advansys_reset()
7966  *
7967  * Reset the bus associated with the command 'scp'.
7968  *
7969  * This function runs its own thread. Interrupts must be blocked but
7970  * sleeping is allowed and no locking other than for host structures is
7971  * required. Returns SUCCESS or FAILED.
7972  */
7973 static int advansys_reset(struct scsi_cmnd *scp)
7974 {
7975  struct Scsi_Host *shost = scp->device->host;
7976  struct asc_board *boardp = shost_priv(shost);
7977  unsigned long flags;
7978  int status;
7979  int ret = SUCCESS;
7980 
7981  ASC_DBG(1, "0x%p\n", scp);
7982 
7983  ASC_STATS(shost, reset);
7984 
7985  scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7986 
7987  if (ASC_NARROW_BOARD(boardp)) {
7988  ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7989 
7990  /* Reset the chip and SCSI bus. */
7991  ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7992  status = AscInitAsc1000Driver(asc_dvc);
7993 
7994  /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7995  if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7996  scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7997  "0x%x, status: 0x%x\n", asc_dvc->err_code,
7998  status);
7999  ret = FAILED;
8000  } else if (status) {
8001  scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
8002  "0x%x\n", status);
8003  } else {
8004  scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8005  "successful\n");
8006  }
8007 
8008  ASC_DBG(1, "after AscInitAsc1000Driver()\n");
8009  spin_lock_irqsave(shost->host_lock, flags);
8010  } else {
8011  /*
8012  * If the suggest reset bus flags are set, then reset the bus.
8013  * Otherwise only reset the device.
8014  */
8015  ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8016 
8017  /*
8018  * Reset the target's SCSI bus.
8019  */
8020  ASC_DBG(1, "before AdvResetChipAndSB()\n");
8021  switch (AdvResetChipAndSB(adv_dvc)) {
8022  case ASC_TRUE:
8023  scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8024  "successful\n");
8025  break;
8026  case ASC_FALSE:
8027  default:
8028  scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
8029  ret = FAILED;
8030  break;
8031  }
8032  spin_lock_irqsave(shost->host_lock, flags);
8033  AdvISR(adv_dvc);
8034  }
8035 
8036  /* Save the time of the most recently completed reset. */
8037  boardp->last_reset = jiffies;
8038  spin_unlock_irqrestore(shost->host_lock, flags);
8039 
8040  ASC_DBG(1, "ret %d\n", ret);
8041 
8042  return ret;
8043 }
8044 
8045 /*
8046  * advansys_biosparam()
8047  *
8048  * Translate disk drive geometry if the "BIOS greater than 1 GB"
8049  * support is enabled for a drive.
8050  *
8051  * ip (information pointer) is an int array with the following definition:
8052  * ip[0]: heads
8053  * ip[1]: sectors
8054  * ip[2]: cylinders
8055  */
8056 static int
8057 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
8058  sector_t capacity, int ip[])
8059 {
8060  struct asc_board *boardp = shost_priv(sdev->host);
8061 
8062  ASC_DBG(1, "begin\n");
8063  ASC_STATS(sdev->host, biosparam);
8064  if (ASC_NARROW_BOARD(boardp)) {
8065  if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
8066  ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
8067  ip[0] = 255;
8068  ip[1] = 63;
8069  } else {
8070  ip[0] = 64;
8071  ip[1] = 32;
8072  }
8073  } else {
8074  if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
8075  BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
8076  ip[0] = 255;
8077  ip[1] = 63;
8078  } else {
8079  ip[0] = 64;
8080  ip[1] = 32;
8081  }
8082  }
8083  ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
8084  ASC_DBG(1, "end\n");
8085  return 0;
8086 }
8087 
8088 /*
8089  * First-level interrupt handler.
8090  *
8091  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8092  */
8093 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
8094 {
8095  struct Scsi_Host *shost = dev_id;
8096  struct asc_board *boardp = shost_priv(shost);
8097  irqreturn_t result = IRQ_NONE;
8098 
8099  ASC_DBG(2, "boardp 0x%p\n", boardp);
8100  spin_lock(shost->host_lock);
8101  if (ASC_NARROW_BOARD(boardp)) {
8102  if (AscIsIntPending(shost->io_port)) {
8103  result = IRQ_HANDLED;
8104  ASC_STATS(shost, interrupt);
8105  ASC_DBG(1, "before AscISR()\n");
8106  AscISR(&boardp->dvc_var.asc_dvc_var);
8107  }
8108  } else {
8109  ASC_DBG(1, "before AdvISR()\n");
8110  if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
8111  result = IRQ_HANDLED;
8112  ASC_STATS(shost, interrupt);
8113  }
8114  }
8115  spin_unlock(shost->host_lock);
8116 
8117  ASC_DBG(1, "end\n");
8118  return result;
8119 }
8120 
8121 static int AscHostReqRiscHalt(PortAddr iop_base)
8122 {
8123  int count = 0;
8124  int sta = 0;
8125  uchar saved_stop_code;
8126 
8127  if (AscIsChipHalted(iop_base))
8128  return (1);
8129  saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
8130  AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8132  do {
8133  if (AscIsChipHalted(iop_base)) {
8134  sta = 1;
8135  break;
8136  }
8137  mdelay(100);
8138  } while (count++ < 20);
8139  AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
8140  return (sta);
8141 }
8142 
8143 static int
8144 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
8145 {
8146  int sta = FALSE;
8147 
8148  if (AscHostReqRiscHalt(iop_base)) {
8149  sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
8150  AscStartChip(iop_base);
8151  }
8152  return sta;
8153 }
8154 
8155 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
8156 {
8157  char type = sdev->type;
8158  ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
8159 
8160  if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
8161  return;
8162  if (asc_dvc->init_sdtr & tid_bits)
8163  return;
8164 
8165  if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
8166  asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
8167 
8168  asc_dvc->pci_fix_asyn_xfer |= tid_bits;
8169  if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
8170  (type == TYPE_ROM) || (type == TYPE_TAPE))
8171  asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
8172 
8173  if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
8174  AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
8176 }
8177 
8178 static void
8179 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
8180 {
8181  ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
8182  ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
8183 
8184  if (sdev->lun == 0) {
8185  ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
8186  if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
8187  asc_dvc->init_sdtr |= tid_bit;
8188  } else {
8189  asc_dvc->init_sdtr &= ~tid_bit;
8190  }
8191 
8192  if (orig_init_sdtr != asc_dvc->init_sdtr)
8193  AscAsyncFix(asc_dvc, sdev);
8194  }
8195 
8196  if (sdev->tagged_supported) {
8197  if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
8198  if (sdev->lun == 0) {
8199  asc_dvc->cfg->can_tagged_qng |= tid_bit;
8200  asc_dvc->use_tagged_qng |= tid_bit;
8201  }
8203  asc_dvc->max_dvc_qng[sdev->id]);
8204  }
8205  } else {
8206  if (sdev->lun == 0) {
8207  asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
8208  asc_dvc->use_tagged_qng &= ~tid_bit;
8209  }
8210  scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8211  }
8212 
8213  if ((sdev->lun == 0) &&
8214  (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
8215  AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
8216  asc_dvc->cfg->disc_enable);
8217  AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
8218  asc_dvc->use_tagged_qng);
8219  AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
8220  asc_dvc->cfg->can_tagged_qng);
8221 
8222  asc_dvc->max_dvc_qng[sdev->id] =
8223  asc_dvc->cfg->max_tag_qng[sdev->id];
8224  AscWriteLramByte(asc_dvc->iop_base,
8225  (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
8226  asc_dvc->max_dvc_qng[sdev->id]);
8227  }
8228 }
8229 
8230 /*
8231  * Wide Transfers
8232  *
8233  * If the EEPROM enabled WDTR for the device and the device supports wide
8234  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8235  * write the new value to the microcode.
8236  */
8237 static void
8238 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
8239 {
8240  unsigned short cfg_word;
8241  AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8242  if ((cfg_word & tidmask) != 0)
8243  return;
8244 
8245  cfg_word |= tidmask;
8246  AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8247 
8248  /*
8249  * Clear the microcode SDTR and WDTR negotiation done indicators for
8250  * the target to cause it to negotiate with the new setting set above.
8251  * WDTR when accepted causes the target to enter asynchronous mode, so
8252  * SDTR must be negotiated.
8253  */
8254  AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8255  cfg_word &= ~tidmask;
8256  AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8257  AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8258  cfg_word &= ~tidmask;
8259  AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8260 }
8261 
8262 /*
8263  * Synchronous Transfers
8264  *
8265  * If the EEPROM enabled SDTR for the device and the device
8266  * supports synchronous transfers, then turn on the device's
8267  * 'sdtr_able' bit. Write the new value to the microcode.
8268  */
8269 static void
8270 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
8271 {
8272  unsigned short cfg_word;
8273  AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8274  if ((cfg_word & tidmask) != 0)
8275  return;
8276 
8277  cfg_word |= tidmask;
8278  AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8279 
8280  /*
8281  * Clear the microcode "SDTR negotiation" done indicator for the
8282  * target to cause it to negotiate with the new setting set above.
8283  */
8284  AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8285  cfg_word &= ~tidmask;
8286  AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8287 }
8288 
8289 /*
8290  * PPR (Parallel Protocol Request) Capable
8291  *
8292  * If the device supports DT mode, then it must be PPR capable.
8293  * The PPR message will be used in place of the SDTR and WDTR
8294  * messages to negotiate synchronous speed and offset, transfer
8295  * width, and protocol options.
8296  */
8297 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
8298  AdvPortAddr iop_base, unsigned short tidmask)
8299 {
8300  AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8301  adv_dvc->ppr_able |= tidmask;
8302  AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8303 }
8304 
8305 static void
8306 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
8307 {
8308  AdvPortAddr iop_base = adv_dvc->iop_base;
8309  unsigned short tidmask = 1 << sdev->id;
8310 
8311  if (sdev->lun == 0) {
8312  /*
8313  * Handle WDTR, SDTR, and Tag Queuing. If the feature
8314  * is enabled in the EEPROM and the device supports the
8315  * feature, then enable it in the microcode.
8316  */
8317 
8318  if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
8319  advansys_wide_enable_wdtr(iop_base, tidmask);
8320  if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
8321  advansys_wide_enable_sdtr(iop_base, tidmask);
8322  if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
8323  advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
8324 
8325  /*
8326  * Tag Queuing is disabled for the BIOS which runs in polled
8327  * mode and would see no benefit from Tag Queuing. Also by
8328  * disabling Tag Queuing in the BIOS devices with Tag Queuing
8329  * bugs will at least work with the BIOS.
8330  */
8331  if ((adv_dvc->tagqng_able & tidmask) &&
8332  sdev->tagged_supported) {
8333  unsigned short cfg_word;
8334  AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
8335  cfg_word |= tidmask;
8337  cfg_word);
8338  AdvWriteByteLram(iop_base,
8339  ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
8340  adv_dvc->max_dvc_qng);
8341  }
8342  }
8343 
8344  if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
8346  adv_dvc->max_dvc_qng);
8347  } else {
8348  scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8349  }
8350 }
8351 
8352 /*
8353  * Set the number of commands to queue per device for the
8354  * specified host adapter.
8355  */
8356 static int advansys_slave_configure(struct scsi_device *sdev)
8357 {
8358  struct asc_board *boardp = shost_priv(sdev->host);
8359 
8360  if (ASC_NARROW_BOARD(boardp))
8361  advansys_narrow_slave_configure(sdev,
8362  &boardp->dvc_var.asc_dvc_var);
8363  else
8364  advansys_wide_slave_configure(sdev,
8365  &boardp->dvc_var.adv_dvc_var);
8366 
8367  return 0;
8368 }
8369 
8370 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
8371 {
8372  struct asc_board *board = shost_priv(scp->device->host);
8373  scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
8375  dma_cache_sync(board->dev, scp->sense_buffer,
8377  return cpu_to_le32(scp->SCp.dma_handle);
8378 }
8379 
8380 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8381  struct asc_scsi_q *asc_scsi_q)
8382 {
8383  struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8384  int use_sg;
8385 
8386  memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
8387 
8388  /*
8389  * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8390  */
8391  asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
8392  if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
8394  return ASC_ERROR;
8395  }
8396 
8397  /*
8398  * Build the ASC_SCSI_Q request.
8399  */
8400  asc_scsi_q->cdbptr = &scp->cmnd[0];
8401  asc_scsi_q->q2.cdb_len = scp->cmd_len;
8402  asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
8403  asc_scsi_q->q1.target_lun = scp->device->lun;
8404  asc_scsi_q->q2.target_ix =
8405  ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
8406  asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
8407  asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
8408 
8409  /*
8410  * If there are any outstanding requests for the current target,
8411  * then every 255th request send an ORDERED request. This heuristic
8412  * tries to retain the benefit of request sorting while preventing
8413  * request starvation. 255 is the max number of tags or pending commands
8414  * a device may have outstanding.
8415  *
8416  * The request count is incremented below for every successfully
8417  * started request.
8418  *
8419  */
8420  if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
8421  (boardp->reqcnt[scp->device->id] % 255) == 0) {
8422  asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
8423  } else {
8424  asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
8425  }
8426 
8427  /* Build ASC_SCSI_Q */
8428  use_sg = scsi_dma_map(scp);
8429  if (use_sg != 0) {
8430  int sgcnt;
8431  struct scatterlist *slp;
8432  struct asc_sg_head *asc_sg_head;
8433 
8434  if (use_sg > scp->device->host->sg_tablesize) {
8435  scmd_printk(KERN_ERR, scp, "use_sg %d > "
8436  "sg_tablesize %d\n", use_sg,
8437  scp->device->host->sg_tablesize);
8438  scsi_dma_unmap(scp);
8439  scp->result = HOST_BYTE(DID_ERROR);
8440  return ASC_ERROR;
8441  }
8442 
8443  asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
8444  use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
8445  if (!asc_sg_head) {
8446  scsi_dma_unmap(scp);
8448  return ASC_ERROR;
8449  }
8450 
8451  asc_scsi_q->q1.cntl |= QC_SG_HEAD;
8452  asc_scsi_q->sg_head = asc_sg_head;
8453  asc_scsi_q->q1.data_cnt = 0;
8454  asc_scsi_q->q1.data_addr = 0;
8455  /* This is a byte value, otherwise it would need to be swapped. */
8456  asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
8457  ASC_STATS_ADD(scp->device->host, xfer_elem,
8458  asc_sg_head->entry_cnt);
8459 
8460  /*
8461  * Convert scatter-gather list into ASC_SG_HEAD list.
8462  */
8463  scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
8464  asc_sg_head->sg_list[sgcnt].addr =
8466  asc_sg_head->sg_list[sgcnt].bytes =
8467  cpu_to_le32(sg_dma_len(slp));
8468  ASC_STATS_ADD(scp->device->host, xfer_sect,
8469  DIV_ROUND_UP(sg_dma_len(slp), 512));
8470  }
8471  }
8472 
8473  ASC_STATS(scp->device->host, xfer_cnt);
8474 
8475  ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
8476  ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8477 
8478  return ASC_NOERROR;
8479 }
8480 
8481 /*
8482  * Build scatter-gather list for Adv Library (Wide Board).
8483  *
8484  * Additional ADV_SG_BLOCK structures will need to be allocated
8485  * if the total number of scatter-gather elements exceeds
8486  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8487  * assumed to be physically contiguous.
8488  *
8489  * Return:
8490  * ADV_SUCCESS(1) - SG List successfully created
8491  * ADV_ERROR(-1) - SG List creation failed
8492  */
8493 static int
8494 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8495  int use_sg)
8496 {
8497  adv_sgblk_t *sgblkp;
8498  ADV_SCSI_REQ_Q *scsiqp;
8499  struct scatterlist *slp;
8500  int sg_elem_cnt;
8501  ADV_SG_BLOCK *sg_block, *prev_sg_block;
8502  ADV_PADDR sg_block_paddr;
8503  int i;
8504 
8505  scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8506  slp = scsi_sglist(scp);
8507  sg_elem_cnt = use_sg;
8508  prev_sg_block = NULL;
8509  reqp->sgblkp = NULL;
8510 
8511  for (;;) {
8512  /*
8513  * Allocate a 'adv_sgblk_t' structure from the board free
8514  * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8515  * (15) scatter-gather elements.
8516  */
8517  if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8518  ASC_DBG(1, "no free adv_sgblk_t\n");
8519  ASC_STATS(scp->device->host, adv_build_nosg);
8520 
8521  /*
8522  * Allocation failed. Free 'adv_sgblk_t' structures
8523  * already allocated for the request.
8524  */
8525  while ((sgblkp = reqp->sgblkp) != NULL) {
8526  /* Remove 'sgblkp' from the request list. */
8527  reqp->sgblkp = sgblkp->next_sgblkp;
8528 
8529  /* Add 'sgblkp' to the board free list. */
8530  sgblkp->next_sgblkp = boardp->adv_sgblkp;
8531  boardp->adv_sgblkp = sgblkp;
8532  }
8533  return ASC_BUSY;
8534  }
8535 
8536  /* Complete 'adv_sgblk_t' board allocation. */
8537  boardp->adv_sgblkp = sgblkp->next_sgblkp;
8538  sgblkp->next_sgblkp = NULL;
8539 
8540  /*
8541  * Get 8 byte aligned virtual and physical addresses
8542  * for the allocated ADV_SG_BLOCK structure.
8543  */
8544  sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8545  sg_block_paddr = virt_to_bus(sg_block);
8546 
8547  /*
8548  * Check if this is the first 'adv_sgblk_t' for the
8549  * request.
8550  */
8551  if (reqp->sgblkp == NULL) {
8552  /* Request's first scatter-gather block. */
8553  reqp->sgblkp = sgblkp;
8554 
8555  /*
8556  * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8557  * address pointers.
8558  */
8559  scsiqp->sg_list_ptr = sg_block;
8560  scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8561  } else {
8562  /* Request's second or later scatter-gather block. */
8563  sgblkp->next_sgblkp = reqp->sgblkp;
8564  reqp->sgblkp = sgblkp;
8565 
8566  /*
8567  * Point the previous ADV_SG_BLOCK structure to
8568  * the newly allocated ADV_SG_BLOCK structure.
8569  */
8570  prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8571  }
8572 
8573  for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8574  sg_block->sg_list[i].sg_addr =
8576  sg_block->sg_list[i].sg_count =
8577  cpu_to_le32(sg_dma_len(slp));
8578  ASC_STATS_ADD(scp->device->host, xfer_sect,
8579  DIV_ROUND_UP(sg_dma_len(slp), 512));
8580 
8581  if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8582  sg_block->sg_cnt = i + 1;
8583  sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
8584  return ADV_SUCCESS;
8585  }
8586  slp++;
8587  }
8588  sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8589  prev_sg_block = sg_block;
8590  }
8591 }
8592 
8593 /*
8594  * Build a request structure for the Adv Library (Wide Board).
8595  *
8596  * If an adv_req_t can not be allocated to issue the request,
8597  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8598  *
8599  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8600  * microcode for DMA addresses or math operations are byte swapped
8601  * to little-endian order.
8602  */
8603 static int
8604 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8605  ADV_SCSI_REQ_Q **adv_scsiqpp)
8606 {
8607  adv_req_t *reqp;
8608  ADV_SCSI_REQ_Q *scsiqp;
8609  int i;
8610  int ret;
8611  int use_sg;
8612 
8613  /*
8614  * Allocate an adv_req_t structure from the board to execute
8615  * the command.
8616  */
8617  if (boardp->adv_reqp == NULL) {
8618  ASC_DBG(1, "no free adv_req_t\n");
8619  ASC_STATS(scp->device->host, adv_build_noreq);
8620  return ASC_BUSY;
8621  } else {
8622  reqp = boardp->adv_reqp;
8623  boardp->adv_reqp = reqp->next_reqp;
8624  reqp->next_reqp = NULL;
8625  }
8626 
8627  /*
8628  * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8629  */
8630  scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8631 
8632  /*
8633  * Initialize the structure.
8634  */
8635  scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8636 
8637  /*
8638  * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8639  */
8640  scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8641 
8642  /*
8643  * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8644  */
8645  reqp->cmndp = scp;
8646 
8647  /*
8648  * Build the ADV_SCSI_REQ_Q request.
8649  */
8650 
8651  /* Set CDB length and copy it to the request structure. */
8652  scsiqp->cdb_len = scp->cmd_len;
8653  /* Copy first 12 CDB bytes to cdb[]. */
8654  for (i = 0; i < scp->cmd_len && i < 12; i++) {
8655  scsiqp->cdb[i] = scp->cmnd[i];
8656  }
8657  /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8658  for (; i < scp->cmd_len; i++) {
8659  scsiqp->cdb16[i - 12] = scp->cmnd[i];
8660  }
8661 
8662  scsiqp->target_id = scp->device->id;
8663  scsiqp->target_lun = scp->device->lun;
8664 
8665  scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8666  scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8667 
8668  /* Build ADV_SCSI_REQ_Q */
8669 
8670  use_sg = scsi_dma_map(scp);
8671  if (use_sg == 0) {
8672  /* Zero-length transfer */
8673  reqp->sgblkp = NULL;
8674  scsiqp->data_cnt = 0;
8675  scsiqp->vdata_addr = NULL;
8676 
8677  scsiqp->data_addr = 0;
8678  scsiqp->sg_list_ptr = NULL;
8679  scsiqp->sg_real_addr = 0;
8680  } else {
8681  if (use_sg > ADV_MAX_SG_LIST) {
8682  scmd_printk(KERN_ERR, scp, "use_sg %d > "
8683  "ADV_MAX_SG_LIST %d\n", use_sg,
8684  scp->device->host->sg_tablesize);
8685  scsi_dma_unmap(scp);
8686  scp->result = HOST_BYTE(DID_ERROR);
8687 
8688  /*
8689  * Free the 'adv_req_t' structure by adding it back
8690  * to the board free list.
8691  */
8692  reqp->next_reqp = boardp->adv_reqp;
8693  boardp->adv_reqp = reqp;
8694 
8695  return ASC_ERROR;
8696  }
8697 
8698  scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8699 
8700  ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8701  if (ret != ADV_SUCCESS) {
8702  /*
8703  * Free the adv_req_t structure by adding it back to
8704  * the board free list.
8705  */
8706  reqp->next_reqp = boardp->adv_reqp;
8707  boardp->adv_reqp = reqp;
8708 
8709  return ret;
8710  }
8711 
8712  ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8713  }
8714 
8715  ASC_STATS(scp->device->host, xfer_cnt);
8716 
8717  ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8718  ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8719 
8720  *adv_scsiqpp = scsiqp;
8721 
8722  return ASC_NOERROR;
8723 }
8724 
8725 static int AscSgListToQueue(int sg_list)
8726 {
8727  int n_sg_list_qs;
8728 
8729  n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8730  if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8731  n_sg_list_qs++;
8732  return n_sg_list_qs + 1;
8733 }
8734 
8735 static uint
8736 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8737 {
8738  uint cur_used_qs;
8739  uint cur_free_qs;
8741  uchar tid_no;
8742 
8743  target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8744  tid_no = ASC_TIX_TO_TID(target_ix);
8745  if ((asc_dvc->unit_not_ready & target_id) ||
8746  (asc_dvc->queue_full_or_busy & target_id)) {
8747  return 0;
8748  }
8749  if (n_qs == 1) {
8750  cur_used_qs = (uint) asc_dvc->cur_total_qng +
8751  (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8752  } else {
8753  cur_used_qs = (uint) asc_dvc->cur_total_qng +
8754  (uint) ASC_MIN_FREE_Q;
8755  }
8756  if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8757  cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8758  if (asc_dvc->cur_dvc_qng[tid_no] >=
8759  asc_dvc->max_dvc_qng[tid_no]) {
8760  return 0;
8761  }
8762  return cur_free_qs;
8763  }
8764  if (n_qs > 1) {
8765  if ((n_qs > asc_dvc->last_q_shortage)
8766  && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8767  asc_dvc->last_q_shortage = n_qs;
8768  }
8769  }
8770  return 0;
8771 }
8772 
8773 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8774 {
8775  ushort q_addr;
8776  uchar next_qp;
8777  uchar q_status;
8778 
8779  q_addr = ASC_QNO_TO_QADDR(free_q_head);
8780  q_status = (uchar)AscReadLramByte(iop_base,
8781  (ushort)(q_addr +
8783  next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8784  if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8785  return next_qp;
8786  return ASC_QLINK_END;
8787 }
8788 
8789 static uchar
8790 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8791 {
8792  uchar i;
8793 
8794  for (i = 0; i < n_free_q; i++) {
8795  free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8796  if (free_q_head == ASC_QLINK_END)
8797  break;
8798  }
8799  return free_q_head;
8800 }
8801 
8802 /*
8803  * void
8804  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8805  *
8806  * Calling/Exit State:
8807  * none
8808  *
8809  * Description:
8810  * Output an ASC_SCSI_Q structure to the chip
8811  */
8812 static void
8813 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8814 {
8815  int i;
8816 
8817  ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8818  AscSetChipLramAddr(iop_base, s_addr);
8819  for (i = 0; i < 2 * words; i += 2) {
8820  if (i == 4 || i == 20) {
8821  continue;
8822  }
8823  outpw(iop_base + IOP_RAM_DATA,
8824  ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8825  }
8826 }
8827 
8828 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8829 {
8830  ushort q_addr;
8831  uchar tid_no;
8832  uchar sdtr_data;
8833  uchar syn_period_ix;
8834  uchar syn_offset;
8835  PortAddr iop_base;
8836 
8837  iop_base = asc_dvc->iop_base;
8838  if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8839  ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8840  tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8841  sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8842  syn_period_ix =
8843  (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8844  syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8845  AscMsgOutSDTR(asc_dvc,
8846  asc_dvc->sdtr_period_tbl[syn_period_ix],
8847  syn_offset);
8848  scsiq->q1.cntl |= QC_MSG_OUT;
8849  }
8850  q_addr = ASC_QNO_TO_QADDR(q_no);
8851  if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8852  scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8853  }
8854  scsiq->q1.status = QS_FREE;
8855  AscMemWordCopyPtrToLram(iop_base,
8856  q_addr + ASC_SCSIQ_CDB_BEG,
8857  (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8858 
8859  DvcPutScsiQ(iop_base,
8860  q_addr + ASC_SCSIQ_CPY_BEG,
8861  (uchar *)&scsiq->q1.cntl,
8862  ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8863  AscWriteLramWord(iop_base,
8864  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8865  (ushort)(((ushort)scsiq->q1.
8866  q_no << 8) | (ushort)QS_READY));
8867  return 1;
8868 }
8869 
8870 static int
8871 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8872 {
8873  int sta;
8874  int i;
8875  ASC_SG_HEAD *sg_head;
8876  ASC_SG_LIST_Q scsi_sg_q;
8877  ASC_DCNT saved_data_addr;
8878  ASC_DCNT saved_data_cnt;
8879  PortAddr iop_base;
8880  ushort sg_list_dwords;
8881  ushort sg_index;
8882  ushort sg_entry_cnt;
8883  ushort q_addr;
8884  uchar next_qp;
8885 
8886  iop_base = asc_dvc->iop_base;
8887  sg_head = scsiq->sg_head;
8888  saved_data_addr = scsiq->q1.data_addr;
8889  saved_data_cnt = scsiq->q1.data_cnt;
8890  scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8891  scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8892 #if CC_VERY_LONG_SG_LIST
8893  /*
8894  * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8895  * then not all SG elements will fit in the allocated queues.
8896  * The rest of the SG elements will be copied when the RISC
8897  * completes the SG elements that fit and halts.
8898  */
8899  if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8900  /*
8901  * Set sg_entry_cnt to be the number of SG elements that
8902  * will fit in the allocated SG queues. It is minus 1, because
8903  * the first SG element is handled above. ASC_MAX_SG_LIST is
8904  * already inflated by 1 to account for this. For example it
8905  * may be 50 which is 1 + 7 queues * 7 SG elements.
8906  */
8907  sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8908 
8909  /*
8910  * Keep track of remaining number of SG elements that will
8911  * need to be handled from a_isr.c.
8912  */
8913  scsiq->remain_sg_entry_cnt =
8914  sg_head->entry_cnt - ASC_MAX_SG_LIST;
8915  } else {
8916 #endif /* CC_VERY_LONG_SG_LIST */
8917  /*
8918  * Set sg_entry_cnt to be the number of SG elements that
8919  * will fit in the allocated SG queues. It is minus 1, because
8920  * the first SG element is handled above.
8921  */
8922  sg_entry_cnt = sg_head->entry_cnt - 1;
8923 #if CC_VERY_LONG_SG_LIST
8924  }
8925 #endif /* CC_VERY_LONG_SG_LIST */
8926  if (sg_entry_cnt != 0) {
8927  scsiq->q1.cntl |= QC_SG_HEAD;
8928  q_addr = ASC_QNO_TO_QADDR(q_no);
8929  sg_index = 1;
8930  scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8931  scsi_sg_q.sg_head_qp = q_no;
8932  scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8933  for (i = 0; i < sg_head->queue_cnt; i++) {
8934  scsi_sg_q.seq_no = i + 1;
8935  if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8936  sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8937  sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8938  if (i == 0) {
8939  scsi_sg_q.sg_list_cnt =
8941  scsi_sg_q.sg_cur_list_cnt =
8943  } else {
8944  scsi_sg_q.sg_list_cnt =
8945  ASC_SG_LIST_PER_Q - 1;
8946  scsi_sg_q.sg_cur_list_cnt =
8947  ASC_SG_LIST_PER_Q - 1;
8948  }
8949  } else {
8950 #if CC_VERY_LONG_SG_LIST
8951  /*
8952  * This is the last SG queue in the list of
8953  * allocated SG queues. If there are more
8954  * SG elements than will fit in the allocated
8955  * queues, then set the QCSG_SG_XFER_MORE flag.
8956  */
8957  if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8958  scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8959  } else {
8960 #endif /* CC_VERY_LONG_SG_LIST */
8961  scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8962 #if CC_VERY_LONG_SG_LIST
8963  }
8964 #endif /* CC_VERY_LONG_SG_LIST */
8965  sg_list_dwords = sg_entry_cnt << 1;
8966  if (i == 0) {
8967  scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8968  scsi_sg_q.sg_cur_list_cnt =
8969  sg_entry_cnt;
8970  } else {
8971  scsi_sg_q.sg_list_cnt =
8972  sg_entry_cnt - 1;
8973  scsi_sg_q.sg_cur_list_cnt =
8974  sg_entry_cnt - 1;
8975  }
8976  sg_entry_cnt = 0;
8977  }
8978  next_qp = AscReadLramByte(iop_base,
8979  (ushort)(q_addr +
8980  ASC_SCSIQ_B_FWD));
8981  scsi_sg_q.q_no = next_qp;
8982  q_addr = ASC_QNO_TO_QADDR(next_qp);
8983  AscMemWordCopyPtrToLram(iop_base,
8984  q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8985  (uchar *)&scsi_sg_q,
8986  sizeof(ASC_SG_LIST_Q) >> 1);
8987  AscMemDWordCopyPtrToLram(iop_base,
8988  q_addr + ASC_SGQ_LIST_BEG,
8989  (uchar *)&sg_head->
8990  sg_list[sg_index],
8991  sg_list_dwords);
8992  sg_index += ASC_SG_LIST_PER_Q;
8993  scsiq->next_sg_index = sg_index;
8994  }
8995  } else {
8996  scsiq->q1.cntl &= ~QC_SG_HEAD;
8997  }
8998  sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8999  scsiq->q1.data_addr = saved_data_addr;
9000  scsiq->q1.data_cnt = saved_data_cnt;
9001  return (sta);
9002 }
9003 
9004 static int
9005 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
9006 {
9007  PortAddr iop_base;
9008  uchar free_q_head;
9009  uchar next_qp;
9010  uchar tid_no;
9011  uchar target_ix;
9012  int sta;
9013 
9014  iop_base = asc_dvc->iop_base;
9015  target_ix = scsiq->q2.target_ix;
9016  tid_no = ASC_TIX_TO_TID(target_ix);
9017  sta = 0;
9018  free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
9019  if (n_q_required > 1) {
9020  next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
9021  (uchar)n_q_required);
9022  if (next_qp != ASC_QLINK_END) {
9023  asc_dvc->last_q_shortage = 0;
9024  scsiq->sg_head->queue_cnt = n_q_required - 1;
9025  scsiq->q1.q_no = free_q_head;
9026  sta = AscPutReadySgListQueue(asc_dvc, scsiq,
9027  free_q_head);
9028  }
9029  } else if (n_q_required == 1) {
9030  next_qp = AscAllocFreeQueue(iop_base, free_q_head);
9031  if (next_qp != ASC_QLINK_END) {
9032  scsiq->q1.q_no = free_q_head;
9033  sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
9034  }
9035  }
9036  if (sta == 1) {
9037  AscPutVarFreeQHead(iop_base, next_qp);
9038  asc_dvc->cur_total_qng += n_q_required;
9039  asc_dvc->cur_dvc_qng[tid_no]++;
9040  }
9041  return sta;
9042 }
9043 
9044 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
9045 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
9046  INQUIRY,
9047  REQUEST_SENSE,
9048  READ_CAPACITY,
9049  READ_TOC,
9050  MODE_SELECT,
9051  MODE_SENSE,
9053  MODE_SENSE_10,
9054  0xFF,
9055  0xFF,
9056  0xFF,
9057  0xFF,
9058  0xFF,
9059  0xFF,
9060  0xFF,
9061  0xFF
9062 };
9063 
9064 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
9065 {
9066  PortAddr iop_base;
9067  int sta;
9068  int n_q_required;
9069  int disable_syn_offset_one_fix;
9070  int i;
9071  ASC_PADDR addr;
9072  ushort sg_entry_cnt = 0;
9073  ushort sg_entry_cnt_minus_one = 0;
9074  uchar target_ix;
9075  uchar tid_no;
9076  uchar sdtr_data;
9077  uchar extra_bytes;
9078  uchar scsi_cmd;
9079  uchar disable_cmd;
9080  ASC_SG_HEAD *sg_head;
9081  ASC_DCNT data_cnt;
9082 
9083  iop_base = asc_dvc->iop_base;
9084  sg_head = scsiq->sg_head;
9085  if (asc_dvc->err_code != 0)
9086  return (ERR);
9087  scsiq->q1.q_no = 0;
9088  if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
9089  scsiq->q1.extra_bytes = 0;
9090  }
9091  sta = 0;
9092  target_ix = scsiq->q2.target_ix;
9093  tid_no = ASC_TIX_TO_TID(target_ix);
9094  n_q_required = 1;
9095  if (scsiq->cdbptr[0] == REQUEST_SENSE) {
9096  if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
9097  asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
9098  sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
9099  AscMsgOutSDTR(asc_dvc,
9100  asc_dvc->
9101  sdtr_period_tbl[(sdtr_data >> 4) &
9102  (uchar)(asc_dvc->
9103  max_sdtr_index -
9104  1)],
9105  (uchar)(sdtr_data & (uchar)
9106  ASC_SYN_MAX_OFFSET));
9107  scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
9108  }
9109  }
9110  if (asc_dvc->in_critical_cnt != 0) {
9111  AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
9112  return (ERR);
9113  }
9114  asc_dvc->in_critical_cnt++;
9115  if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9116  if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
9117  asc_dvc->in_critical_cnt--;
9118  return (ERR);
9119  }
9120 #if !CC_VERY_LONG_SG_LIST
9121  if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9122  asc_dvc->in_critical_cnt--;
9123  return (ERR);
9124  }
9125 #endif /* !CC_VERY_LONG_SG_LIST */
9126  if (sg_entry_cnt == 1) {
9127  scsiq->q1.data_addr =
9128  (ADV_PADDR)sg_head->sg_list[0].addr;
9129  scsiq->q1.data_cnt =
9130  (ADV_DCNT)sg_head->sg_list[0].bytes;
9131  scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
9132  }
9133  sg_entry_cnt_minus_one = sg_entry_cnt - 1;
9134  }
9135  scsi_cmd = scsiq->cdbptr[0];
9136  disable_syn_offset_one_fix = FALSE;
9137  if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
9138  !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
9139  if (scsiq->q1.cntl & QC_SG_HEAD) {
9140  data_cnt = 0;
9141  for (i = 0; i < sg_entry_cnt; i++) {
9142  data_cnt +=
9143  (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
9144  bytes);
9145  }
9146  } else {
9147  data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
9148  }
9149  if (data_cnt != 0UL) {
9150  if (data_cnt < 512UL) {
9151  disable_syn_offset_one_fix = TRUE;
9152  } else {
9153  for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
9154  i++) {
9155  disable_cmd =
9156  _syn_offset_one_disable_cmd[i];
9157  if (disable_cmd == 0xFF) {
9158  break;
9159  }
9160  if (scsi_cmd == disable_cmd) {
9161  disable_syn_offset_one_fix =
9162  TRUE;
9163  break;
9164  }
9165  }
9166  }
9167  }
9168  }
9169  if (disable_syn_offset_one_fix) {
9170  scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
9173  } else {
9174  scsiq->q2.tag_code &= 0x27;
9175  }
9176  if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9177  if (asc_dvc->bug_fix_cntl) {
9178  if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9179  if ((scsi_cmd == READ_6) ||
9180  (scsi_cmd == READ_10)) {
9181  addr =
9182  (ADV_PADDR)le32_to_cpu(sg_head->
9183  sg_list
9184  [sg_entry_cnt_minus_one].
9185  addr) +
9186  (ADV_DCNT)le32_to_cpu(sg_head->
9187  sg_list
9188  [sg_entry_cnt_minus_one].
9189  bytes);
9190  extra_bytes =
9191  (uchar)((ushort)addr & 0x0003);
9192  if ((extra_bytes != 0)
9193  &&
9194  ((scsiq->q2.
9195  tag_code &
9197  == 0)) {
9198  scsiq->q2.tag_code |=
9200  scsiq->q1.extra_bytes =
9201  extra_bytes;
9202  data_cnt =
9203  le32_to_cpu(sg_head->
9204  sg_list
9205  [sg_entry_cnt_minus_one].
9206  bytes);
9207  data_cnt -=
9208  (ASC_DCNT) extra_bytes;
9209  sg_head->
9210  sg_list
9211  [sg_entry_cnt_minus_one].
9212  bytes =
9213  cpu_to_le32(data_cnt);
9214  }
9215  }
9216  }
9217  }
9218  sg_head->entry_to_copy = sg_head->entry_cnt;
9219 #if CC_VERY_LONG_SG_LIST
9220  /*
9221  * Set the sg_entry_cnt to the maximum possible. The rest of
9222  * the SG elements will be copied when the RISC completes the
9223  * SG elements that fit and halts.
9224  */
9225  if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9226  sg_entry_cnt = ASC_MAX_SG_LIST;
9227  }
9228 #endif /* CC_VERY_LONG_SG_LIST */
9229  n_q_required = AscSgListToQueue(sg_entry_cnt);
9230  if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
9231  (uint) n_q_required)
9232  || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9233  if ((sta =
9234  AscSendScsiQueue(asc_dvc, scsiq,
9235  n_q_required)) == 1) {
9236  asc_dvc->in_critical_cnt--;
9237  return (sta);
9238  }
9239  }
9240  } else {
9241  if (asc_dvc->bug_fix_cntl) {
9242  if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9243  if ((scsi_cmd == READ_6) ||
9244  (scsi_cmd == READ_10)) {
9245  addr =
9246  le32_to_cpu(scsiq->q1.data_addr) +
9247  le32_to_cpu(scsiq->q1.data_cnt);
9248  extra_bytes =
9249  (uchar)((ushort)addr & 0x0003);
9250  if ((extra_bytes != 0)
9251  &&
9252  ((scsiq->q2.
9253  tag_code &
9255  == 0)) {
9256  data_cnt =
9257  le32_to_cpu(scsiq->q1.
9258  data_cnt);
9259  if (((ushort)data_cnt & 0x01FF)
9260  == 0) {
9261  scsiq->q2.tag_code |=
9263  data_cnt -= (ASC_DCNT)
9264  extra_bytes;
9265  scsiq->q1.data_cnt =
9266  cpu_to_le32
9267  (data_cnt);
9268  scsiq->q1.extra_bytes =
9269  extra_bytes;
9270  }
9271  }
9272  }
9273  }
9274  }
9275  n_q_required = 1;
9276  if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
9277  ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9278  if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
9279  n_q_required)) == 1) {
9280  asc_dvc->in_critical_cnt--;
9281  return (sta);
9282  }
9283  }
9284  }
9285  asc_dvc->in_critical_cnt--;
9286  return (sta);
9287 }
9288 
9289 /*
9290  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9291  *
9292  * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9293  * add the carrier to the ICQ (Initiator Command Queue), and tickle the
9294  * RISC to notify it a new command is ready to be executed.
9295  *
9296  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9297  * set to SCSI_MAX_RETRY.
9298  *
9299  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9300  * for DMA addresses or math operations are byte swapped to little-endian
9301  * order.
9302  *
9303  * Return:
9304  * ADV_SUCCESS(1) - The request was successfully queued.
9305  * ADV_BUSY(0) - Resource unavailable; Retry again after pending
9306  * request completes.
9307  * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
9308  * host IC error.
9309  */
9310 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
9311 {
9312  AdvPortAddr iop_base;
9313  ADV_PADDR req_paddr;
9314  ADV_CARR_T *new_carrp;
9315 
9316  /*
9317  * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9318  */
9319  if (scsiq->target_id > ADV_MAX_TID) {
9321  scsiq->done_status = QD_WITH_ERROR;
9322  return ADV_ERROR;
9323  }
9324 
9325  iop_base = asc_dvc->iop_base;
9326 
9327  /*
9328  * Allocate a carrier ensuring at least one carrier always
9329  * remains on the freelist and initialize fields.
9330  */
9331  if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
9332  return ADV_BUSY;
9333  }
9334  asc_dvc->carr_freelist = (ADV_CARR_T *)
9335  ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
9336  asc_dvc->carr_pending_cnt++;
9337 
9338  /*
9339  * Set the carrier to be a stopper by setting 'next_vpa'
9340  * to the stopper value. The current stopper will be changed
9341  * below to point to the new stopper.
9342  */
9343  new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
9344 
9345  /*
9346  * Clear the ADV_SCSI_REQ_Q done flag.
9347  */
9348  scsiq->a_flag &= ~ADV_SCSIQ_DONE;
9349 
9350  req_paddr = virt_to_bus(scsiq);
9351  BUG_ON(req_paddr & 31);
9352  /* Wait for assertion before making little-endian */
9353  req_paddr = cpu_to_le32(req_paddr);
9354 
9355  /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9356  scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
9357  scsiq->scsiq_rptr = req_paddr;
9358 
9359  scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
9360  /*
9361  * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9362  * order during initialization.
9363  */
9364  scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
9365 
9366  /*
9367  * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9368  * the microcode. The newly allocated stopper will become the new
9369  * stopper.
9370  */
9371  asc_dvc->icq_sp->areq_vpa = req_paddr;
9372 
9373  /*
9374  * Set the 'next_vpa' pointer for the old stopper to be the
9375  * physical address of the new stopper. The RISC can only
9376  * follow physical addresses.
9377  */
9378  asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
9379 
9380  /*
9381  * Set the host adapter stopper pointer to point to the new carrier.
9382  */
9383  asc_dvc->icq_sp = new_carrp;
9384 
9385  if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
9386  asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
9387  /*
9388  * Tickle the RISC to tell it to read its Command Queue Head pointer.
9389  */
9391  if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
9392  /*
9393  * Clear the tickle value. In the ASC-3550 the RISC flag
9394  * command 'clr_tickle_a' does not work unless the host
9395  * value is cleared.
9396  */
9398  ADV_TICKLE_NOP);
9399  }
9400  } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
9401  /*
9402  * Notify the RISC a carrier is ready by writing the physical
9403  * address of the new carrier stopper to the COMMA register.
9404  */
9406  le32_to_cpu(new_carrp->carr_pa));
9407  }
9408 
9409  return ADV_SUCCESS;
9410 }
9411 
9412 /*
9413  * Execute a single 'Scsi_Cmnd'.
9414  */
9415 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
9416 {
9417  int ret, err_code;
9418  struct asc_board *boardp = shost_priv(scp->device->host);
9419 
9420  ASC_DBG(1, "scp 0x%p\n", scp);
9421 
9422  if (ASC_NARROW_BOARD(boardp)) {
9423  ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
9424  struct asc_scsi_q asc_scsi_q;
9425 
9426  /* asc_build_req() can not return ASC_BUSY. */
9427  ret = asc_build_req(boardp, scp, &asc_scsi_q);
9428  if (ret == ASC_ERROR) {
9429  ASC_STATS(scp->device->host, build_error);
9430  return ASC_ERROR;
9431  }
9432 
9433  ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
9434  kfree(asc_scsi_q.sg_head);
9435  err_code = asc_dvc->err_code;
9436  } else {
9437  ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
9438  ADV_SCSI_REQ_Q *adv_scsiqp;
9439 
9440  switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
9441  case ASC_NOERROR:
9442  ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9443  break;
9444  case ASC_BUSY:
9445  ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9446  /*
9447  * The asc_stats fields 'adv_build_noreq' and
9448  * 'adv_build_nosg' count wide board busy conditions.
9449  * They are updated in adv_build_req and
9450  * adv_get_sglist, respectively.
9451  */
9452  return ASC_BUSY;
9453  case ASC_ERROR:
9454  default:
9455  ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9456  ASC_STATS(scp->device->host, build_error);
9457  return ASC_ERROR;
9458  }
9459 
9460  ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
9461  err_code = adv_dvc->err_code;
9462  }
9463 
9464  switch (ret) {
9465  case ASC_NOERROR:
9466  ASC_STATS(scp->device->host, exe_noerror);
9467  /*
9468  * Increment monotonically increasing per device
9469  * successful request counter. Wrapping doesn't matter.
9470  */
9471  boardp->reqcnt[scp->device->id]++;
9472  ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9473  break;
9474  case ASC_BUSY:
9475  ASC_STATS(scp->device->host, exe_busy);
9476  break;
9477  case ASC_ERROR:
9478  scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
9479  "err_code 0x%x\n", err_code);
9480  ASC_STATS(scp->device->host, exe_error);
9481  scp->result = HOST_BYTE(DID_ERROR);
9482  break;
9483  default:
9484  scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
9485  "err_code 0x%x\n", err_code);
9486  ASC_STATS(scp->device->host, exe_unknown);
9487  scp->result = HOST_BYTE(DID_ERROR);
9488  break;
9489  }
9490 
9491  ASC_DBG(1, "end\n");
9492  return ret;
9493 }
9494 
9495 /*
9496  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9497  *
9498  * This function always returns 0. Command return status is saved
9499  * in the 'scp' result field.
9500  */
9501 static int
9502 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9503 {
9504  struct Scsi_Host *shost = scp->device->host;
9505  int asc_res, result = 0;
9506 
9507  ASC_STATS(shost, queuecommand);
9508  scp->scsi_done = done;
9509 
9510  asc_res = asc_execute_scsi_cmnd(scp);
9511 
9512  switch (asc_res) {
9513  case ASC_NOERROR:
9514  break;
9515  case ASC_BUSY:
9516  result = SCSI_MLQUEUE_HOST_BUSY;
9517  break;
9518  case ASC_ERROR:
9519  default:
9520  asc_scsi_done(scp);
9521  break;
9522  }
9523 
9524  return result;
9525 }
9526 
9527 static DEF_SCSI_QCMD(advansys_queuecommand)
9528 
9529 static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
9530 {
9531  PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9533  return inpw(eisa_cfg_iop);
9534 }
9535 
9536 /*
9537  * Return the BIOS address of the adapter at the specified
9538  * I/O port and with the specified bus type.
9539  */
9540 static unsigned short __devinit
9541 AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
9542 {
9543  unsigned short cfg_lsw;
9544  unsigned short bios_addr;
9545 
9546  /*
9547  * The PCI BIOS is re-located by the motherboard BIOS. Because
9548  * of this the driver can not determine where a PCI BIOS is
9549  * loaded and executes.
9550  */
9551  if (bus_type & ASC_IS_PCI)
9552  return 0;
9553 
9554  if ((bus_type & ASC_IS_EISA) != 0) {
9555  cfg_lsw = AscGetEisaChipCfg(iop_base);
9556  cfg_lsw &= 0x000F;
9557  bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9558  return bios_addr;
9559  }
9560 
9561  cfg_lsw = AscGetChipCfgLsw(iop_base);
9562 
9563  /*
9564  * ISA PnP uses the top bit as the 32K BIOS flag
9565  */
9566  if (bus_type == ASC_IS_ISAPNP)
9567  cfg_lsw &= 0x7FFF;
9568  bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9569  return bios_addr;
9570 }
9571 
9572 static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9573 {
9574  ushort cfg_lsw;
9575 
9576  if (AscGetChipScsiID(iop_base) == new_host_id) {
9577  return (new_host_id);
9578  }
9579  cfg_lsw = AscGetChipCfgLsw(iop_base);
9580  cfg_lsw &= 0xF8FF;
9581  cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9582  AscSetChipCfgLsw(iop_base, cfg_lsw);
9583  return (AscGetChipScsiID(iop_base));
9584 }
9585 
9586 static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
9587 {
9588  unsigned char sc;
9589 
9590  AscSetBank(iop_base, 1);
9591  sc = inp(iop_base + IOP_REG_SC);
9592  AscSetBank(iop_base, 0);
9593  return sc;
9594 }
9595 
9596 static unsigned char __devinit
9597 AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
9598 {
9599  if (bus_type & ASC_IS_EISA) {
9600  PortAddr eisa_iop;
9601  unsigned char revision;
9602  eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9604  revision = inp(eisa_iop);
9605  return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9606  }
9607  return AscGetChipVerNo(iop_base);
9608 }
9609 
9610 #ifdef CONFIG_ISA
9611 static void __devinit AscEnableIsaDma(uchar dma_channel)
9612 {
9613  if (dma_channel < 4) {
9614  outp(0x000B, (ushort)(0xC0 | dma_channel));
9615  outp(0x000A, dma_channel);
9616  } else if (dma_channel < 8) {
9617  outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9618  outp(0x00D4, (ushort)(dma_channel - 4));
9619  }
9620 }
9621 #endif /* CONFIG_ISA */
9622 
9623 static int AscStopQueueExe(PortAddr iop_base)
9624 {
9625  int count = 0;
9626 
9627  if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9628  AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9630  do {
9631  if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9633  return (1);
9634  }
9635  mdelay(100);
9636  } while (count++ < 20);
9637  }
9638  return (0);
9639 }
9640 
9641 static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
9642 {
9643  if (bus_type & ASC_IS_ISA)
9644  return ASC_MAX_ISA_DMA_COUNT;
9645  else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9646  return ASC_MAX_VL_DMA_COUNT;
9647  return ASC_MAX_PCI_DMA_COUNT;
9648 }
9649 
9650 #ifdef CONFIG_ISA
9651 static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
9652 {
9653  ushort channel;
9654 
9655  channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9656  if (channel == 0x03)
9657  return (0);
9658  else if (channel == 0x00)
9659  return (7);
9660  return (channel + 4);
9661 }
9662 
9663 static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9664 {
9665  ushort cfg_lsw;
9666  uchar value;
9667 
9668  if ((dma_channel >= 5) && (dma_channel <= 7)) {
9669  if (dma_channel == 7)
9670  value = 0x00;
9671  else
9672  value = dma_channel - 4;
9673  cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9674  cfg_lsw |= value;
9675  AscSetChipCfgLsw(iop_base, cfg_lsw);
9676  return (AscGetIsaDmaChannel(iop_base));
9677  }
9678  return 0;
9679 }
9680 
9681 static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
9682 {
9683  uchar speed_value;
9684 
9685  AscSetBank(iop_base, 1);
9686  speed_value = AscReadChipDmaSpeed(iop_base);
9687  speed_value &= 0x07;
9688  AscSetBank(iop_base, 0);
9689  return speed_value;
9690 }
9691 
9692 static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9693 {
9694  speed_value &= 0x07;
9695  AscSetBank(iop_base, 1);
9696  AscWriteChipDmaSpeed(iop_base, speed_value);
9697  AscSetBank(iop_base, 0);
9698  return AscGetIsaDmaSpeed(iop_base);
9699 }
9700 #endif /* CONFIG_ISA */
9701 
9702 static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9703 {
9704  int i;
9705  PortAddr iop_base;
9706  ushort warn_code;
9708 
9709  iop_base = asc_dvc->iop_base;
9710  warn_code = 0;
9711  asc_dvc->err_code = 0;
9712  if ((asc_dvc->bus_type &
9713  (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9714  asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9715  }
9716  AscSetChipControl(iop_base, CC_HALT);
9717  AscSetChipStatus(iop_base, 0);
9718  asc_dvc->bug_fix_cntl = 0;
9719  asc_dvc->pci_fix_asyn_xfer = 0;
9720  asc_dvc->pci_fix_asyn_xfer_always = 0;
9721  /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9722  asc_dvc->sdtr_done = 0;
9723  asc_dvc->cur_total_qng = 0;
9724  asc_dvc->is_in_int = 0;
9725  asc_dvc->in_critical_cnt = 0;
9726  asc_dvc->last_q_shortage = 0;
9727  asc_dvc->use_tagged_qng = 0;
9728  asc_dvc->no_scam = 0;
9729  asc_dvc->unit_not_ready = 0;
9730  asc_dvc->queue_full_or_busy = 0;
9731  asc_dvc->redo_scam = 0;
9732  asc_dvc->res2 = 0;
9733  asc_dvc->min_sdtr_index = 0;
9734  asc_dvc->cfg->can_tagged_qng = 0;
9735  asc_dvc->cfg->cmd_qng_enabled = 0;
9736  asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9737  asc_dvc->init_sdtr = 0;
9739  asc_dvc->scsi_reset_wait = 3;
9741  asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9745  chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9746  asc_dvc->cfg->chip_version = chip_version;
9747  asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9748  asc_dvc->max_sdtr_index = 7;
9749  if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9750  (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9751  asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9752  asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9753  asc_dvc->max_sdtr_index = 15;
9754  if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9755  AscSetExtraControl(iop_base,
9757  } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9758  AscSetExtraControl(iop_base,
9761  }
9762  }
9763  if (asc_dvc->bus_type == ASC_IS_PCI) {
9764  AscSetExtraControl(iop_base,
9766  }
9767 
9769 #ifdef CONFIG_ISA
9770  if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9771  if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9772  AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9773  asc_dvc->bus_type = ASC_IS_ISAPNP;
9774  }
9775  asc_dvc->cfg->isa_dma_channel =
9776  (uchar)AscGetIsaDmaChannel(iop_base);
9777  }
9778 #endif /* CONFIG_ISA */
9779  for (i = 0; i <= ASC_MAX_TID; i++) {
9780  asc_dvc->cur_dvc_qng[i] = 0;
9781  asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9782  asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9783  asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9784  asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9785  }
9786  return warn_code;
9787 }
9788 
9789 static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9790 {
9791  int retry;
9792 
9793  for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9794  unsigned char read_back;
9795  AscSetChipEEPCmd(iop_base, cmd_reg);
9796  mdelay(1);
9797  read_back = AscGetChipEEPCmd(iop_base);
9798  if (read_back == cmd_reg)
9799  return 1;
9800  }
9801  return 0;
9802 }
9803 
9804 static void __devinit AscWaitEEPRead(void)
9805 {
9806  mdelay(1);
9807 }
9808 
9809 static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
9810 {
9811  ushort read_wval;
9812  uchar cmd_reg;
9813 
9814  AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9815  AscWaitEEPRead();
9816  cmd_reg = addr | ASC_EEP_CMD_READ;
9817  AscWriteEEPCmdReg(iop_base, cmd_reg);
9818  AscWaitEEPRead();
9819  read_wval = AscGetChipEEPData(iop_base);
9820  AscWaitEEPRead();
9821  return read_wval;
9822 }
9823 
9824 static ushort __devinit
9825 AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9826 {
9827  ushort wval;
9828  ushort sum;
9829  ushort *wbuf;
9830  int cfg_beg;
9831  int cfg_end;
9832  int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9833  int s_addr;
9834 
9835  wbuf = (ushort *)cfg_buf;
9836  sum = 0;
9837  /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9838  for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9839  *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9840  sum += *wbuf;
9841  }
9842  if (bus_type & ASC_IS_VL) {
9843  cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9844  cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9845  } else {
9846  cfg_beg = ASC_EEP_DVC_CFG_BEG;
9847  cfg_end = ASC_EEP_MAX_DVC_ADDR;
9848  }
9849  for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9850  wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9851  if (s_addr <= uchar_end_in_config) {
9852  /*
9853  * Swap all char fields - must unswap bytes already swapped
9854  * by AscReadEEPWord().
9855  */
9856  *wbuf = le16_to_cpu(wval);
9857  } else {
9858  /* Don't swap word field at the end - cntl field. */
9859  *wbuf = wval;
9860  }
9861  sum += wval; /* Checksum treats all EEPROM data as words. */
9862  }
9863  /*
9864  * Read the checksum word which will be compared against 'sum'
9865  * by the caller. Word field already swapped.
9866  */
9867  *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9868  return sum;
9869 }
9870 
9871 static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9872 {
9873  PortAddr iop_base;
9874  ushort q_addr;
9875  ushort saved_word;
9876  int sta;
9877 
9878  iop_base = asc_dvc->iop_base;
9879  sta = 0;
9880  q_addr = ASC_QNO_TO_QADDR(241);
9881  saved_word = AscReadLramWord(iop_base, q_addr);
9882  AscSetChipLramAddr(iop_base, q_addr);
9883  AscSetChipLramData(iop_base, 0x55AA);
9884  mdelay(10);
9885  AscSetChipLramAddr(iop_base, q_addr);
9886  if (AscGetChipLramData(iop_base) == 0x55AA) {
9887  sta = 1;
9888  AscWriteLramWord(iop_base, q_addr, saved_word);
9889  }
9890  return (sta);
9891 }
9892 
9893 static void __devinit AscWaitEEPWrite(void)
9894 {
9895  mdelay(20);
9896 }
9897 
9898 static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9899 {
9900  ushort read_back;
9901  int retry;
9902 
9903  retry = 0;
9904  while (TRUE) {
9905  AscSetChipEEPData(iop_base, data_reg);
9906  mdelay(1);
9907  read_back = AscGetChipEEPData(iop_base);
9908  if (read_back == data_reg) {
9909  return (1);
9910  }
9911  if (retry++ > ASC_EEP_MAX_RETRY) {
9912  return (0);
9913  }
9914  }
9915 }
9916 
9917 static ushort __devinit
9918 AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9919 {
9920  ushort read_wval;
9921 
9922  read_wval = AscReadEEPWord(iop_base, addr);
9923  if (read_wval != word_val) {
9924  AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9925  AscWaitEEPRead();
9926  AscWriteEEPDataReg(iop_base, word_val);
9927  AscWaitEEPRead();
9928  AscWriteEEPCmdReg(iop_base,
9929  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9930  AscWaitEEPWrite();
9931  AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9932  AscWaitEEPRead();
9933  return (AscReadEEPWord(iop_base, addr));
9934  }
9935  return (read_wval);
9936 }
9937 
9938 static int __devinit
9939 AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9940 {
9941  int n_error;
9942  ushort *wbuf;
9943  ushort word;
9944  ushort sum;
9945  int s_addr;
9946  int cfg_beg;
9947  int cfg_end;
9948  int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9949 
9950  wbuf = (ushort *)cfg_buf;
9951  n_error = 0;
9952  sum = 0;
9953  /* Write two config words; AscWriteEEPWord() will swap bytes. */
9954  for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9955  sum += *wbuf;
9956  if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9957  n_error++;
9958  }
9959  }
9960  if (bus_type & ASC_IS_VL) {
9961  cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9962  cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9963  } else {
9964  cfg_beg = ASC_EEP_DVC_CFG_BEG;
9965  cfg_end = ASC_EEP_MAX_DVC_ADDR;
9966  }
9967  for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9968  if (s_addr <= uchar_end_in_config) {
9969  /*
9970  * This is a char field. Swap char fields before they are
9971  * swapped again by AscWriteEEPWord().
9972  */
9973  word = cpu_to_le16(*wbuf);
9974  if (word !=
9975  AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9976  n_error++;
9977  }
9978  } else {
9979  /* Don't swap word field at the end - cntl field. */
9980  if (*wbuf !=
9981  AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9982  n_error++;
9983  }
9984  }
9985  sum += *wbuf; /* Checksum calculated from word values. */
9986  }
9987  /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9988  *wbuf = sum;
9989  if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9990  n_error++;
9991  }
9992 
9993  /* Read EEPROM back again. */
9994  wbuf = (ushort *)cfg_buf;
9995  /*
9996  * Read two config words; Byte-swapping done by AscReadEEPWord().
9997  */
9998  for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9999  if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
10000  n_error++;
10001  }
10002  }
10003  if (bus_type & ASC_IS_VL) {
10004  cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
10005  cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
10006  } else {
10007  cfg_beg = ASC_EEP_DVC_CFG_BEG;
10008  cfg_end = ASC_EEP_MAX_DVC_ADDR;
10009  }
10010  for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
10011  if (s_addr <= uchar_end_in_config) {
10012  /*
10013  * Swap all char fields. Must unswap bytes already swapped
10014  * by AscReadEEPWord().
10015  */
10016  word =
10017  le16_to_cpu(AscReadEEPWord
10018  (iop_base, (uchar)s_addr));
10019  } else {
10020  /* Don't swap word field at the end - cntl field. */
10021  word = AscReadEEPWord(iop_base, (uchar)s_addr);
10022  }
10023  if (*wbuf != word) {
10024  n_error++;
10025  }
10026  }
10027  /* Read checksum; Byte swapping not needed. */
10028  if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
10029  n_error++;
10030  }
10031  return n_error;
10032 }
10033 
10034 static int __devinit
10035 AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
10036 {
10037  int retry;
10038  int n_error;
10039 
10040  retry = 0;
10041  while (TRUE) {
10042  if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
10043  bus_type)) == 0) {
10044  break;
10045  }
10046  if (++retry > ASC_EEP_MAX_RETRY) {
10047  break;
10048  }
10049  }
10050  return n_error;
10051 }
10052 
10053 static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
10054 {
10055  ASCEEP_CONFIG eep_config_buf;
10056  ASCEEP_CONFIG *eep_config;
10057  PortAddr iop_base;
10058  ushort chksum;
10059  ushort warn_code;
10060  ushort cfg_msw, cfg_lsw;
10061  int i;
10062  int write_eep = 0;
10063 
10064  iop_base = asc_dvc->iop_base;
10065  warn_code = 0;
10066  AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
10067  AscStopQueueExe(iop_base);
10068  if ((AscStopChip(iop_base) == FALSE) ||
10069  (AscGetChipScsiCtrl(iop_base) != 0)) {
10071  AscResetChipAndScsiBus(asc_dvc);
10072  mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
10073  }
10074  if (AscIsChipHalted(iop_base) == FALSE) {
10075  asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
10076  return (warn_code);
10077  }
10079  if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
10080  asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
10081  return (warn_code);
10082  }
10083  eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
10084  cfg_msw = AscGetChipCfgMsw(iop_base);
10085  cfg_lsw = AscGetChipCfgLsw(iop_base);
10086  if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10087  cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10088  warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10089  AscSetChipCfgMsw(iop_base, cfg_msw);
10090  }
10091  chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
10092  ASC_DBG(1, "chksum 0x%x\n", chksum);
10093  if (chksum == 0) {
10094  chksum = 0xaa55;
10095  }
10096  if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10097  warn_code |= ASC_WARN_AUTO_CONFIG;
10098  if (asc_dvc->cfg->chip_version == 3) {
10099  if (eep_config->cfg_lsw != cfg_lsw) {
10100  warn_code |= ASC_WARN_EEPROM_RECOVER;
10101  eep_config->cfg_lsw =
10102  AscGetChipCfgLsw(iop_base);
10103  }
10104  if (eep_config->cfg_msw != cfg_msw) {
10105  warn_code |= ASC_WARN_EEPROM_RECOVER;
10106  eep_config->cfg_msw =
10107  AscGetChipCfgMsw(iop_base);
10108  }
10109  }
10110  }
10111  eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10112  eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
10113  ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
10114  if (chksum != eep_config->chksum) {
10115  if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
10117  ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10118  eep_config->init_sdtr = 0xFF;
10119  eep_config->disc_enable = 0xFF;
10120  eep_config->start_motor = 0xFF;
10121  eep_config->use_cmd_qng = 0;
10122  eep_config->max_total_qng = 0xF0;
10123  eep_config->max_tag_qng = 0x20;
10124  eep_config->cntl = 0xBFFF;
10125  ASC_EEP_SET_CHIP_ID(eep_config, 7);
10126  eep_config->no_scam = 0;
10127  eep_config->adapter_info[0] = 0;
10128  eep_config->adapter_info[1] = 0;
10129  eep_config->adapter_info[2] = 0;
10130  eep_config->adapter_info[3] = 0;
10131  eep_config->adapter_info[4] = 0;
10132  /* Indicate EEPROM-less board. */
10133  eep_config->adapter_info[5] = 0xBB;
10134  } else {
10135  ASC_PRINT
10136  ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10137  write_eep = 1;
10138  warn_code |= ASC_WARN_EEPROM_CHKSUM;
10139  }
10140  }
10141  asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
10142  asc_dvc->cfg->disc_enable = eep_config->disc_enable;
10143  asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
10144  asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
10145  asc_dvc->start_motor = eep_config->start_motor;
10146  asc_dvc->dvc_cntl = eep_config->cntl;
10147  asc_dvc->no_scam = eep_config->no_scam;
10148  asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
10149  asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
10150  asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
10151  asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
10152  asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
10153  asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
10154  if (!AscTestExternalLram(asc_dvc)) {
10155  if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
10156  ASC_IS_PCI_ULTRA)) {
10157  eep_config->max_total_qng =
10159  eep_config->max_tag_qng =
10161  } else {
10162  eep_config->cfg_msw |= 0x0800;
10163  cfg_msw |= 0x0800;
10164  AscSetChipCfgMsw(iop_base, cfg_msw);
10166  eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
10167  }
10168  } else {
10169  }
10170  if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
10171  eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
10172  }
10173  if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
10174  eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
10175  }
10176  if (eep_config->max_tag_qng > eep_config->max_total_qng) {
10177  eep_config->max_tag_qng = eep_config->max_total_qng;
10178  }
10179  if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
10180  eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
10181  }
10182  asc_dvc->max_total_qng = eep_config->max_total_qng;
10183  if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
10184  eep_config->use_cmd_qng) {
10185  eep_config->disc_enable = eep_config->use_cmd_qng;
10186  warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10187  }
10188  ASC_EEP_SET_CHIP_ID(eep_config,
10189  ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
10190  asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
10191  if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
10192  !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
10194  }
10195 
10196  for (i = 0; i <= ASC_MAX_TID; i++) {
10197  asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
10198  asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
10199  asc_dvc->cfg->sdtr_period_offset[i] =
10201  (asc_dvc->min_sdtr_index << 4));
10202  }
10203  eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
10204  if (write_eep) {
10205  if ((i = AscSetEEPConfig(iop_base, eep_config,
10206  asc_dvc->bus_type)) != 0) {
10207  ASC_PRINT1
10208  ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10209  i);
10210  } else {
10211  ASC_PRINT
10212  ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10213  }
10214  }
10215  return (warn_code);
10216 }
10217 
10218 static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
10219 {
10220  struct asc_board *board = shost_priv(shost);
10221  ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10222  unsigned short warn_code = 0;
10223 
10225  if (asc_dvc->err_code != 0)
10226  return asc_dvc->err_code;
10227 
10228  if (AscFindSignature(asc_dvc->iop_base)) {
10229  warn_code |= AscInitAscDvcVar(asc_dvc);
10230  warn_code |= AscInitFromEEP(asc_dvc);
10234  } else {
10235  asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10236  }
10237 
10238  switch (warn_code) {
10239  case 0: /* No error */
10240  break;
10242  shost_printk(KERN_WARNING, shost, "I/O port address "
10243  "modified\n");
10244  break;
10245  case ASC_WARN_AUTO_CONFIG:
10246  shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10247  "enabled\n");
10248  break;
10250  shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10251  break;
10252  case ASC_WARN_IRQ_MODIFIED:
10253  shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10254  break;
10256  shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
10257  "disconnects\n");
10258  break;
10259  default:
10260  shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10261  warn_code);
10262  break;
10263  }
10264 
10265  if (asc_dvc->err_code != 0)
10266  shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10267  "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10268 
10269  return asc_dvc->err_code;
10270 }
10271 
10272 static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10273 {
10274  struct asc_board *board = shost_priv(shost);
10275  ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10276  PortAddr iop_base = asc_dvc->iop_base;
10277  unsigned short cfg_msw;
10278  unsigned short warn_code = 0;
10279 
10281  if (asc_dvc->err_code != 0)
10282  return asc_dvc->err_code;
10283  if (!AscFindSignature(asc_dvc->iop_base)) {
10284  asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10285  return asc_dvc->err_code;
10286  }
10287 
10288  cfg_msw = AscGetChipCfgMsw(iop_base);
10289  if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10290  cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10291  warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10292  AscSetChipCfgMsw(iop_base, cfg_msw);
10293  }
10294  if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
10295  asc_dvc->cfg->cmd_qng_enabled) {
10296  asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
10297  warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10298  }
10299  if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10300  warn_code |= ASC_WARN_AUTO_CONFIG;
10301  }
10302 #ifdef CONFIG_PCI
10303  if (asc_dvc->bus_type & ASC_IS_PCI) {
10304  cfg_msw &= 0xFFC0;
10305  AscSetChipCfgMsw(iop_base, cfg_msw);
10306  if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
10307  } else {
10308  if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
10309  (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
10311  asc_dvc->bug_fix_cntl |=
10313  }
10314  }
10315  } else
10316 #endif /* CONFIG_PCI */
10317  if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
10318  if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
10319  == ASC_CHIP_VER_ASYN_BUG) {
10321  }
10322  }
10323  if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
10324  asc_dvc->cfg->chip_scsi_id) {
10325  asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
10326  }
10327 #ifdef CONFIG_ISA
10328  if (asc_dvc->bus_type & ASC_IS_ISA) {
10329  AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
10330  AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
10331  }
10332 #endif /* CONFIG_ISA */
10333 
10335 
10336  switch (warn_code) {
10337  case 0: /* No error. */
10338  break;
10340  shost_printk(KERN_WARNING, shost, "I/O port address "
10341  "modified\n");
10342  break;
10343  case ASC_WARN_AUTO_CONFIG:
10344  shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10345  "enabled\n");
10346  break;
10348  shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10349  break;
10350  case ASC_WARN_IRQ_MODIFIED:
10351  shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10352  break;
10354  shost_printk(KERN_WARNING, shost, "tag queuing w/o "
10355  "disconnects\n");
10356  break;
10357  default:
10358  shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10359  warn_code);
10360  break;
10361  }
10362 
10363  if (asc_dvc->err_code != 0)
10364  shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10365  "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10366 
10367  return asc_dvc->err_code;
10368 }
10369 
10370 /*
10371  * EEPROM Configuration.
10372  *
10373  * All drivers should use this structure to set the default EEPROM
10374  * configuration. The BIOS now uses this structure when it is built.
10375  * Additional structure information can be found in a_condor.h where
10376  * the structure is defined.
10377  *
10378  * The *_Field_IsChar structs are needed to correct for endianness.
10379  * These values are read from the board 16 bits at a time directly
10380  * into the structs. Because some fields are char, the values will be
10381  * in the wrong order. The *_Field_IsChar tells when to flip the
10382  * bytes. Data read and written to PCI memory is automatically swapped
10383  * on big-endian platforms so char fields read as words are actually being
10384  * unswapped on big-endian platforms.
10385  */
10386 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
10387  ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
10388  0x0000, /* cfg_msw */
10389  0xFFFF, /* disc_enable */
10390  0xFFFF, /* wdtr_able */
10391  0xFFFF, /* sdtr_able */
10392  0xFFFF, /* start_motor */
10393  0xFFFF, /* tagqng_able */
10394  0xFFFF, /* bios_scan */
10395  0, /* scam_tolerant */
10396  7, /* adapter_scsi_id */
10397  0, /* bios_boot_delay */
10398  3, /* scsi_reset_delay */
10399  0, /* bios_id_lun */
10400  0, /* termination */
10401  0, /* reserved1 */
10402  0xFFE7, /* bios_ctrl */
10403  0xFFFF, /* ultra_able */
10404  0, /* reserved2 */
10405  ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
10406  ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10407  0, /* dvc_cntl */
10408  0, /* bug_fix */
10409  0, /* serial_number_word1 */
10410  0, /* serial_number_word2 */
10411  0, /* serial_number_word3 */
10412  0, /* check_sum */
10413  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10414  , /* oem_name[16] */
10415  0, /* dvc_err_code */
10416  0, /* adv_err_code */
10417  0, /* adv_err_addr */
10418  0, /* saved_dvc_err_code */
10419  0, /* saved_adv_err_code */
10420  0, /* saved_adv_err_addr */
10421  0 /* num_of_err */
10422 };
10423 
10424 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
10425  0, /* cfg_lsw */
10426  0, /* cfg_msw */
10427  0, /* -disc_enable */
10428  0, /* wdtr_able */
10429  0, /* sdtr_able */
10430  0, /* start_motor */
10431  0, /* tagqng_able */
10432  0, /* bios_scan */
10433  0, /* scam_tolerant */
10434  1, /* adapter_scsi_id */
10435  1, /* bios_boot_delay */
10436  1, /* scsi_reset_delay */
10437  1, /* bios_id_lun */
10438  1, /* termination */
10439  1, /* reserved1 */
10440  0, /* bios_ctrl */
10441  0, /* ultra_able */
10442  0, /* reserved2 */
10443  1, /* max_host_qng */
10444  1, /* max_dvc_qng */
10445  0, /* dvc_cntl */
10446  0, /* bug_fix */
10447  0, /* serial_number_word1 */
10448  0, /* serial_number_word2 */
10449  0, /* serial_number_word3 */
10450  0, /* check_sum */
10451  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10452  , /* oem_name[16] */
10453  0, /* dvc_err_code */
10454  0, /* adv_err_code */
10455  0, /* adv_err_addr */
10456  0, /* saved_dvc_err_code */
10457  0, /* saved_adv_err_code */
10458  0, /* saved_adv_err_addr */
10459  0 /* num_of_err */
10460 };
10461 
10462 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
10463  ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10464  0x0000, /* 01 cfg_msw */
10465  0xFFFF, /* 02 disc_enable */
10466  0xFFFF, /* 03 wdtr_able */
10467  0x4444, /* 04 sdtr_speed1 */
10468  0xFFFF, /* 05 start_motor */
10469  0xFFFF, /* 06 tagqng_able */
10470  0xFFFF, /* 07 bios_scan */
10471  0, /* 08 scam_tolerant */
10472  7, /* 09 adapter_scsi_id */
10473  0, /* bios_boot_delay */
10474  3, /* 10 scsi_reset_delay */
10475  0, /* bios_id_lun */
10476  0, /* 11 termination_se */
10477  0, /* termination_lvd */
10478  0xFFE7, /* 12 bios_ctrl */
10479  0x4444, /* 13 sdtr_speed2 */
10480  0x4444, /* 14 sdtr_speed3 */
10481  ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10482  ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10483  0, /* 16 dvc_cntl */
10484  0x4444, /* 17 sdtr_speed4 */
10485  0, /* 18 serial_number_word1 */
10486  0, /* 19 serial_number_word2 */
10487  0, /* 20 serial_number_word3 */
10488  0, /* 21 check_sum */
10489  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10490  , /* 22-29 oem_name[16] */
10491  0, /* 30 dvc_err_code */
10492  0, /* 31 adv_err_code */
10493  0, /* 32 adv_err_addr */
10494  0, /* 33 saved_dvc_err_code */
10495  0, /* 34 saved_adv_err_code */
10496  0, /* 35 saved_adv_err_addr */
10497  0, /* 36 reserved */
10498  0, /* 37 reserved */
10499  0, /* 38 reserved */
10500  0, /* 39 reserved */
10501  0, /* 40 reserved */
10502  0, /* 41 reserved */
10503  0, /* 42 reserved */
10504  0, /* 43 reserved */
10505  0, /* 44 reserved */
10506  0, /* 45 reserved */
10507  0, /* 46 reserved */
10508  0, /* 47 reserved */
10509  0, /* 48 reserved */
10510  0, /* 49 reserved */
10511  0, /* 50 reserved */
10512  0, /* 51 reserved */
10513  0, /* 52 reserved */
10514  0, /* 53 reserved */
10515  0, /* 54 reserved */
10516  0, /* 55 reserved */
10517  0, /* 56 cisptr_lsw */
10518  0, /* 57 cisprt_msw */
10519  PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10520  PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
10521  0, /* 60 reserved */
10522  0, /* 61 reserved */
10523  0, /* 62 reserved */
10524  0 /* 63 reserved */
10525 };
10526 
10527 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
10528  0, /* 00 cfg_lsw */
10529  0, /* 01 cfg_msw */
10530  0, /* 02 disc_enable */
10531  0, /* 03 wdtr_able */
10532  0, /* 04 sdtr_speed1 */
10533  0, /* 05 start_motor */
10534  0, /* 06 tagqng_able */
10535  0, /* 07 bios_scan */
10536  0, /* 08 scam_tolerant */
10537  1, /* 09 adapter_scsi_id */
10538  1, /* bios_boot_delay */
10539  1, /* 10 scsi_reset_delay */
10540  1, /* bios_id_lun */
10541  1, /* 11 termination_se */
10542  1, /* termination_lvd */
10543  0, /* 12 bios_ctrl */
10544  0, /* 13 sdtr_speed2 */
10545  0, /* 14 sdtr_speed3 */
10546  1, /* 15 max_host_qng */
10547  1, /* max_dvc_qng */
10548  0, /* 16 dvc_cntl */
10549  0, /* 17 sdtr_speed4 */
10550  0, /* 18 serial_number_word1 */
10551  0, /* 19 serial_number_word2 */
10552  0, /* 20 serial_number_word3 */
10553  0, /* 21 check_sum */
10554  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10555  , /* 22-29 oem_name[16] */
10556  0, /* 30 dvc_err_code */
10557  0, /* 31 adv_err_code */
10558  0, /* 32 adv_err_addr */
10559  0, /* 33 saved_dvc_err_code */
10560  0, /* 34 saved_adv_err_code */
10561  0, /* 35 saved_adv_err_addr */
10562  0, /* 36 reserved */
10563  0, /* 37 reserved */
10564  0, /* 38 reserved */
10565  0, /* 39 reserved */
10566  0, /* 40 reserved */
10567  0, /* 41 reserved */
10568  0, /* 42 reserved */
10569  0, /* 43 reserved */
10570  0, /* 44 reserved */
10571  0, /* 45 reserved */
10572  0, /* 46 reserved */
10573  0, /* 47 reserved */
10574  0, /* 48 reserved */
10575  0, /* 49 reserved */
10576  0, /* 50 reserved */
10577  0, /* 51 reserved */
10578  0, /* 52 reserved */
10579  0, /* 53 reserved */
10580  0, /* 54 reserved */
10581  0, /* 55 reserved */
10582  0, /* 56 cisptr_lsw */
10583  0, /* 57 cisprt_msw */
10584  0, /* 58 subsysvid */
10585  0, /* 59 subsysid */
10586  0, /* 60 reserved */
10587  0, /* 61 reserved */
10588  0, /* 62 reserved */
10589  0 /* 63 reserved */
10590 };
10591 
10592 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
10593  ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10594  0x0000, /* 01 cfg_msw */
10595  0xFFFF, /* 02 disc_enable */
10596  0xFFFF, /* 03 wdtr_able */
10597  0x5555, /* 04 sdtr_speed1 */
10598  0xFFFF, /* 05 start_motor */
10599  0xFFFF, /* 06 tagqng_able */
10600  0xFFFF, /* 07 bios_scan */
10601  0, /* 08 scam_tolerant */
10602  7, /* 09 adapter_scsi_id */
10603  0, /* bios_boot_delay */
10604  3, /* 10 scsi_reset_delay */
10605  0, /* bios_id_lun */
10606  0, /* 11 termination_se */
10607  0, /* termination_lvd */
10608  0xFFE7, /* 12 bios_ctrl */
10609  0x5555, /* 13 sdtr_speed2 */
10610  0x5555, /* 14 sdtr_speed3 */
10611  ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10612  ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10613  0, /* 16 dvc_cntl */
10614  0x5555, /* 17 sdtr_speed4 */
10615  0, /* 18 serial_number_word1 */
10616  0, /* 19 serial_number_word2 */
10617  0, /* 20 serial_number_word3 */
10618  0, /* 21 check_sum */
10619  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10620  , /* 22-29 oem_name[16] */
10621  0, /* 30 dvc_err_code */
10622  0, /* 31 adv_err_code */
10623  0, /* 32 adv_err_addr */
10624  0, /* 33 saved_dvc_err_code */
10625  0, /* 34 saved_adv_err_code */
10626  0, /* 35 saved_adv_err_addr */
10627  0, /* 36 reserved */
10628  0, /* 37 reserved */
10629  0, /* 38 reserved */
10630  0, /* 39 reserved */
10631  0, /* 40 reserved */
10632  0, /* 41 reserved */
10633  0, /* 42 reserved */
10634  0, /* 43 reserved */
10635  0, /* 44 reserved */
10636  0, /* 45 reserved */
10637  0, /* 46 reserved */
10638  0, /* 47 reserved */
10639  0, /* 48 reserved */
10640  0, /* 49 reserved */
10641  0, /* 50 reserved */
10642  0, /* 51 reserved */
10643  0, /* 52 reserved */
10644  0, /* 53 reserved */
10645  0, /* 54 reserved */
10646  0, /* 55 reserved */
10647  0, /* 56 cisptr_lsw */
10648  0, /* 57 cisprt_msw */
10649  PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10650  PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
10651  0, /* 60 reserved */
10652  0, /* 61 reserved */
10653  0, /* 62 reserved */
10654  0 /* 63 reserved */
10655 };
10656 
10657 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
10658  0, /* 00 cfg_lsw */
10659  0, /* 01 cfg_msw */
10660  0, /* 02 disc_enable */
10661  0, /* 03 wdtr_able */
10662  0, /* 04 sdtr_speed1 */
10663  0, /* 05 start_motor */
10664  0, /* 06 tagqng_able */
10665  0, /* 07 bios_scan */
10666  0, /* 08 scam_tolerant */
10667  1, /* 09 adapter_scsi_id */
10668  1, /* bios_boot_delay */
10669  1, /* 10 scsi_reset_delay */
10670  1, /* bios_id_lun */
10671  1, /* 11 termination_se */
10672  1, /* termination_lvd */
10673  0, /* 12 bios_ctrl */
10674  0, /* 13 sdtr_speed2 */
10675  0, /* 14 sdtr_speed3 */
10676  1, /* 15 max_host_qng */
10677  1, /* max_dvc_qng */
10678  0, /* 16 dvc_cntl */
10679  0, /* 17 sdtr_speed4 */
10680  0, /* 18 serial_number_word1 */
10681  0, /* 19 serial_number_word2 */
10682  0, /* 20 serial_number_word3 */
10683  0, /* 21 check_sum */
10684  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10685  , /* 22-29 oem_name[16] */
10686  0, /* 30 dvc_err_code */
10687  0, /* 31 adv_err_code */
10688  0, /* 32 adv_err_addr */
10689  0, /* 33 saved_dvc_err_code */
10690  0, /* 34 saved_adv_err_code */
10691  0, /* 35 saved_adv_err_addr */
10692  0, /* 36 reserved */
10693  0, /* 37 reserved */
10694  0, /* 38 reserved */
10695  0, /* 39 reserved */
10696  0, /* 40 reserved */
10697  0, /* 41 reserved */
10698  0, /* 42 reserved */
10699  0, /* 43 reserved */
10700  0, /* 44 reserved */
10701  0, /* 45 reserved */
10702  0, /* 46 reserved */
10703  0, /* 47 reserved */
10704  0, /* 48 reserved */
10705  0, /* 49 reserved */
10706  0, /* 50 reserved */
10707  0, /* 51 reserved */
10708  0, /* 52 reserved */
10709  0, /* 53 reserved */
10710  0, /* 54 reserved */
10711  0, /* 55 reserved */
10712  0, /* 56 cisptr_lsw */
10713  0, /* 57 cisprt_msw */
10714  0, /* 58 subsysvid */
10715  0, /* 59 subsysid */
10716  0, /* 60 reserved */
10717  0, /* 61 reserved */
10718  0, /* 62 reserved */
10719  0 /* 63 reserved */
10720 };
10721 
10722 #ifdef CONFIG_PCI
10723 /*
10724  * Wait for EEPROM command to complete
10725  */
10726 static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
10727 {
10728  int eep_delay_ms;
10729 
10730  for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10731  if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10732  ASC_EEP_CMD_DONE) {
10733  break;
10734  }
10735  mdelay(1);
10736  }
10737  if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10738  0)
10739  BUG();
10740 }
10741 
10742 /*
10743  * Read the EEPROM from specified location
10744  */
10745 static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10746 {
10748  ASC_EEP_CMD_READ | eep_word_addr);
10749  AdvWaitEEPCmd(iop_base);
10750  return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10751 }
10752 
10753 /*
10754  * Write the EEPROM from 'cfg_buf'.
10755  */
10756 static void __devinit
10757 AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10758 {
10759  ushort *wbuf;
10760  ushort addr, chksum;
10761  ushort *charfields;
10762 
10763  wbuf = (ushort *)cfg_buf;
10764  charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10765  chksum = 0;
10766 
10768  AdvWaitEEPCmd(iop_base);
10769 
10770  /*
10771  * Write EEPROM from word 0 to word 20.
10772  */
10773  for (addr = ADV_EEP_DVC_CFG_BEGIN;
10774  addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10775  ushort word;
10776 
10777  if (*charfields++) {
10778  word = cpu_to_le16(*wbuf);
10779  } else {
10780  word = *wbuf;
10781  }
10782  chksum += *wbuf; /* Checksum is calculated from word values. */
10783  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10785  ASC_EEP_CMD_WRITE | addr);
10786  AdvWaitEEPCmd(iop_base);
10787  mdelay(ADV_EEP_DELAY_MS);
10788  }
10789 
10790  /*
10791  * Write EEPROM checksum at word 21.
10792  */
10793  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10795  AdvWaitEEPCmd(iop_base);
10796  wbuf++;
10797  charfields++;
10798 
10799  /*
10800  * Write EEPROM OEM name at words 22 to 29.
10801  */
10802  for (addr = ADV_EEP_DVC_CTL_BEGIN;
10803  addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10804  ushort word;
10805 
10806  if (*charfields++) {
10807  word = cpu_to_le16(*wbuf);
10808  } else {
10809  word = *wbuf;
10810  }
10811  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10813  ASC_EEP_CMD_WRITE | addr);
10814  AdvWaitEEPCmd(iop_base);
10815  }
10817  AdvWaitEEPCmd(iop_base);
10818 }
10819 
10820 /*
10821  * Write the EEPROM from 'cfg_buf'.
10822  */
10823 static void __devinit
10824 AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10825 {
10826  ushort *wbuf;
10827  ushort *charfields;
10828  ushort addr, chksum;
10829 
10830  wbuf = (ushort *)cfg_buf;
10831  charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10832  chksum = 0;
10833 
10835  AdvWaitEEPCmd(iop_base);
10836 
10837  /*
10838  * Write EEPROM from word 0 to word 20.
10839  */
10840  for (addr = ADV_EEP_DVC_CFG_BEGIN;
10841  addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10842  ushort word;
10843 
10844  if (*charfields++) {
10845  word = cpu_to_le16(*wbuf);
10846  } else {
10847  word = *wbuf;
10848  }
10849  chksum += *wbuf; /* Checksum is calculated from word values. */
10850  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10852  ASC_EEP_CMD_WRITE | addr);
10853  AdvWaitEEPCmd(iop_base);
10854  mdelay(ADV_EEP_DELAY_MS);
10855  }
10856 
10857  /*
10858  * Write EEPROM checksum at word 21.
10859  */
10860  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10862  AdvWaitEEPCmd(iop_base);
10863  wbuf++;
10864  charfields++;
10865 
10866  /*
10867  * Write EEPROM OEM name at words 22 to 29.
10868  */
10869  for (addr = ADV_EEP_DVC_CTL_BEGIN;
10870  addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10871  ushort word;
10872 
10873  if (*charfields++) {
10874  word = cpu_to_le16(*wbuf);
10875  } else {
10876  word = *wbuf;
10877  }
10878  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10880  ASC_EEP_CMD_WRITE | addr);
10881  AdvWaitEEPCmd(iop_base);
10882  }
10884  AdvWaitEEPCmd(iop_base);
10885 }
10886 
10887 /*
10888  * Write the EEPROM from 'cfg_buf'.
10889  */
10890 static void __devinit
10891 AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
10892 {
10893  ushort *wbuf;
10894  ushort *charfields;
10895  ushort addr, chksum;
10896 
10897  wbuf = (ushort *)cfg_buf;
10898  charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10899  chksum = 0;
10900 
10902  AdvWaitEEPCmd(iop_base);
10903 
10904  /*
10905  * Write EEPROM from word 0 to word 20.
10906  */
10907  for (addr = ADV_EEP_DVC_CFG_BEGIN;
10908  addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10909  ushort word;
10910 
10911  if (*charfields++) {
10912  word = cpu_to_le16(*wbuf);
10913  } else {
10914  word = *wbuf;
10915  }
10916  chksum += *wbuf; /* Checksum is calculated from word values. */
10917  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10919  ASC_EEP_CMD_WRITE | addr);
10920  AdvWaitEEPCmd(iop_base);
10921  mdelay(ADV_EEP_DELAY_MS);
10922  }
10923 
10924  /*
10925  * Write EEPROM checksum at word 21.
10926  */
10927  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10929  AdvWaitEEPCmd(iop_base);
10930  wbuf++;
10931  charfields++;
10932 
10933  /*
10934  * Write EEPROM OEM name at words 22 to 29.
10935  */
10936  for (addr = ADV_EEP_DVC_CTL_BEGIN;
10937  addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10938  ushort word;
10939 
10940  if (*charfields++) {
10941  word = cpu_to_le16(*wbuf);
10942  } else {
10943  word = *wbuf;
10944  }
10945  AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10947  ASC_EEP_CMD_WRITE | addr);
10948  AdvWaitEEPCmd(iop_base);
10949  }
10951  AdvWaitEEPCmd(iop_base);
10952 }
10953 
10954 /*
10955  * Read EEPROM configuration into the specified buffer.
10956  *
10957  * Return a checksum based on the EEPROM configuration read.
10958  */
10959 static ushort __devinit
10960 AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10961 {
10962  ushort wval, chksum;
10963  ushort *wbuf;
10964  int eep_addr;
10965  ushort *charfields;
10966 
10967  charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10968  wbuf = (ushort *)cfg_buf;
10969  chksum = 0;
10970 
10971  for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10972  eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10973  wval = AdvReadEEPWord(iop_base, eep_addr);
10974  chksum += wval; /* Checksum is calculated from word values. */
10975  if (*charfields++) {
10976  *wbuf = le16_to_cpu(wval);
10977  } else {
10978  *wbuf = wval;
10979  }
10980  }
10981  /* Read checksum word. */
10982  *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10983  wbuf++;
10984  charfields++;
10985 
10986  /* Read rest of EEPROM not covered by the checksum. */
10987  for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10988  eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10989  *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10990  if (*charfields++) {
10991  *wbuf = le16_to_cpu(*wbuf);
10992  }
10993  }
10994  return chksum;
10995 }
10996 
10997 /*
10998  * Read EEPROM configuration into the specified buffer.
10999  *
11000  * Return a checksum based on the EEPROM configuration read.
11001  */
11002 static ushort __devinit
11003 AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
11004 {
11005  ushort wval, chksum;
11006  ushort *wbuf;
11007  int eep_addr;
11008  ushort *charfields;
11009 
11010  charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
11011  wbuf = (ushort *)cfg_buf;
11012  chksum = 0;
11013 
11014  for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11015  eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11016  wval = AdvReadEEPWord(iop_base, eep_addr);
11017  chksum += wval; /* Checksum is calculated from word values. */
11018  if (*charfields++) {
11019  *wbuf = le16_to_cpu(wval);
11020  } else {
11021  *wbuf = wval;
11022  }
11023  }
11024  /* Read checksum word. */
11025  *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11026  wbuf++;
11027  charfields++;
11028 
11029  /* Read rest of EEPROM not covered by the checksum. */
11030  for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11031  eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11032  *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11033  if (*charfields++) {
11034  *wbuf = le16_to_cpu(*wbuf);
11035  }
11036  }
11037  return chksum;
11038 }
11039 
11040 /*
11041  * Read EEPROM configuration into the specified buffer.
11042  *
11043  * Return a checksum based on the EEPROM configuration read.
11044  */
11045 static ushort __devinit
11046 AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
11047 {
11048  ushort wval, chksum;
11049  ushort *wbuf;
11050  int eep_addr;
11051  ushort *charfields;
11052 
11053  charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
11054  wbuf = (ushort *)cfg_buf;
11055  chksum = 0;
11056 
11057  for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11058  eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11059  wval = AdvReadEEPWord(iop_base, eep_addr);
11060  chksum += wval; /* Checksum is calculated from word values. */
11061  if (*charfields++) {
11062  *wbuf = le16_to_cpu(wval);
11063  } else {
11064  *wbuf = wval;
11065  }
11066  }
11067  /* Read checksum word. */
11068  *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11069  wbuf++;
11070  charfields++;
11071 
11072  /* Read rest of EEPROM not covered by the checksum. */
11073  for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11074  eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11075  *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11076  if (*charfields++) {
11077  *wbuf = le16_to_cpu(*wbuf);
11078  }
11079  }
11080  return chksum;
11081 }
11082 
11083 /*
11084  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11085  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11086  * all of this is done.
11087  *
11088  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11089  *
11090  * For a non-fatal error return a warning code. If there are no warnings
11091  * then 0 is returned.
11092  *
11093  * Note: Chip is stopped on entry.
11094  */
11095 static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
11096 {
11097  AdvPortAddr iop_base;
11098  ushort warn_code;
11100 
11101  iop_base = asc_dvc->iop_base;
11102 
11103  warn_code = 0;
11104 
11105  /*
11106  * Read the board's EEPROM configuration.
11107  *
11108  * Set default values if a bad checksum is found.
11109  */
11110  if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
11111  warn_code |= ASC_WARN_EEPROM_CHKSUM;
11112 
11113  /*
11114  * Set EEPROM default values.
11115  */
11116  memcpy(&eep_config, &Default_3550_EEPROM_Config,
11117  sizeof(ADVEEP_3550_CONFIG));
11118 
11119  /*
11120  * Assume the 6 byte board serial number that was read from
11121  * EEPROM is correct even if the EEPROM checksum failed.
11122  */
11123  eep_config.serial_number_word3 =
11124  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11125 
11126  eep_config.serial_number_word2 =
11127  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11128 
11129  eep_config.serial_number_word1 =
11130  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11131 
11132  AdvSet3550EEPConfig(iop_base, &eep_config);
11133  }
11134  /*
11135  * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11136  * EEPROM configuration that was read.
11137  *
11138  * This is the mapping of EEPROM fields to Adv Library fields.
11139  */
11140  asc_dvc->wdtr_able = eep_config.wdtr_able;
11141  asc_dvc->sdtr_able = eep_config.sdtr_able;
11142  asc_dvc->ultra_able = eep_config.ultra_able;
11143  asc_dvc->tagqng_able = eep_config.tagqng_able;
11144  asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11145  asc_dvc->max_host_qng = eep_config.max_host_qng;
11146  asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11147  asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11148  asc_dvc->start_motor = eep_config.start_motor;
11149  asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11150  asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11151  asc_dvc->no_scam = eep_config.scam_tolerant;
11152  asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11153  asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11154  asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11155 
11156  /*
11157  * Set the host maximum queuing (max. 253, min. 16) and the per device
11158  * maximum queuing (max. 63, min. 4).
11159  */
11160  if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11161  eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11162  } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11163  /* If the value is zero, assume it is uninitialized. */
11164  if (eep_config.max_host_qng == 0) {
11165  eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11166  } else {
11167  eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11168  }
11169  }
11170 
11171  if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11172  eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11173  } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11174  /* If the value is zero, assume it is uninitialized. */
11175  if (eep_config.max_dvc_qng == 0) {
11176  eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11177  } else {
11178  eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11179  }
11180  }
11181 
11182  /*
11183  * If 'max_dvc_qng' is greater than 'max_host_qng', then
11184  * set 'max_dvc_qng' to 'max_host_qng'.
11185  */
11186  if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11187  eep_config.max_dvc_qng = eep_config.max_host_qng;
11188  }
11189 
11190  /*
11191  * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11192  * values based on possibly adjusted EEPROM values.
11193  */
11194  asc_dvc->max_host_qng = eep_config.max_host_qng;
11195  asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11196 
11197  /*
11198  * If the EEPROM 'termination' field is set to automatic (0), then set
11199  * the ADV_DVC_CFG 'termination' field to automatic also.
11200  *
11201  * If the termination is specified with a non-zero 'termination'
11202  * value check that a legal value is set and set the ADV_DVC_CFG
11203  * 'termination' field appropriately.
11204  */
11205  if (eep_config.termination == 0) {
11206  asc_dvc->cfg->termination = 0; /* auto termination */
11207  } else {
11208  /* Enable manual control with low off / high off. */
11209  if (eep_config.termination == 1) {
11210  asc_dvc->cfg->termination = TERM_CTL_SEL;
11211 
11212  /* Enable manual control with low off / high on. */
11213  } else if (eep_config.termination == 2) {
11214  asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
11215 
11216  /* Enable manual control with low on / high on. */
11217  } else if (eep_config.termination == 3) {
11218  asc_dvc->cfg->termination =
11220  } else {
11221  /*
11222  * The EEPROM 'termination' field contains a bad value. Use
11223  * automatic termination instead.
11224  */
11225  asc_dvc->cfg->termination = 0;
11226  warn_code |= ASC_WARN_EEPROM_TERMINATION;
11227  }
11228  }
11229 
11230  return warn_code;
11231 }
11232 
11233 /*
11234  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11235  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11236  * all of this is done.
11237  *
11238  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11239  *
11240  * For a non-fatal error return a warning code. If there are no warnings
11241  * then 0 is returned.
11242  *
11243  * Note: Chip is stopped on entry.
11244  */
11245 static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
11246 {
11247  AdvPortAddr iop_base;
11248  ushort warn_code;
11250  uchar tid, termination;
11251  ushort sdtr_speed = 0;
11252 
11253  iop_base = asc_dvc->iop_base;
11254 
11255  warn_code = 0;
11256 
11257  /*
11258  * Read the board's EEPROM configuration.
11259  *
11260  * Set default values if a bad checksum is found.
11261  */
11262  if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
11263  eep_config.check_sum) {
11264  warn_code |= ASC_WARN_EEPROM_CHKSUM;
11265 
11266  /*
11267  * Set EEPROM default values.
11268  */
11269  memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
11270  sizeof(ADVEEP_38C0800_CONFIG));
11271 
11272  /*
11273  * Assume the 6 byte board serial number that was read from
11274  * EEPROM is correct even if the EEPROM checksum failed.
11275  */
11276  eep_config.serial_number_word3 =
11277  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11278 
11279  eep_config.serial_number_word2 =
11280  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11281 
11282  eep_config.serial_number_word1 =
11283  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11284 
11285  AdvSet38C0800EEPConfig(iop_base, &eep_config);
11286  }
11287  /*
11288  * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11289  * EEPROM configuration that was read.
11290  *
11291  * This is the mapping of EEPROM fields to Adv Library fields.
11292  */
11293  asc_dvc->wdtr_able = eep_config.wdtr_able;
11294  asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11295  asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11296  asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11297  asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11298  asc_dvc->tagqng_able = eep_config.tagqng_able;
11299  asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11300  asc_dvc->max_host_qng = eep_config.max_host_qng;
11301  asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11302  asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11303  asc_dvc->start_motor = eep_config.start_motor;
11304  asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11305  asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11306  asc_dvc->no_scam = eep_config.scam_tolerant;
11307  asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11308  asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11309  asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11310 
11311  /*
11312  * For every Target ID if any of its 'sdtr_speed[1234]' bits
11313  * are set, then set an 'sdtr_able' bit for it.
11314  */
11315  asc_dvc->sdtr_able = 0;
11316  for (tid = 0; tid <= ADV_MAX_TID; tid++) {
11317  if (tid == 0) {
11318  sdtr_speed = asc_dvc->sdtr_speed1;
11319  } else if (tid == 4) {
11320  sdtr_speed = asc_dvc->sdtr_speed2;
11321  } else if (tid == 8) {
11322  sdtr_speed = asc_dvc->sdtr_speed3;
11323  } else if (tid == 12) {
11324  sdtr_speed = asc_dvc->sdtr_speed4;
11325  }
11326  if (sdtr_speed & ADV_MAX_TID) {
11327  asc_dvc->sdtr_able |= (1 << tid);
11328  }
11329  sdtr_speed >>= 4;
11330  }
11331 
11332  /*
11333  * Set the host maximum queuing (max. 253, min. 16) and the per device
11334  * maximum queuing (max. 63, min. 4).
11335  */
11336  if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11337  eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11338  } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11339  /* If the value is zero, assume it is uninitialized. */
11340  if (eep_config.max_host_qng == 0) {
11341  eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11342  } else {
11343  eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11344  }
11345  }
11346 
11347  if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11348  eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11349  } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11350  /* If the value is zero, assume it is uninitialized. */
11351  if (eep_config.max_dvc_qng == 0) {
11352  eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11353  } else {
11354  eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11355  }
11356  }
11357 
11358  /*
11359  * If 'max_dvc_qng' is greater than 'max_host_qng', then
11360  * set 'max_dvc_qng' to 'max_host_qng'.
11361  */
11362  if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11363  eep_config.max_dvc_qng = eep_config.max_host_qng;
11364  }
11365 
11366  /*
11367  * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11368  * values based on possibly adjusted EEPROM values.
11369  */
11370  asc_dvc->max_host_qng = eep_config.max_host_qng;
11371  asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11372 
11373  /*
11374  * If the EEPROM 'termination' field is set to automatic (0), then set
11375  * the ADV_DVC_CFG 'termination' field to automatic also.
11376  *
11377  * If the termination is specified with a non-zero 'termination'
11378  * value check that a legal value is set and set the ADV_DVC_CFG
11379  * 'termination' field appropriately.
11380  */
11381  if (eep_config.termination_se == 0) {
11382  termination = 0; /* auto termination for SE */
11383  } else {
11384  /* Enable manual control with low off / high off. */
11385  if (eep_config.termination_se == 1) {
11386  termination = 0;
11387 
11388  /* Enable manual control with low off / high on. */
11389  } else if (eep_config.termination_se == 2) {
11390  termination = TERM_SE_HI;
11391 
11392  /* Enable manual control with low on / high on. */
11393  } else if (eep_config.termination_se == 3) {
11394  termination = TERM_SE;
11395  } else {
11396  /*
11397  * The EEPROM 'termination_se' field contains a bad value.
11398  * Use automatic termination instead.
11399  */
11400  termination = 0;
11401  warn_code |= ASC_WARN_EEPROM_TERMINATION;
11402  }
11403  }
11404 
11405  if (eep_config.termination_lvd == 0) {
11406  asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11407  } else {
11408  /* Enable manual control with low off / high off. */
11409  if (eep_config.termination_lvd == 1) {
11410  asc_dvc->cfg->termination = termination;
11411 
11412  /* Enable manual control with low off / high on. */
11413  } else if (eep_config.termination_lvd == 2) {
11414  asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11415 
11416  /* Enable manual control with low on / high on. */
11417  } else if (eep_config.termination_lvd == 3) {
11418  asc_dvc->cfg->termination = termination | TERM_LVD;
11419  } else {
11420  /*
11421  * The EEPROM 'termination_lvd' field contains a bad value.
11422  * Use automatic termination instead.
11423  */
11424  asc_dvc->cfg->termination = termination;
11425  warn_code |= ASC_WARN_EEPROM_TERMINATION;
11426  }
11427  }
11428 
11429  return warn_code;
11430 }
11431 
11432 /*
11433  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11434  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11435  * all of this is done.
11436  *
11437  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11438  *
11439  * For a non-fatal error return a warning code. If there are no warnings
11440  * then 0 is returned.
11441  *
11442  * Note: Chip is stopped on entry.
11443  */
11444 static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
11445 {
11446  AdvPortAddr iop_base;
11447  ushort warn_code;
11449  uchar tid, termination;
11450  ushort sdtr_speed = 0;
11451 
11452  iop_base = asc_dvc->iop_base;
11453 
11454  warn_code = 0;
11455 
11456  /*
11457  * Read the board's EEPROM configuration.
11458  *
11459  * Set default values if a bad checksum is found.
11460  */
11461  if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
11462  eep_config.check_sum) {
11463  struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
11464  warn_code |= ASC_WARN_EEPROM_CHKSUM;
11465 
11466  /*
11467  * Set EEPROM default values.
11468  */
11469  memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
11470  sizeof(ADVEEP_38C1600_CONFIG));
11471 
11472  if (PCI_FUNC(pdev->devfn) != 0) {
11473  u8 ints;
11474  /*
11475  * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11476  * and old Mac system booting problem. The Expansion
11477  * ROM must be disabled in Function 1 for these systems
11478  */
11479  eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
11480  /*
11481  * Clear the INTAB (bit 11) if the GPIO 0 input
11482  * indicates the Function 1 interrupt line is wired
11483  * to INTB.
11484  *
11485  * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11486  * 1 - Function 1 interrupt line wired to INT A.
11487  * 0 - Function 1 interrupt line wired to INT B.
11488  *
11489  * Note: Function 0 is always wired to INTA.
11490  * Put all 5 GPIO bits in input mode and then read
11491  * their input values.
11492  */
11493  AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11494  ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11495  if ((ints & 0x01) == 0)
11496  eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11497  }
11498 
11499  /*
11500  * Assume the 6 byte board serial number that was read from
11501  * EEPROM is correct even if the EEPROM checksum failed.
11502  */
11503  eep_config.serial_number_word3 =
11504  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11505  eep_config.serial_number_word2 =
11506  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11507  eep_config.serial_number_word1 =
11508  AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11509 
11510  AdvSet38C1600EEPConfig(iop_base, &eep_config);
11511  }
11512 
11513  /*
11514  * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11515  * EEPROM configuration that was read.
11516  *
11517  * This is the mapping of EEPROM fields to Adv Library fields.
11518  */
11519  asc_dvc->wdtr_able = eep_config.wdtr_able;
11520  asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11521  asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11522  asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11523  asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11524  asc_dvc->ppr_able = 0;
11525  asc_dvc->tagqng_able = eep_config.tagqng_able;
11526  asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11527  asc_dvc->max_host_qng = eep_config.max_host_qng;
11528  asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11529  asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11530  asc_dvc->start_motor = eep_config.start_motor;
11531  asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11532  asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11533  asc_dvc->no_scam = eep_config.scam_tolerant;
11534 
11535  /*
11536  * For every Target ID if any of its 'sdtr_speed[1234]' bits
11537  * are set, then set an 'sdtr_able' bit for it.
11538  */
11539  asc_dvc->sdtr_able = 0;
11540  for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11541  if (tid == 0) {
11542  sdtr_speed = asc_dvc->sdtr_speed1;
11543  } else if (tid == 4) {
11544  sdtr_speed = asc_dvc->sdtr_speed2;
11545  } else if (tid == 8) {
11546  sdtr_speed = asc_dvc->sdtr_speed3;
11547  } else if (tid == 12) {
11548  sdtr_speed = asc_dvc->sdtr_speed4;
11549  }
11550  if (sdtr_speed & ASC_MAX_TID) {
11551  asc_dvc->sdtr_able |= (1 << tid);
11552  }
11553  sdtr_speed >>= 4;
11554  }
11555 
11556  /*
11557  * Set the host maximum queuing (max. 253, min. 16) and the per device
11558  * maximum queuing (max. 63, min. 4).
11559  */
11560  if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11561  eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11562  } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11563  /* If the value is zero, assume it is uninitialized. */
11564  if (eep_config.max_host_qng == 0) {
11565  eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11566  } else {
11567  eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11568  }
11569  }
11570 
11571  if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11572  eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11573  } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11574  /* If the value is zero, assume it is uninitialized. */
11575  if (eep_config.max_dvc_qng == 0) {
11576  eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11577  } else {
11578  eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11579  }
11580  }
11581 
11582  /*
11583  * If 'max_dvc_qng' is greater than 'max_host_qng', then
11584  * set 'max_dvc_qng' to 'max_host_qng'.
11585  */
11586  if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11587  eep_config.max_dvc_qng = eep_config.max_host_qng;
11588  }
11589 
11590  /*
11591  * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11592  * values based on possibly adjusted EEPROM values.
11593  */
11594  asc_dvc->max_host_qng = eep_config.max_host_qng;
11595  asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11596 
11597  /*
11598  * If the EEPROM 'termination' field is set to automatic (0), then set
11599  * the ASC_DVC_CFG 'termination' field to automatic also.
11600  *
11601  * If the termination is specified with a non-zero 'termination'
11602  * value check that a legal value is set and set the ASC_DVC_CFG
11603  * 'termination' field appropriately.
11604  */
11605  if (eep_config.termination_se == 0) {
11606  termination = 0; /* auto termination for SE */
11607  } else {
11608  /* Enable manual control with low off / high off. */
11609  if (eep_config.termination_se == 1) {
11610  termination = 0;
11611 
11612  /* Enable manual control with low off / high on. */
11613  } else if (eep_config.termination_se == 2) {
11614  termination = TERM_SE_HI;
11615 
11616  /* Enable manual control with low on / high on. */
11617  } else if (eep_config.termination_se == 3) {
11618  termination = TERM_SE;
11619  } else {
11620  /*
11621  * The EEPROM 'termination_se' field contains a bad value.
11622  * Use automatic termination instead.
11623  */
11624  termination = 0;
11625  warn_code |= ASC_WARN_EEPROM_TERMINATION;
11626  }
11627  }
11628 
11629  if (eep_config.termination_lvd == 0) {
11630  asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11631  } else {
11632  /* Enable manual control with low off / high off. */
11633  if (eep_config.termination_lvd == 1) {
11634  asc_dvc->cfg->termination = termination;
11635 
11636  /* Enable manual control with low off / high on. */
11637  } else if (eep_config.termination_lvd == 2) {
11638  asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11639 
11640  /* Enable manual control with low on / high on. */
11641  } else if (eep_config.termination_lvd == 3) {
11642  asc_dvc->cfg->termination = termination | TERM_LVD;
11643  } else {
11644  /*
11645  * The EEPROM 'termination_lvd' field contains a bad value.
11646  * Use automatic termination instead.
11647  */
11648  asc_dvc->cfg->termination = termination;
11649  warn_code |= ASC_WARN_EEPROM_TERMINATION;
11650  }
11651  }
11652 
11653  return warn_code;
11654 }
11655 
11656 /*
11657  * Initialize the ADV_DVC_VAR structure.
11658  *
11659  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11660  *
11661  * For a non-fatal error return a warning code. If there are no warnings
11662  * then 0 is returned.
11663  */
11664 static int __devinit
11665 AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11666 {
11667  struct asc_board *board = shost_priv(shost);
11668  ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11669  unsigned short warn_code = 0;
11670  AdvPortAddr iop_base = asc_dvc->iop_base;
11671  u16 cmd;
11672  int status;
11673 
11674  asc_dvc->err_code = 0;
11675 
11676  /*
11677  * Save the state of the PCI Configuration Command Register
11678  * "Parity Error Response Control" Bit. If the bit is clear (0),
11679  * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11680  * DMA parity errors.
11681  */
11682  asc_dvc->cfg->control_flag = 0;
11683  pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11684  if ((cmd & PCI_COMMAND_PARITY) == 0)
11686 
11687  asc_dvc->cfg->chip_version =
11688  AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11689 
11690  ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11693 
11694  ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11697 
11698  /*
11699  * Reset the chip to start and allow register writes.
11700  */
11701  if (AdvFindSignature(iop_base) == 0) {
11702  asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11703  return ADV_ERROR;
11704  } else {
11705  /*
11706  * The caller must set 'chip_type' to a valid setting.
11707  */
11708  if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11709  asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11710  asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11711  asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11712  return ADV_ERROR;
11713  }
11714 
11715  /*
11716  * Reset Chip.
11717  */
11720  mdelay(100);
11723 
11724  if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11725  status = AdvInitFrom38C1600EEP(asc_dvc);
11726  } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11727  status = AdvInitFrom38C0800EEP(asc_dvc);
11728  } else {
11729  status = AdvInitFrom3550EEP(asc_dvc);
11730  }
11731  warn_code |= status;
11732  }
11733 
11734  if (warn_code != 0)
11735  shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11736 
11737  if (asc_dvc->err_code)
11738  shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11739  asc_dvc->err_code);
11740 
11741  return asc_dvc->err_code;
11742 }
11743 #endif
11744 
11745 static struct scsi_host_template advansys_template = {
11746  .proc_name = DRV_NAME,
11747 #ifdef CONFIG_PROC_FS
11748  .proc_info = advansys_proc_info,
11749 #endif
11750  .name = DRV_NAME,
11751  .info = advansys_info,
11752  .queuecommand = advansys_queuecommand,
11753  .eh_bus_reset_handler = advansys_reset,
11754  .bios_param = advansys_biosparam,
11755  .slave_configure = advansys_slave_configure,
11756  /*
11757  * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11758  * must be set. The flag will be cleared in advansys_board_found
11759  * for non-ISA adapters.
11760  */
11761  .unchecked_isa_dma = 1,
11762  /*
11763  * All adapters controlled by this driver are capable of large
11764  * scatter-gather lists. According to the mid-level SCSI documentation
11765  * this obviates any performance gain provided by setting
11766  * 'use_clustering'. But empirically while CPU utilization is increased
11767  * by enabling clustering, I/O throughput increases as well.
11768  */
11769  .use_clustering = ENABLE_CLUSTERING,
11770 };
11771 
11772 static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
11773 {
11774  struct asc_board *board = shost_priv(shost);
11775  struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11776  int req_cnt = 0;
11777  adv_req_t *reqp = NULL;
11778  int sg_cnt = 0;
11779  adv_sgblk_t *sgp;
11780  int warn_code, err_code;
11781 
11782  /*
11783  * Allocate buffer carrier structures. The total size
11784  * is about 4 KB, so allocate all at once.
11785  */
11787  ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11788 
11789  if (!adv_dvc->carrier_buf)
11790  goto kmalloc_failed;
11791 
11792  /*
11793  * Allocate up to 'max_host_qng' request structures for the Wide
11794  * board. The total size is about 16 KB, so allocate all at once.
11795  * If the allocation fails decrement and try again.
11796  */
11797  for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11798  reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11799 
11800  ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11801  (ulong)sizeof(adv_req_t) * req_cnt);
11802 
11803  if (reqp)
11804  break;
11805  }
11806 
11807  if (!reqp)
11808  goto kmalloc_failed;
11809 
11810  adv_dvc->orig_reqp = reqp;
11811 
11812  /*
11813  * Allocate up to ADV_TOT_SG_BLOCK request structures for
11814  * the Wide board. Each structure is about 136 bytes.
11815  */
11816  board->adv_sgblkp = NULL;
11817  for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11818  sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11819 
11820  if (!sgp)
11821  break;
11822 
11823  sgp->next_sgblkp = board->adv_sgblkp;
11824  board->adv_sgblkp = sgp;
11825 
11826  }
11827 
11828  ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11829  sizeof(adv_sgblk_t) * sg_cnt);
11830 
11831  if (!board->adv_sgblkp)
11832  goto kmalloc_failed;
11833 
11834  /*
11835  * Point 'adv_reqp' to the request structures and
11836  * link them together.
11837  */
11838  req_cnt--;
11839  reqp[req_cnt].next_reqp = NULL;
11840  for (; req_cnt > 0; req_cnt--) {
11841  reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11842  }
11843  board->adv_reqp = &reqp[0];
11844 
11845  if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11846  ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11847  warn_code = AdvInitAsc3550Driver(adv_dvc);
11848  } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11849  ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11850  warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11851  } else {
11852  ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11853  warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11854  }
11855  err_code = adv_dvc->err_code;
11856 
11857  if (warn_code || err_code) {
11858  shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11859  "0x%x\n", warn_code, err_code);
11860  }
11861 
11862  goto exit;
11863 
11864  kmalloc_failed:
11865  shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11866  err_code = ADV_ERROR;
11867  exit:
11868  return err_code;
11869 }
11870 
11871 static void advansys_wide_free_mem(struct asc_board *board)
11872 {
11873  struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11874  kfree(adv_dvc->carrier_buf);
11875  adv_dvc->carrier_buf = NULL;
11876  kfree(adv_dvc->orig_reqp);
11877  adv_dvc->orig_reqp = board->adv_reqp = NULL;
11878  while (board->adv_sgblkp) {
11879  adv_sgblk_t *sgp = board->adv_sgblkp;
11880  board->adv_sgblkp = sgp->next_sgblkp;
11881  kfree(sgp);
11882  }
11883 }
11884 
11885 static int __devinit advansys_board_found(struct Scsi_Host *shost,
11886  unsigned int iop, int bus_type)
11887 {
11888  struct pci_dev *pdev;
11889  struct asc_board *boardp = shost_priv(shost);
11890  ASC_DVC_VAR *asc_dvc_varp = NULL;
11891  ADV_DVC_VAR *adv_dvc_varp = NULL;
11892  int share_irq, warn_code, ret;
11893 
11894  pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11895 
11896  if (ASC_NARROW_BOARD(boardp)) {
11897  ASC_DBG(1, "narrow board\n");
11898  asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11899  asc_dvc_varp->bus_type = bus_type;
11900  asc_dvc_varp->drv_ptr = boardp;
11901  asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11902  asc_dvc_varp->iop_base = iop;
11903  } else {
11904 #ifdef CONFIG_PCI
11905  adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11906  adv_dvc_varp->drv_ptr = boardp;
11907  adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11908  if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11909  ASC_DBG(1, "wide board ASC-3550\n");
11910  adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11911  } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11912  ASC_DBG(1, "wide board ASC-38C0800\n");
11913  adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11914  } else {
11915  ASC_DBG(1, "wide board ASC-38C1600\n");
11916  adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11917  }
11918 
11919  boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11920  boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11921  if (!boardp->ioremap_addr) {
11922  shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11923  "returned NULL\n",
11924  (long)pci_resource_start(pdev, 1),
11925  boardp->asc_n_io_port);
11926  ret = -ENODEV;
11927  goto err_shost;
11928  }
11929  adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11930  ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11931 
11932  /*
11933  * Even though it isn't used to access wide boards, other
11934  * than for the debug line below, save I/O Port address so
11935  * that it can be reported.
11936  */
11937  boardp->ioport = iop;
11938 
11939  ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11940  (ushort)inp(iop + 1), (ushort)inpw(iop));
11941 #endif /* CONFIG_PCI */
11942  }
11943 
11944 #ifdef CONFIG_PROC_FS
11945  /*
11946  * Allocate buffer for printing information from
11947  * /proc/scsi/advansys/[0...].
11948  */
11949  boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
11950  if (!boardp->prtbuf) {
11951  shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
11952  ASC_PRTBUF_SIZE);
11953  ret = -ENOMEM;
11954  goto err_unmap;
11955  }
11956 #endif /* CONFIG_PROC_FS */
11957 
11958  if (ASC_NARROW_BOARD(boardp)) {
11959  /*
11960  * Set the board bus type and PCI IRQ before
11961  * calling AscInitGetConfig().
11962  */
11963  switch (asc_dvc_varp->bus_type) {
11964 #ifdef CONFIG_ISA
11965  case ASC_IS_ISA:
11966  shost->unchecked_isa_dma = TRUE;
11967  share_irq = 0;
11968  break;
11969  case ASC_IS_VL:
11970  shost->unchecked_isa_dma = FALSE;
11971  share_irq = 0;
11972  break;
11973  case ASC_IS_EISA:
11974  shost->unchecked_isa_dma = FALSE;
11975  share_irq = IRQF_SHARED;
11976  break;
11977 #endif /* CONFIG_ISA */
11978 #ifdef CONFIG_PCI
11979  case ASC_IS_PCI:
11980  shost->unchecked_isa_dma = FALSE;
11981  share_irq = IRQF_SHARED;
11982  break;
11983 #endif /* CONFIG_PCI */
11984  default:
11985  shost_printk(KERN_ERR, shost, "unknown adapter type: "
11986  "%d\n", asc_dvc_varp->bus_type);
11987  shost->unchecked_isa_dma = TRUE;
11988  share_irq = 0;
11989  break;
11990  }
11991 
11992  /*
11993  * NOTE: AscInitGetConfig() may change the board's
11994  * bus_type value. The bus_type value should no
11995  * longer be used. If the bus_type field must be
11996  * referenced only use the bit-wise AND operator "&".
11997  */
11998  ASC_DBG(2, "AscInitGetConfig()\n");
11999  ret = AscInitGetConfig(shost) ? -ENODEV : 0;
12000  } else {
12001 #ifdef CONFIG_PCI
12002  /*
12003  * For Wide boards set PCI information before calling
12004  * AdvInitGetConfig().
12005  */
12006  shost->unchecked_isa_dma = FALSE;
12007  share_irq = IRQF_SHARED;
12008  ASC_DBG(2, "AdvInitGetConfig()\n");
12009 
12010  ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
12011 #endif /* CONFIG_PCI */
12012  }
12013 
12014  if (ret)
12015  goto err_free_proc;
12016 
12017  /*
12018  * Save the EEPROM configuration so that it can be displayed
12019  * from /proc/scsi/advansys/[0...].
12020  */
12021  if (ASC_NARROW_BOARD(boardp)) {
12022 
12023  ASCEEP_CONFIG *ep;
12024 
12025  /*
12026  * Set the adapter's target id bit in the 'init_tidmask' field.
12027  */
12028  boardp->init_tidmask |=
12029  ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
12030 
12031  /*
12032  * Save EEPROM settings for the board.
12033  */
12034  ep = &boardp->eep_config.asc_eep;
12035 
12036  ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
12037  ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
12038  ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
12039  ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
12040  ep->start_motor = asc_dvc_varp->start_motor;
12041  ep->cntl = asc_dvc_varp->dvc_cntl;
12042  ep->no_scam = asc_dvc_varp->no_scam;
12043  ep->max_total_qng = asc_dvc_varp->max_total_qng;
12044  ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
12045  /* 'max_tag_qng' is set to the same value for every device. */
12046  ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
12047  ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
12048  ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
12049  ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
12050  ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
12051  ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
12052  ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
12053 
12054  /*
12055  * Modify board configuration.
12056  */
12057  ASC_DBG(2, "AscInitSetConfig()\n");
12058  ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
12059  if (ret)
12060  goto err_free_proc;
12061  } else {
12062  ADVEEP_3550_CONFIG *ep_3550;
12063  ADVEEP_38C0800_CONFIG *ep_38C0800;
12064  ADVEEP_38C1600_CONFIG *ep_38C1600;
12065 
12066  /*
12067  * Save Wide EEP Configuration Information.
12068  */
12069  if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
12070  ep_3550 = &boardp->eep_config.adv_3550_eep;
12071 
12072  ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
12073  ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
12074  ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12075  ep_3550->termination = adv_dvc_varp->cfg->termination;
12076  ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
12077  ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
12078  ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
12079  ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
12080  ep_3550->ultra_able = adv_dvc_varp->ultra_able;
12081  ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
12082  ep_3550->start_motor = adv_dvc_varp->start_motor;
12083  ep_3550->scsi_reset_delay =
12084  adv_dvc_varp->scsi_reset_wait;
12085  ep_3550->serial_number_word1 =
12086  adv_dvc_varp->cfg->serial1;
12087  ep_3550->serial_number_word2 =
12088  adv_dvc_varp->cfg->serial2;
12089  ep_3550->serial_number_word3 =
12090  adv_dvc_varp->cfg->serial3;
12091  } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
12092  ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
12093 
12094  ep_38C0800->adapter_scsi_id =
12095  adv_dvc_varp->chip_scsi_id;
12096  ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
12097  ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12098  ep_38C0800->termination_lvd =
12099  adv_dvc_varp->cfg->termination;
12100  ep_38C0800->disc_enable =
12101  adv_dvc_varp->cfg->disc_enable;
12102  ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
12103  ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
12104  ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12105  ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12106  ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12107  ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12108  ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12109  ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12110  ep_38C0800->start_motor = adv_dvc_varp->start_motor;
12111  ep_38C0800->scsi_reset_delay =
12112  adv_dvc_varp->scsi_reset_wait;
12113  ep_38C0800->serial_number_word1 =
12114  adv_dvc_varp->cfg->serial1;
12115  ep_38C0800->serial_number_word2 =
12116  adv_dvc_varp->cfg->serial2;
12117  ep_38C0800->serial_number_word3 =
12118  adv_dvc_varp->cfg->serial3;
12119  } else {
12120  ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
12121 
12122  ep_38C1600->adapter_scsi_id =
12123  adv_dvc_varp->chip_scsi_id;
12124  ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
12125  ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12126  ep_38C1600->termination_lvd =
12127  adv_dvc_varp->cfg->termination;
12128  ep_38C1600->disc_enable =
12129  adv_dvc_varp->cfg->disc_enable;
12130  ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
12131  ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
12132  ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12133  ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12134  ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12135  ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12136  ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12137  ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12138  ep_38C1600->start_motor = adv_dvc_varp->start_motor;
12139  ep_38C1600->scsi_reset_delay =
12140  adv_dvc_varp->scsi_reset_wait;
12141  ep_38C1600->serial_number_word1 =
12142  adv_dvc_varp->cfg->serial1;
12143  ep_38C1600->serial_number_word2 =
12144  adv_dvc_varp->cfg->serial2;
12145  ep_38C1600->serial_number_word3 =
12146  adv_dvc_varp->cfg->serial3;
12147  }
12148 
12149  /*
12150  * Set the adapter's target id bit in the 'init_tidmask' field.
12151  */
12152  boardp->init_tidmask |=
12153  ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
12154  }
12155 
12156  /*
12157  * Channels are numbered beginning with 0. For AdvanSys one host
12158  * structure supports one channel. Multi-channel boards have a
12159  * separate host structure for each channel.
12160  */
12161  shost->max_channel = 0;
12162  if (ASC_NARROW_BOARD(boardp)) {
12163  shost->max_id = ASC_MAX_TID + 1;
12164  shost->max_lun = ASC_MAX_LUN + 1;
12165  shost->max_cmd_len = ASC_MAX_CDB_LEN;
12166 
12167  shost->io_port = asc_dvc_varp->iop_base;
12168  boardp->asc_n_io_port = ASC_IOADR_GAP;
12169  shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
12170 
12171  /* Set maximum number of queues the adapter can handle. */
12172  shost->can_queue = asc_dvc_varp->max_total_qng;
12173  } else {
12174  shost->max_id = ADV_MAX_TID + 1;
12175  shost->max_lun = ADV_MAX_LUN + 1;
12176  shost->max_cmd_len = ADV_MAX_CDB_LEN;
12177 
12178  /*
12179  * Save the I/O Port address and length even though
12180  * I/O ports are not used to access Wide boards.
12181  * Instead the Wide boards are accessed with
12182  * PCI Memory Mapped I/O.
12183  */
12184  shost->io_port = iop;
12185 
12186  shost->this_id = adv_dvc_varp->chip_scsi_id;
12187 
12188  /* Set maximum number of queues the adapter can handle. */
12189  shost->can_queue = adv_dvc_varp->max_host_qng;
12190  }
12191 
12192  /*
12193  * Following v1.3.89, 'cmd_per_lun' is no longer needed
12194  * and should be set to zero.
12195  *
12196  * But because of a bug introduced in v1.3.89 if the driver is
12197  * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12198  * SCSI function 'allocate_device' will panic. To allow the driver
12199  * to work as a module in these kernels set 'cmd_per_lun' to 1.
12200  *
12201  * Note: This is wrong. cmd_per_lun should be set to the depth
12202  * you want on untagged devices always.
12203  #ifdef MODULE
12204  */
12205  shost->cmd_per_lun = 1;
12206 /* #else
12207  shost->cmd_per_lun = 0;
12208 #endif */
12209 
12210  /*
12211  * Set the maximum number of scatter-gather elements the
12212  * adapter can handle.
12213  */
12214  if (ASC_NARROW_BOARD(boardp)) {
12215  /*
12216  * Allow two commands with 'sg_tablesize' scatter-gather
12217  * elements to be executed simultaneously. This value is
12218  * the theoretical hardware limit. It may be decreased
12219  * below.
12220  */
12221  shost->sg_tablesize =
12222  (((asc_dvc_varp->max_total_qng - 2) / 2) *
12223  ASC_SG_LIST_PER_Q) + 1;
12224  } else {
12225  shost->sg_tablesize = ADV_MAX_SG_LIST;
12226  }
12227 
12228  /*
12229  * The value of 'sg_tablesize' can not exceed the SCSI
12230  * mid-level driver definition of SG_ALL. SG_ALL also
12231  * must not be exceeded, because it is used to define the
12232  * size of the scatter-gather table in 'struct asc_sg_head'.
12233  */
12234  if (shost->sg_tablesize > SG_ALL) {
12235  shost->sg_tablesize = SG_ALL;
12236  }
12237 
12238  ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
12239 
12240  /* BIOS start address. */
12241  if (ASC_NARROW_BOARD(boardp)) {
12242  shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
12243  asc_dvc_varp->bus_type);
12244  } else {
12245  /*
12246  * Fill-in BIOS board variables. The Wide BIOS saves
12247  * information in LRAM that is used by the driver.
12248  */
12249  AdvReadWordLram(adv_dvc_varp->iop_base,
12250  BIOS_SIGNATURE, boardp->bios_signature);
12251  AdvReadWordLram(adv_dvc_varp->iop_base,
12252  BIOS_VERSION, boardp->bios_version);
12253  AdvReadWordLram(adv_dvc_varp->iop_base,
12254  BIOS_CODESEG, boardp->bios_codeseg);
12255  AdvReadWordLram(adv_dvc_varp->iop_base,
12256  BIOS_CODELEN, boardp->bios_codelen);
12257 
12258  ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12259  boardp->bios_signature, boardp->bios_version);
12260 
12261  ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12262  boardp->bios_codeseg, boardp->bios_codelen);
12263 
12264  /*
12265  * If the BIOS saved a valid signature, then fill in
12266  * the BIOS code segment base address.
12267  */
12268  if (boardp->bios_signature == 0x55AA) {
12269  /*
12270  * Convert x86 realmode code segment to a linear
12271  * address by shifting left 4.
12272  */
12273  shost->base = ((ulong)boardp->bios_codeseg << 4);
12274  } else {
12275  shost->base = 0;
12276  }
12277  }
12278 
12279  /*
12280  * Register Board Resources - I/O Port, DMA, IRQ
12281  */
12282 
12283  /* Register DMA Channel for Narrow boards. */
12284  shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
12285 #ifdef CONFIG_ISA
12286  if (ASC_NARROW_BOARD(boardp)) {
12287  /* Register DMA channel for ISA bus. */
12288  if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
12289  shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
12290  ret = request_dma(shost->dma_channel, DRV_NAME);
12291  if (ret) {
12292  shost_printk(KERN_ERR, shost, "request_dma() "
12293  "%d failed %d\n",
12294  shost->dma_channel, ret);
12295  goto err_free_proc;
12296  }
12297  AscEnableIsaDma(shost->dma_channel);
12298  }
12299  }
12300 #endif /* CONFIG_ISA */
12301 
12302  /* Register IRQ Number. */
12303  ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
12304 
12305  ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
12306  DRV_NAME, shost);
12307 
12308  if (ret) {
12309  if (ret == -EBUSY) {
12310  shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12311  "already in use\n", boardp->irq);
12312  } else if (ret == -EINVAL) {
12313  shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12314  "not valid\n", boardp->irq);
12315  } else {
12316  shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12317  "failed with %d\n", boardp->irq, ret);
12318  }
12319  goto err_free_dma;
12320  }
12321 
12322  /*
12323  * Initialize board RISC chip and enable interrupts.
12324  */
12325  if (ASC_NARROW_BOARD(boardp)) {
12326  ASC_DBG(2, "AscInitAsc1000Driver()\n");
12327 
12328  asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
12329  if (!asc_dvc_varp->overrun_buf) {
12330  ret = -ENOMEM;
12331  goto err_free_irq;
12332  }
12333  warn_code = AscInitAsc1000Driver(asc_dvc_varp);
12334 
12335  if (warn_code || asc_dvc_varp->err_code) {
12336  shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
12337  "warn 0x%x, error 0x%x\n",
12338  asc_dvc_varp->init_state, warn_code,
12339  asc_dvc_varp->err_code);
12340  if (!asc_dvc_varp->overrun_dma) {
12341  ret = -ENODEV;
12342  goto err_free_mem;
12343  }
12344  }
12345  } else {
12346  if (advansys_wide_init_chip(shost)) {
12347  ret = -ENODEV;
12348  goto err_free_mem;
12349  }
12350  }
12351 
12352  ASC_DBG_PRT_SCSI_HOST(2, shost);
12353 
12354  ret = scsi_add_host(shost, boardp->dev);
12355  if (ret)
12356  goto err_free_mem;
12357 
12358  scsi_scan_host(shost);
12359  return 0;
12360 
12361  err_free_mem:
12362  if (ASC_NARROW_BOARD(boardp)) {
12363  if (asc_dvc_varp->overrun_dma)
12364  dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
12366  kfree(asc_dvc_varp->overrun_buf);
12367  } else
12368  advansys_wide_free_mem(boardp);
12369  err_free_irq:
12370  free_irq(boardp->irq, shost);
12371  err_free_dma:
12372 #ifdef CONFIG_ISA
12373  if (shost->dma_channel != NO_ISA_DMA)
12374  free_dma(shost->dma_channel);
12375 #endif
12376  err_free_proc:
12377  kfree(boardp->prtbuf);
12378  err_unmap:
12379  if (boardp->ioremap_addr)
12380  iounmap(boardp->ioremap_addr);
12381  err_shost:
12382  return ret;
12383 }
12384 
12385 /*
12386  * advansys_release()
12387  *
12388  * Release resources allocated for a single AdvanSys adapter.
12389  */
12390 static int advansys_release(struct Scsi_Host *shost)
12391 {
12392  struct asc_board *board = shost_priv(shost);
12393  ASC_DBG(1, "begin\n");
12394  scsi_remove_host(shost);
12395  free_irq(board->irq, shost);
12396 #ifdef CONFIG_ISA
12397  if (shost->dma_channel != NO_ISA_DMA) {
12398  ASC_DBG(1, "free_dma()\n");
12399  free_dma(shost->dma_channel);
12400  }
12401 #endif
12402  if (ASC_NARROW_BOARD(board)) {
12403  dma_unmap_single(board->dev,
12407  } else {
12408  iounmap(board->ioremap_addr);
12409  advansys_wide_free_mem(board);
12410  }
12411  kfree(board->prtbuf);
12412  scsi_host_put(shost);
12413  ASC_DBG(1, "end\n");
12414  return 0;
12415 }
12416 
12417 #define ASC_IOADR_TABLE_MAX_IX 11
12418 
12419 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
12420  0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12421  0x0210, 0x0230, 0x0250, 0x0330
12422 };
12423 
12424 /*
12425  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
12426  * 00: 10
12427  * 01: 11
12428  * 10: 12
12429  * 11: 15
12430  */
12431 static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
12432 {
12433  unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12434  unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
12435  if (chip_irq == 13)
12436  chip_irq = 15;
12437  return chip_irq;
12438 }
12439 
12440 static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
12441 {
12442  int err = -ENODEV;
12443  PortAddr iop_base = _asc_def_iop_base[id];
12444  struct Scsi_Host *shost;
12445  struct asc_board *board;
12446 
12447  if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12448  ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12449  return -ENODEV;
12450  }
12451  ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12452  if (!AscFindSignature(iop_base))
12453  goto release_region;
12454  if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
12455  goto release_region;
12456 
12457  err = -ENOMEM;
12458  shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12459  if (!shost)
12460  goto release_region;
12461 
12462  board = shost_priv(shost);
12463  board->irq = advansys_isa_irq_no(iop_base);
12464  board->dev = dev;
12465 
12466  err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
12467  if (err)
12468  goto free_host;
12469 
12470  dev_set_drvdata(dev, shost);
12471  return 0;
12472 
12473  free_host:
12474  scsi_host_put(shost);
12476  release_region(iop_base, ASC_IOADR_GAP);
12477  return err;
12478 }
12479 
12480 static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
12481 {
12482  int ioport = _asc_def_iop_base[id];
12483  advansys_release(dev_get_drvdata(dev));
12484  release_region(ioport, ASC_IOADR_GAP);
12485  return 0;
12486 }
12487 
12488 static struct isa_driver advansys_isa_driver = {
12489  .probe = advansys_isa_probe,
12490  .remove = __devexit_p(advansys_isa_remove),
12491  .driver = {
12492  .owner = THIS_MODULE,
12493  .name = DRV_NAME,
12494  },
12495 };
12496 
12497 /*
12498  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
12499  * 000: invalid
12500  * 001: 10
12501  * 010: 11
12502  * 011: 12
12503  * 100: invalid
12504  * 101: 14
12505  * 110: 15
12506  * 111: invalid
12507  */
12508 static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
12509 {
12510  unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12511  unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12512  if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12513  return 0;
12514  return chip_irq;
12515 }
12516 
12517 static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
12518 {
12519  int err = -ENODEV;
12520  PortAddr iop_base = _asc_def_iop_base[id];
12521  struct Scsi_Host *shost;
12522  struct asc_board *board;
12523 
12524  if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12525  ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12526  return -ENODEV;
12527  }
12528  ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12529  if (!AscFindSignature(iop_base))
12530  goto release_region;
12531  /*
12532  * I don't think this condition can actually happen, but the old
12533  * driver did it, and the chances of finding a VLB setup in 2007
12534  * to do testing with is slight to none.
12535  */
12536  if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12537  goto release_region;
12538 
12539  err = -ENOMEM;
12540  shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12541  if (!shost)
12542  goto release_region;
12543 
12544  board = shost_priv(shost);
12545  board->irq = advansys_vlb_irq_no(iop_base);
12546  board->dev = dev;
12547 
12548  err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12549  if (err)
12550  goto free_host;
12551 
12552  dev_set_drvdata(dev, shost);
12553  return 0;
12554 
12555  free_host:
12556  scsi_host_put(shost);
12558  release_region(iop_base, ASC_IOADR_GAP);
12559  return -ENODEV;
12560 }
12561 
12562 static struct isa_driver advansys_vlb_driver = {
12563  .probe = advansys_vlb_probe,
12564  .remove = __devexit_p(advansys_isa_remove),
12565  .driver = {
12566  .owner = THIS_MODULE,
12567  .name = "advansys_vlb",
12568  },
12569 };
12570 
12571 static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
12572  { "ABP7401" },
12573  { "ABP7501" },
12574  { "" }
12575 };
12576 
12577 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12578 
12579 /*
12580  * EISA is a little more tricky than PCI; each EISA device may have two
12581  * channels, and this driver is written to make each channel its own Scsi_Host
12582  */
12584  struct Scsi_Host *host[2];
12585 };
12586 
12587 /*
12588  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12589  * 000: 10
12590  * 001: 11
12591  * 010: 12
12592  * 011: invalid
12593  * 100: 14
12594  * 101: 15
12595  * 110: invalid
12596  * 111: invalid
12597  */
12598 static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
12599 {
12600  unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12601  unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12602  if ((chip_irq == 13) || (chip_irq > 15))
12603  return 0;
12604  return chip_irq;
12605 }
12606 
12607 static int __devinit advansys_eisa_probe(struct device *dev)
12608 {
12609  int i, ioport, irq = 0;
12610  int err;
12611  struct eisa_device *edev = to_eisa_device(dev);
12612  struct eisa_scsi_data *data;
12613 
12614  err = -ENOMEM;
12615  data = kzalloc(sizeof(*data), GFP_KERNEL);
12616  if (!data)
12617  goto fail;
12618  ioport = edev->base_addr + 0xc30;
12619 
12620  err = -ENODEV;
12621  for (i = 0; i < 2; i++, ioport += 0x20) {
12622  struct asc_board *board;
12623  struct Scsi_Host *shost;
12624  if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12625  printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12626  ioport + ASC_IOADR_GAP - 1);
12627  continue;
12628  }
12629  if (!AscFindSignature(ioport)) {
12630  release_region(ioport, ASC_IOADR_GAP);
12631  continue;
12632  }
12633 
12634  /*
12635  * I don't know why we need to do this for EISA chips, but
12636  * not for any others. It looks to be equivalent to
12637  * AscGetChipCfgMsw, but I may have overlooked something,
12638  * so I'm not converting it until I get an EISA board to
12639  * test with.
12640  */
12641  inw(ioport + 4);
12642 
12643  if (!irq)
12644  irq = advansys_eisa_irq_no(edev);
12645 
12646  err = -ENOMEM;
12647  shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12648  if (!shost)
12649  goto release_region;
12650 
12651  board = shost_priv(shost);
12652  board->irq = irq;
12653  board->dev = dev;
12654 
12655  err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12656  if (!err) {
12657  data->host[i] = shost;
12658  continue;
12659  }
12660 
12661  scsi_host_put(shost);
12663  release_region(ioport, ASC_IOADR_GAP);
12664  break;
12665  }
12666 
12667  if (err)
12668  goto free_data;
12669  dev_set_drvdata(dev, data);
12670  return 0;
12671 
12672  free_data:
12673  kfree(data->host[0]);
12674  kfree(data->host[1]);
12675  kfree(data);
12676  fail:
12677  return err;
12678 }
12679 
12680 static __devexit int advansys_eisa_remove(struct device *dev)
12681 {
12682  int i;
12683  struct eisa_scsi_data *data = dev_get_drvdata(dev);
12684 
12685  for (i = 0; i < 2; i++) {
12686  int ioport;
12687  struct Scsi_Host *shost = data->host[i];
12688  if (!shost)
12689  continue;
12690  ioport = shost->io_port;
12691  advansys_release(shost);
12692  release_region(ioport, ASC_IOADR_GAP);
12693  }
12694 
12695  kfree(data);
12696  return 0;
12697 }
12698 
12699 static struct eisa_driver advansys_eisa_driver = {
12700  .id_table = advansys_eisa_table,
12701  .driver = {
12702  .name = DRV_NAME,
12703  .probe = advansys_eisa_probe,
12704  .remove = __devexit_p(advansys_eisa_remove),
12705  }
12706 };
12707 
12708 /* PCI Devices supported by this driver */
12709 static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
12711  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12713  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12715  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12717  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12719  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12721  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12722  {}
12723 };
12724 
12725 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12726 
12727 static void __devinit advansys_set_latency(struct pci_dev *pdev)
12728 {
12729  if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12730  (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12731  pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12732  } else {
12733  u8 latency;
12734  pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12735  if (latency < 0x20)
12736  pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12737  }
12738 }
12739 
12740 static int __devinit
12741 advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
12742 {
12743  int err, ioport;
12744  struct Scsi_Host *shost;
12745  struct asc_board *board;
12746 
12747  err = pci_enable_device(pdev);
12748  if (err)
12749  goto fail;
12750  err = pci_request_regions(pdev, DRV_NAME);
12751  if (err)
12752  goto disable_device;
12753  pci_set_master(pdev);
12754  advansys_set_latency(pdev);
12755 
12756  err = -ENODEV;
12757  if (pci_resource_len(pdev, 0) == 0)
12758  goto release_region;
12759 
12760  ioport = pci_resource_start(pdev, 0);
12761 
12762  err = -ENOMEM;
12763  shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12764  if (!shost)
12765  goto release_region;
12766 
12767  board = shost_priv(shost);
12768  board->irq = pdev->irq;
12769  board->dev = &pdev->dev;
12770 
12771  if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12774  board->flags |= ASC_IS_WIDE_BOARD;
12775  }
12776 
12777  err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12778  if (err)
12779  goto free_host;
12780 
12781  pci_set_drvdata(pdev, shost);
12782  return 0;
12783 
12784  free_host:
12785  scsi_host_put(shost);
12787  pci_release_regions(pdev);
12788  disable_device:
12789  pci_disable_device(pdev);
12790  fail:
12791  return err;
12792 }
12793 
12794 static void __devexit advansys_pci_remove(struct pci_dev *pdev)
12795 {
12796  advansys_release(pci_get_drvdata(pdev));
12797  pci_release_regions(pdev);
12798  pci_disable_device(pdev);
12799 }
12800 
12801 static struct pci_driver advansys_pci_driver = {
12802  .name = DRV_NAME,
12803  .id_table = advansys_pci_tbl,
12804  .probe = advansys_pci_probe,
12805  .remove = __devexit_p(advansys_pci_remove),
12806 };
12807 
12808 static int __init advansys_init(void)
12809 {
12810  int error;
12811 
12812  error = isa_register_driver(&advansys_isa_driver,
12814  if (error)
12815  goto fail;
12816 
12817  error = isa_register_driver(&advansys_vlb_driver,
12819  if (error)
12820  goto unregister_isa;
12821 
12822  error = eisa_driver_register(&advansys_eisa_driver);
12823  if (error)
12824  goto unregister_vlb;
12825 
12826  error = pci_register_driver(&advansys_pci_driver);
12827  if (error)
12828  goto unregister_eisa;
12829 
12830  return 0;
12831 
12832  unregister_eisa:
12833  eisa_driver_unregister(&advansys_eisa_driver);
12834  unregister_vlb:
12835  isa_unregister_driver(&advansys_vlb_driver);
12836  unregister_isa:
12837  isa_unregister_driver(&advansys_isa_driver);
12838  fail:
12839  return error;
12840 }
12841 
12842 static void __exit advansys_exit(void)
12843 {
12844  pci_unregister_driver(&advansys_pci_driver);
12845  eisa_driver_unregister(&advansys_eisa_driver);
12846  isa_unregister_driver(&advansys_vlb_driver);
12847  isa_unregister_driver(&advansys_isa_driver);
12848 }
12849 
12850 module_init(advansys_init);
12851 module_exit(advansys_exit);
12852 
12853 MODULE_LICENSE("GPL");
12854 MODULE_FIRMWARE("advansys/mcode.bin");
12855 MODULE_FIRMWARE("advansys/3550.bin");
12856 MODULE_FIRMWARE("advansys/38C0800.bin");
12857 MODULE_FIRMWARE("advansys/38C1600.bin");