Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cthw20k2.c
Go to the documentation of this file.
1 
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include "cthw20k2.h"
27 #include "ct20k2reg.h"
28 
29 #if BITS_PER_LONG == 32
30 #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */
31 #else
32 #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */
33 #endif
34 
35 struct hw20k2 {
36  struct hw hw;
37  /* for i2c */
38  unsigned char dev_id;
39  unsigned char addr_size;
40  unsigned char data_size;
41 
43 };
44 
45 static u32 hw_read_20kx(struct hw *hw, u32 reg);
46 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
47 
48 /*
49  * Type definition block.
50  * The layout of control structures can be directly applied on 20k2 chip.
51  */
52 
53 /*
54  * SRC control block definitions.
55  */
56 
57 /* SRC resource control block */
58 #define SRCCTL_STATE 0x00000007
59 #define SRCCTL_BM 0x00000008
60 #define SRCCTL_RSR 0x00000030
61 #define SRCCTL_SF 0x000001C0
62 #define SRCCTL_WR 0x00000200
63 #define SRCCTL_PM 0x00000400
64 #define SRCCTL_ROM 0x00001800
65 #define SRCCTL_VO 0x00002000
66 #define SRCCTL_ST 0x00004000
67 #define SRCCTL_IE 0x00008000
68 #define SRCCTL_ILSZ 0x000F0000
69 #define SRCCTL_BP 0x00100000
70 
71 #define SRCCCR_CISZ 0x000007FF
72 #define SRCCCR_CWA 0x001FF800
73 #define SRCCCR_D 0x00200000
74 #define SRCCCR_RS 0x01C00000
75 #define SRCCCR_NAL 0x3E000000
76 #define SRCCCR_RA 0xC0000000
77 
78 #define SRCCA_CA 0x0FFFFFFF
79 #define SRCCA_RS 0xE0000000
80 
81 #define SRCSA_SA 0x0FFFFFFF
82 
83 #define SRCLA_LA 0x0FFFFFFF
84 
85 /* Mixer Parameter Ring ram Low and Hight register.
86  * Fixed-point value in 8.24 format for parameter channel */
87 #define MPRLH_PITCH 0xFFFFFFFF
88 
89 /* SRC resource register dirty flags */
90 union src_dirty {
91  struct {
92  u16 ctl:1;
93  u16 ccr:1;
94  u16 sa:1;
95  u16 la:1;
96  u16 ca:1;
97  u16 mpr:1;
98  u16 czbfs:1; /* Clear Z-Buffers */
99  u16 rsv:9;
100  } bf;
101  u16 data;
102 };
103 
104 struct src_rsc_ctrl_blk {
105  unsigned int ctl;
106  unsigned int ccr;
107  unsigned int ca;
108  unsigned int sa;
109  unsigned int la;
110  unsigned int mpr;
111  union src_dirty dirty;
112 };
113 
114 /* SRC manager control block */
115 union src_mgr_dirty {
116  struct {
117  u16 enb0:1;
118  u16 enb1:1;
119  u16 enb2:1;
120  u16 enb3:1;
121  u16 enb4:1;
122  u16 enb5:1;
123  u16 enb6:1;
124  u16 enb7:1;
125  u16 enbsa:1;
126  u16 rsv:7;
127  } bf;
128  u16 data;
129 };
130 
131 struct src_mgr_ctrl_blk {
132  unsigned int enbsa;
133  unsigned int enb[8];
134  union src_mgr_dirty dirty;
135 };
136 
137 /* SRCIMP manager control block */
138 #define SRCAIM_ARC 0x00000FFF
139 #define SRCAIM_NXT 0x00FF0000
140 #define SRCAIM_SRC 0xFF000000
141 
142 struct srcimap {
143  unsigned int srcaim;
144  unsigned int idx;
145 };
146 
147 /* SRCIMP manager register dirty flags */
148 union srcimp_mgr_dirty {
149  struct {
150  u16 srcimap:1;
151  u16 rsv:15;
152  } bf;
153  u16 data;
154 };
155 
156 struct srcimp_mgr_ctrl_blk {
157  struct srcimap srcimap;
158  union srcimp_mgr_dirty dirty;
159 };
160 
161 /*
162  * Function implementation block.
163  */
164 
165 static int src_get_rsc_ctrl_blk(void **rblk)
166 {
167  struct src_rsc_ctrl_blk *blk;
168 
169  *rblk = NULL;
170  blk = kzalloc(sizeof(*blk), GFP_KERNEL);
171  if (!blk)
172  return -ENOMEM;
173 
174  *rblk = blk;
175 
176  return 0;
177 }
178 
179 static int src_put_rsc_ctrl_blk(void *blk)
180 {
181  kfree(blk);
182 
183  return 0;
184 }
185 
186 static int src_set_state(void *blk, unsigned int state)
187 {
188  struct src_rsc_ctrl_blk *ctl = blk;
189 
190  set_field(&ctl->ctl, SRCCTL_STATE, state);
191  ctl->dirty.bf.ctl = 1;
192  return 0;
193 }
194 
195 static int src_set_bm(void *blk, unsigned int bm)
196 {
197  struct src_rsc_ctrl_blk *ctl = blk;
198 
199  set_field(&ctl->ctl, SRCCTL_BM, bm);
200  ctl->dirty.bf.ctl = 1;
201  return 0;
202 }
203 
204 static int src_set_rsr(void *blk, unsigned int rsr)
205 {
206  struct src_rsc_ctrl_blk *ctl = blk;
207 
208  set_field(&ctl->ctl, SRCCTL_RSR, rsr);
209  ctl->dirty.bf.ctl = 1;
210  return 0;
211 }
212 
213 static int src_set_sf(void *blk, unsigned int sf)
214 {
215  struct src_rsc_ctrl_blk *ctl = blk;
216 
217  set_field(&ctl->ctl, SRCCTL_SF, sf);
218  ctl->dirty.bf.ctl = 1;
219  return 0;
220 }
221 
222 static int src_set_wr(void *blk, unsigned int wr)
223 {
224  struct src_rsc_ctrl_blk *ctl = blk;
225 
226  set_field(&ctl->ctl, SRCCTL_WR, wr);
227  ctl->dirty.bf.ctl = 1;
228  return 0;
229 }
230 
231 static int src_set_pm(void *blk, unsigned int pm)
232 {
233  struct src_rsc_ctrl_blk *ctl = blk;
234 
235  set_field(&ctl->ctl, SRCCTL_PM, pm);
236  ctl->dirty.bf.ctl = 1;
237  return 0;
238 }
239 
240 static int src_set_rom(void *blk, unsigned int rom)
241 {
242  struct src_rsc_ctrl_blk *ctl = blk;
243 
244  set_field(&ctl->ctl, SRCCTL_ROM, rom);
245  ctl->dirty.bf.ctl = 1;
246  return 0;
247 }
248 
249 static int src_set_vo(void *blk, unsigned int vo)
250 {
251  struct src_rsc_ctrl_blk *ctl = blk;
252 
253  set_field(&ctl->ctl, SRCCTL_VO, vo);
254  ctl->dirty.bf.ctl = 1;
255  return 0;
256 }
257 
258 static int src_set_st(void *blk, unsigned int st)
259 {
260  struct src_rsc_ctrl_blk *ctl = blk;
261 
262  set_field(&ctl->ctl, SRCCTL_ST, st);
263  ctl->dirty.bf.ctl = 1;
264  return 0;
265 }
266 
267 static int src_set_ie(void *blk, unsigned int ie)
268 {
269  struct src_rsc_ctrl_blk *ctl = blk;
270 
271  set_field(&ctl->ctl, SRCCTL_IE, ie);
272  ctl->dirty.bf.ctl = 1;
273  return 0;
274 }
275 
276 static int src_set_ilsz(void *blk, unsigned int ilsz)
277 {
278  struct src_rsc_ctrl_blk *ctl = blk;
279 
280  set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
281  ctl->dirty.bf.ctl = 1;
282  return 0;
283 }
284 
285 static int src_set_bp(void *blk, unsigned int bp)
286 {
287  struct src_rsc_ctrl_blk *ctl = blk;
288 
289  set_field(&ctl->ctl, SRCCTL_BP, bp);
290  ctl->dirty.bf.ctl = 1;
291  return 0;
292 }
293 
294 static int src_set_cisz(void *blk, unsigned int cisz)
295 {
296  struct src_rsc_ctrl_blk *ctl = blk;
297 
298  set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
299  ctl->dirty.bf.ccr = 1;
300  return 0;
301 }
302 
303 static int src_set_ca(void *blk, unsigned int ca)
304 {
305  struct src_rsc_ctrl_blk *ctl = blk;
306 
307  set_field(&ctl->ca, SRCCA_CA, ca);
308  ctl->dirty.bf.ca = 1;
309  return 0;
310 }
311 
312 static int src_set_sa(void *blk, unsigned int sa)
313 {
314  struct src_rsc_ctrl_blk *ctl = blk;
315 
316  set_field(&ctl->sa, SRCSA_SA, sa);
317  ctl->dirty.bf.sa = 1;
318  return 0;
319 }
320 
321 static int src_set_la(void *blk, unsigned int la)
322 {
323  struct src_rsc_ctrl_blk *ctl = blk;
324 
325  set_field(&ctl->la, SRCLA_LA, la);
326  ctl->dirty.bf.la = 1;
327  return 0;
328 }
329 
330 static int src_set_pitch(void *blk, unsigned int pitch)
331 {
332  struct src_rsc_ctrl_blk *ctl = blk;
333 
334  set_field(&ctl->mpr, MPRLH_PITCH, pitch);
335  ctl->dirty.bf.mpr = 1;
336  return 0;
337 }
338 
339 static int src_set_clear_zbufs(void *blk, unsigned int clear)
340 {
341  ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
342  return 0;
343 }
344 
345 static int src_set_dirty(void *blk, unsigned int flags)
346 {
347  ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
348  return 0;
349 }
350 
351 static int src_set_dirty_all(void *blk)
352 {
353  ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
354  return 0;
355 }
356 
357 #define AR_SLOT_SIZE 4096
358 #define AR_SLOT_BLOCK_SIZE 16
359 #define AR_PTS_PITCH 6
360 #define AR_PARAM_SRC_OFFSET 0x60
361 
362 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
363 {
364  return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
366 
367 }
368 
369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
370 {
371  struct src_rsc_ctrl_blk *ctl = blk;
372  int i;
373 
374  if (ctl->dirty.bf.czbfs) {
375  /* Clear Z-Buffer registers */
376  for (i = 0; i < 8; i++)
377  hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
378 
379  for (i = 0; i < 4; i++)
380  hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
381 
382  for (i = 0; i < 8; i++)
383  hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
384 
385  ctl->dirty.bf.czbfs = 0;
386  }
387  if (ctl->dirty.bf.mpr) {
388  /* Take the parameter mixer resource in the same group as that
389  * the idx src is in for simplicity. Unlike src, all conjugate
390  * parameter mixer resources must be programmed for
391  * corresponding conjugate src resources. */
392  unsigned int pm_idx = src_param_pitch_mixer(idx);
393  hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
394  hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
395  hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
396  ctl->dirty.bf.mpr = 0;
397  }
398  if (ctl->dirty.bf.sa) {
399  hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
400  ctl->dirty.bf.sa = 0;
401  }
402  if (ctl->dirty.bf.la) {
403  hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
404  ctl->dirty.bf.la = 0;
405  }
406  if (ctl->dirty.bf.ca) {
407  hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
408  ctl->dirty.bf.ca = 0;
409  }
410 
411  /* Write srccf register */
412  hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
413 
414  if (ctl->dirty.bf.ccr) {
415  hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
416  ctl->dirty.bf.ccr = 0;
417  }
418  if (ctl->dirty.bf.ctl) {
419  hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
420  ctl->dirty.bf.ctl = 0;
421  }
422 
423  return 0;
424 }
425 
426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
427 {
428  struct src_rsc_ctrl_blk *ctl = blk;
429 
430  ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
431  ctl->dirty.bf.ca = 0;
432 
433  return get_field(ctl->ca, SRCCA_CA);
434 }
435 
436 static unsigned int src_get_dirty(void *blk)
437 {
438  return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
439 }
440 
441 static unsigned int src_dirty_conj_mask(void)
442 {
443  return 0x20;
444 }
445 
446 static int src_mgr_enbs_src(void *blk, unsigned int idx)
447 {
448  ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
449  ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
450  ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451  return 0;
452 }
453 
454 static int src_mgr_enb_src(void *blk, unsigned int idx)
455 {
456  ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
457  ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
458  return 0;
459 }
460 
461 static int src_mgr_dsb_src(void *blk, unsigned int idx)
462 {
463  ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
464  ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
465  return 0;
466 }
467 
468 static int src_mgr_commit_write(struct hw *hw, void *blk)
469 {
470  struct src_mgr_ctrl_blk *ctl = blk;
471  int i;
472  unsigned int ret;
473 
474  if (ctl->dirty.bf.enbsa) {
475  do {
476  ret = hw_read_20kx(hw, SRC_ENBSTAT);
477  } while (ret & 0x1);
478  hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
479  ctl->dirty.bf.enbsa = 0;
480  }
481  for (i = 0; i < 8; i++) {
482  if ((ctl->dirty.data & (0x1 << i))) {
483  hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
484  ctl->dirty.data &= ~(0x1 << i);
485  }
486  }
487 
488  return 0;
489 }
490 
491 static int src_mgr_get_ctrl_blk(void **rblk)
492 {
493  struct src_mgr_ctrl_blk *blk;
494 
495  *rblk = NULL;
496  blk = kzalloc(sizeof(*blk), GFP_KERNEL);
497  if (!blk)
498  return -ENOMEM;
499 
500  *rblk = blk;
501 
502  return 0;
503 }
504 
505 static int src_mgr_put_ctrl_blk(void *blk)
506 {
507  kfree(blk);
508 
509  return 0;
510 }
511 
512 static int srcimp_mgr_get_ctrl_blk(void **rblk)
513 {
514  struct srcimp_mgr_ctrl_blk *blk;
515 
516  *rblk = NULL;
517  blk = kzalloc(sizeof(*blk), GFP_KERNEL);
518  if (!blk)
519  return -ENOMEM;
520 
521  *rblk = blk;
522 
523  return 0;
524 }
525 
526 static int srcimp_mgr_put_ctrl_blk(void *blk)
527 {
528  kfree(blk);
529 
530  return 0;
531 }
532 
533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
534 {
535  struct srcimp_mgr_ctrl_blk *ctl = blk;
536 
537  set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
538  ctl->dirty.bf.srcimap = 1;
539  return 0;
540 }
541 
542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
543 {
544  struct srcimp_mgr_ctrl_blk *ctl = blk;
545 
546  set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
547  ctl->dirty.bf.srcimap = 1;
548  return 0;
549 }
550 
551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
552 {
553  struct srcimp_mgr_ctrl_blk *ctl = blk;
554 
555  set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
556  ctl->dirty.bf.srcimap = 1;
557  return 0;
558 }
559 
560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
561 {
562  ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
563  ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
564  return 0;
565 }
566 
567 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
568 {
569  struct srcimp_mgr_ctrl_blk *ctl = blk;
570 
571  if (ctl->dirty.bf.srcimap) {
572  hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
573  ctl->srcimap.srcaim);
574  ctl->dirty.bf.srcimap = 0;
575  }
576 
577  return 0;
578 }
579 
580 /*
581  * AMIXER control block definitions.
582  */
583 
584 #define AMOPLO_M 0x00000003
585 #define AMOPLO_IV 0x00000004
586 #define AMOPLO_X 0x0003FFF0
587 #define AMOPLO_Y 0xFFFC0000
588 
589 #define AMOPHI_SADR 0x000000FF
590 #define AMOPHI_SE 0x80000000
591 
592 /* AMIXER resource register dirty flags */
593 union amixer_dirty {
594  struct {
595  u16 amoplo:1;
596  u16 amophi:1;
597  u16 rsv:14;
598  } bf;
599  u16 data;
600 };
601 
602 /* AMIXER resource control block */
603 struct amixer_rsc_ctrl_blk {
604  unsigned int amoplo;
605  unsigned int amophi;
606  union amixer_dirty dirty;
607 };
608 
609 static int amixer_set_mode(void *blk, unsigned int mode)
610 {
611  struct amixer_rsc_ctrl_blk *ctl = blk;
612 
613  set_field(&ctl->amoplo, AMOPLO_M, mode);
614  ctl->dirty.bf.amoplo = 1;
615  return 0;
616 }
617 
618 static int amixer_set_iv(void *blk, unsigned int iv)
619 {
620  struct amixer_rsc_ctrl_blk *ctl = blk;
621 
622  set_field(&ctl->amoplo, AMOPLO_IV, iv);
623  ctl->dirty.bf.amoplo = 1;
624  return 0;
625 }
626 
627 static int amixer_set_x(void *blk, unsigned int x)
628 {
629  struct amixer_rsc_ctrl_blk *ctl = blk;
630 
631  set_field(&ctl->amoplo, AMOPLO_X, x);
632  ctl->dirty.bf.amoplo = 1;
633  return 0;
634 }
635 
636 static int amixer_set_y(void *blk, unsigned int y)
637 {
638  struct amixer_rsc_ctrl_blk *ctl = blk;
639 
640  set_field(&ctl->amoplo, AMOPLO_Y, y);
641  ctl->dirty.bf.amoplo = 1;
642  return 0;
643 }
644 
645 static int amixer_set_sadr(void *blk, unsigned int sadr)
646 {
647  struct amixer_rsc_ctrl_blk *ctl = blk;
648 
649  set_field(&ctl->amophi, AMOPHI_SADR, sadr);
650  ctl->dirty.bf.amophi = 1;
651  return 0;
652 }
653 
654 static int amixer_set_se(void *blk, unsigned int se)
655 {
656  struct amixer_rsc_ctrl_blk *ctl = blk;
657 
658  set_field(&ctl->amophi, AMOPHI_SE, se);
659  ctl->dirty.bf.amophi = 1;
660  return 0;
661 }
662 
663 static int amixer_set_dirty(void *blk, unsigned int flags)
664 {
665  ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
666  return 0;
667 }
668 
669 static int amixer_set_dirty_all(void *blk)
670 {
671  ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
672  return 0;
673 }
674 
675 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
676 {
677  struct amixer_rsc_ctrl_blk *ctl = blk;
678 
679  if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
680  hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
681  ctl->dirty.bf.amoplo = 0;
682  hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
683  ctl->dirty.bf.amophi = 0;
684  }
685 
686  return 0;
687 }
688 
689 static int amixer_get_y(void *blk)
690 {
691  struct amixer_rsc_ctrl_blk *ctl = blk;
692 
693  return get_field(ctl->amoplo, AMOPLO_Y);
694 }
695 
696 static unsigned int amixer_get_dirty(void *blk)
697 {
698  return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
699 }
700 
701 static int amixer_rsc_get_ctrl_blk(void **rblk)
702 {
703  struct amixer_rsc_ctrl_blk *blk;
704 
705  *rblk = NULL;
706  blk = kzalloc(sizeof(*blk), GFP_KERNEL);
707  if (!blk)
708  return -ENOMEM;
709 
710  *rblk = blk;
711 
712  return 0;
713 }
714 
715 static int amixer_rsc_put_ctrl_blk(void *blk)
716 {
717  kfree(blk);
718 
719  return 0;
720 }
721 
722 static int amixer_mgr_get_ctrl_blk(void **rblk)
723 {
724  *rblk = NULL;
725 
726  return 0;
727 }
728 
729 static int amixer_mgr_put_ctrl_blk(void *blk)
730 {
731  return 0;
732 }
733 
734 /*
735  * DAIO control block definitions.
736  */
737 
738 /* Receiver Sample Rate Tracker Control register */
739 #define SRTCTL_SRCO 0x000000FF
740 #define SRTCTL_SRCM 0x0000FF00
741 #define SRTCTL_RSR 0x00030000
742 #define SRTCTL_DRAT 0x00300000
743 #define SRTCTL_EC 0x01000000
744 #define SRTCTL_ET 0x10000000
745 
746 /* DAIO Receiver register dirty flags */
747 union dai_dirty {
748  struct {
749  u16 srt:1;
750  u16 rsv:15;
751  } bf;
752  u16 data;
753 };
754 
755 /* DAIO Receiver control block */
756 struct dai_ctrl_blk {
757  unsigned int srt;
758  union dai_dirty dirty;
759 };
760 
761 /* Audio Input Mapper RAM */
762 #define AIM_ARC 0x00000FFF
763 #define AIM_NXT 0x007F0000
764 
765 struct daoimap {
766  unsigned int aim;
767  unsigned int idx;
768 };
769 
770 /* Audio Transmitter Control and Status register */
771 #define ATXCTL_EN 0x00000001
772 #define ATXCTL_MODE 0x00000010
773 #define ATXCTL_CD 0x00000020
774 #define ATXCTL_RAW 0x00000100
775 #define ATXCTL_MT 0x00000200
776 #define ATXCTL_NUC 0x00003000
777 #define ATXCTL_BEN 0x00010000
778 #define ATXCTL_BMUX 0x00700000
779 #define ATXCTL_B24 0x01000000
780 #define ATXCTL_CPF 0x02000000
781 #define ATXCTL_RIV 0x10000000
782 #define ATXCTL_LIV 0x20000000
783 #define ATXCTL_RSAT 0x40000000
784 #define ATXCTL_LSAT 0x80000000
785 
786 /* XDIF Transmitter register dirty flags */
787 union dao_dirty {
788  struct {
790  u16 rsv:15;
791  } bf;
792  u16 data;
793 };
794 
795 /* XDIF Transmitter control block */
796 struct dao_ctrl_blk {
797  /* XDIF Transmitter Channel Status Low Register */
798  unsigned int atxcsl;
799  union dao_dirty dirty;
800 };
801 
802 /* Audio Receiver Control register */
803 #define ARXCTL_EN 0x00000001
804 
805 /* DAIO manager register dirty flags */
806 union daio_mgr_dirty {
807  struct {
810  u32 daoimap:1;
811  u32 rsv:15;
812  } bf;
813  u32 data;
814 };
815 
816 /* DAIO manager control block */
817 struct daio_mgr_ctrl_blk {
818  struct daoimap daoimap;
819  unsigned int txctl[8];
820  unsigned int rxctl[8];
821  union daio_mgr_dirty dirty;
822 };
823 
824 static int dai_srt_set_srco(void *blk, unsigned int src)
825 {
826  struct dai_ctrl_blk *ctl = blk;
827 
828  set_field(&ctl->srt, SRTCTL_SRCO, src);
829  ctl->dirty.bf.srt = 1;
830  return 0;
831 }
832 
833 static int dai_srt_set_srcm(void *blk, unsigned int src)
834 {
835  struct dai_ctrl_blk *ctl = blk;
836 
837  set_field(&ctl->srt, SRTCTL_SRCM, src);
838  ctl->dirty.bf.srt = 1;
839  return 0;
840 }
841 
842 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
843 {
844  struct dai_ctrl_blk *ctl = blk;
845 
846  set_field(&ctl->srt, SRTCTL_RSR, rsr);
847  ctl->dirty.bf.srt = 1;
848  return 0;
849 }
850 
851 static int dai_srt_set_drat(void *blk, unsigned int drat)
852 {
853  struct dai_ctrl_blk *ctl = blk;
854 
855  set_field(&ctl->srt, SRTCTL_DRAT, drat);
856  ctl->dirty.bf.srt = 1;
857  return 0;
858 }
859 
860 static int dai_srt_set_ec(void *blk, unsigned int ec)
861 {
862  struct dai_ctrl_blk *ctl = blk;
863 
864  set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
865  ctl->dirty.bf.srt = 1;
866  return 0;
867 }
868 
869 static int dai_srt_set_et(void *blk, unsigned int et)
870 {
871  struct dai_ctrl_blk *ctl = blk;
872 
873  set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
874  ctl->dirty.bf.srt = 1;
875  return 0;
876 }
877 
878 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
879 {
880  struct dai_ctrl_blk *ctl = blk;
881 
882  if (ctl->dirty.bf.srt) {
883  hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
884  ctl->dirty.bf.srt = 0;
885  }
886 
887  return 0;
888 }
889 
890 static int dai_get_ctrl_blk(void **rblk)
891 {
892  struct dai_ctrl_blk *blk;
893 
894  *rblk = NULL;
895  blk = kzalloc(sizeof(*blk), GFP_KERNEL);
896  if (!blk)
897  return -ENOMEM;
898 
899  *rblk = blk;
900 
901  return 0;
902 }
903 
904 static int dai_put_ctrl_blk(void *blk)
905 {
906  kfree(blk);
907 
908  return 0;
909 }
910 
911 static int dao_set_spos(void *blk, unsigned int spos)
912 {
913  ((struct dao_ctrl_blk *)blk)->atxcsl = spos;
914  ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
915  return 0;
916 }
917 
918 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
919 {
920  struct dao_ctrl_blk *ctl = blk;
921 
922  if (ctl->dirty.bf.atxcsl) {
923  if (idx < 4) {
924  /* S/PDIF SPOSx */
925  hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
926  ctl->atxcsl);
927  }
928  ctl->dirty.bf.atxcsl = 0;
929  }
930 
931  return 0;
932 }
933 
934 static int dao_get_spos(void *blk, unsigned int *spos)
935 {
936  *spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
937  return 0;
938 }
939 
940 static int dao_get_ctrl_blk(void **rblk)
941 {
942  struct dao_ctrl_blk *blk;
943 
944  *rblk = NULL;
945  blk = kzalloc(sizeof(*blk), GFP_KERNEL);
946  if (!blk)
947  return -ENOMEM;
948 
949  *rblk = blk;
950 
951  return 0;
952 }
953 
954 static int dao_put_ctrl_blk(void *blk)
955 {
956  kfree(blk);
957 
958  return 0;
959 }
960 
961 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
962 {
963  struct daio_mgr_ctrl_blk *ctl = blk;
964 
965  set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
966  ctl->dirty.bf.arxctl |= (0x1 << idx);
967  return 0;
968 }
969 
970 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
971 {
972  struct daio_mgr_ctrl_blk *ctl = blk;
973 
974  set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
975 
976  ctl->dirty.bf.arxctl |= (0x1 << idx);
977  return 0;
978 }
979 
980 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
981 {
982  struct daio_mgr_ctrl_blk *ctl = blk;
983 
984  set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
985  ctl->dirty.bf.atxctl |= (0x1 << idx);
986  return 0;
987 }
988 
989 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
990 {
991  struct daio_mgr_ctrl_blk *ctl = blk;
992 
993  set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
994  ctl->dirty.bf.atxctl |= (0x1 << idx);
995  return 0;
996 }
997 
998 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
999 {
1000  struct daio_mgr_ctrl_blk *ctl = blk;
1001 
1002  if (idx < 4) {
1003  /* S/PDIF output */
1004  switch ((conf & 0x7)) {
1005  case 1:
1006  set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1007  break;
1008  case 2:
1009  set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1010  break;
1011  case 4:
1012  set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1013  break;
1014  case 8:
1015  set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1016  break;
1017  default:
1018  break;
1019  }
1020  /* CDIF */
1021  set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1022  /* Non-audio */
1023  set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1024  /* Non-audio */
1025  set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1026  set_field(&ctl->txctl[idx], ATXCTL_RAW,
1027  ((conf >> 3) & 0x1) ? 0 : 0);
1028  ctl->dirty.bf.atxctl |= (0x1 << idx);
1029  } else {
1030  /* I2S output */
1031  /*idx %= 4; */
1032  }
1033  return 0;
1034 }
1035 
1036 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1037 {
1038  struct daio_mgr_ctrl_blk *ctl = blk;
1039 
1040  set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1041  ctl->dirty.bf.daoimap = 1;
1042  return 0;
1043 }
1044 
1045 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1046 {
1047  struct daio_mgr_ctrl_blk *ctl = blk;
1048 
1049  set_field(&ctl->daoimap.aim, AIM_NXT, next);
1050  ctl->dirty.bf.daoimap = 1;
1051  return 0;
1052 }
1053 
1054 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1055 {
1056  ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1057  ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1058  return 0;
1059 }
1060 
1061 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1062 {
1063  struct daio_mgr_ctrl_blk *ctl = blk;
1064  unsigned int data;
1065  int i;
1066 
1067  for (i = 0; i < 8; i++) {
1068  if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1069  data = ctl->txctl[i];
1070  hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1071  ctl->dirty.bf.atxctl &= ~(0x1 << i);
1072  mdelay(1);
1073  }
1074  if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1075  data = ctl->rxctl[i];
1076  hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1077  ctl->dirty.bf.arxctl &= ~(0x1 << i);
1078  mdelay(1);
1079  }
1080  }
1081  if (ctl->dirty.bf.daoimap) {
1082  hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1083  ctl->daoimap.aim);
1084  ctl->dirty.bf.daoimap = 0;
1085  }
1086 
1087  return 0;
1088 }
1089 
1090 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1091 {
1092  struct daio_mgr_ctrl_blk *blk;
1093  int i;
1094 
1095  *rblk = NULL;
1096  blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1097  if (!blk)
1098  return -ENOMEM;
1099 
1100  for (i = 0; i < 8; i++) {
1101  blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1102  blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1103  }
1104 
1105  *rblk = blk;
1106 
1107  return 0;
1108 }
1109 
1110 static int daio_mgr_put_ctrl_blk(void *blk)
1111 {
1112  kfree(blk);
1113 
1114  return 0;
1115 }
1116 
1117 /* Timer interrupt */
1118 static int set_timer_irq(struct hw *hw, int enable)
1119 {
1120  hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1121  return 0;
1122 }
1123 
1124 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1125 {
1126  if (ticks)
1127  ticks |= TIMR_IE | TIMR_IP;
1128  hw_write_20kx(hw, TIMR, ticks);
1129  return 0;
1130 }
1131 
1132 static unsigned int get_wc(struct hw *hw)
1133 {
1134  return hw_read_20kx(hw, WC);
1135 }
1136 
1137 /* Card hardware initialization block */
1138 struct dac_conf {
1139  unsigned int msr; /* master sample rate in rsrs */
1140 };
1141 
1142 struct adc_conf {
1143  unsigned int msr; /* master sample rate in rsrs */
1144  unsigned char input; /* the input source of ADC */
1145  unsigned char mic20db; /* boost mic by 20db if input is microphone */
1146 };
1147 
1148 struct daio_conf {
1149  unsigned int msr; /* master sample rate in rsrs */
1150 };
1151 
1152 struct trn_conf {
1153  unsigned long vm_pgt_phys;
1154 };
1155 
1156 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1157 {
1158  u32 data;
1159  int i;
1160 
1161  /* Program I2S with proper sample rate and enable the correct I2S
1162  * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1163  if (1 == info->msr) {
1164  hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1165  hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1166  hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1167  } else if (2 == info->msr) {
1168  if (hw->model != CTSB1270) {
1169  hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1170  } else {
1171  /* PCM4220 on Titanium HD is different. */
1172  hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1173  }
1174  /* Specify all playing 96khz
1175  * EA [0] - Enabled
1176  * RTA [4:5] - 96kHz
1177  * EB [8] - Enabled
1178  * RTB [12:13] - 96kHz
1179  * EC [16] - Enabled
1180  * RTC [20:21] - 96kHz
1181  * ED [24] - Enabled
1182  * RTD [28:29] - 96kHz */
1183  hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1184  hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1185  } else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1186  hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1187  hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1188  hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1189  } else {
1190  printk(KERN_ALERT "ctxfi: ERROR!!! Invalid sampling rate!!!\n");
1191  return -EINVAL;
1192  }
1193 
1194  for (i = 0; i < 8; i++) {
1195  if (i <= 3) {
1196  /* This comment looks wrong since loop is over 4 */
1197  /* channels and emu20k2 supports 4 spdif IOs. */
1198  /* 1st 3 channels are SPDIFs (SB0960) */
1199  if (i == 3)
1200  data = 0x1001001;
1201  else
1202  data = 0x1000001;
1203 
1204  hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1205  hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1206 
1207  /* Initialize the SPDIF Out Channel status registers.
1208  * The value specified here is based on the typical
1209  * values provided in the specification, namely: Clock
1210  * Accuracy of 1000ppm, Sample Rate of 48KHz,
1211  * unspecified source number, Generation status = 1,
1212  * Category code = 0x12 (Digital Signal Mixer),
1213  * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1214  * (indicating that we're transmitting digital audio,
1215  * and the Professional Use bit is 0. */
1216 
1217  hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1218  0x02109204); /* Default to 48kHz */
1219 
1220  hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1221  } else {
1222  /* Again, loop is over 4 channels not 5. */
1223  /* Next 5 channels are I2S (SB0960) */
1224  data = 0x11;
1225  hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1226  if (2 == info->msr) {
1227  /* Four channels per sample period */
1228  data |= 0x1000;
1229  } else if (4 == info->msr) {
1230  /* FIXME: check this against the chip spec */
1231  data |= 0x2000;
1232  }
1233  hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1234  }
1235  }
1236 
1237  return 0;
1238 }
1239 
1240 /* TRANSPORT operations */
1241 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1242 {
1243  u32 vmctl, data;
1244  u32 ptp_phys_low, ptp_phys_high;
1245  int i;
1246 
1247  /* Set up device page table */
1248  if ((~0UL) == info->vm_pgt_phys) {
1249  printk(KERN_ALERT "ctxfi: "
1250  "Wrong device page table page address!!!\n");
1251  return -1;
1252  }
1253 
1254  vmctl = 0x80000C0F; /* 32-bit, 4k-size page */
1255  ptp_phys_low = (u32)info->vm_pgt_phys;
1256  ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1257  if (sizeof(void *) == 8) /* 64bit address */
1258  vmctl |= (3 << 8);
1259  /* Write page table physical address to all PTPAL registers */
1260  for (i = 0; i < 64; i++) {
1261  hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1262  hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1263  }
1264  /* Enable virtual memory transfer */
1265  hw_write_20kx(hw, VMEM_CTL, vmctl);
1266  /* Enable transport bus master and queueing of request */
1267  hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1268  hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1269  /* Enable transport ring */
1270  data = hw_read_20kx(hw, TRANSPORT_ENB);
1271  hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1272 
1273  return 0;
1274 }
1275 
1276 /* Card initialization */
1277 #define GCTL_AIE 0x00000001
1278 #define GCTL_UAA 0x00000002
1279 #define GCTL_DPC 0x00000004
1280 #define GCTL_DBP 0x00000008
1281 #define GCTL_ABP 0x00000010
1282 #define GCTL_TBP 0x00000020
1283 #define GCTL_SBP 0x00000040
1284 #define GCTL_FBP 0x00000080
1285 #define GCTL_ME 0x00000100
1286 #define GCTL_AID 0x00001000
1287 
1288 #define PLLCTL_SRC 0x00000007
1289 #define PLLCTL_SPE 0x00000008
1290 #define PLLCTL_RD 0x000000F0
1291 #define PLLCTL_FD 0x0001FF00
1292 #define PLLCTL_OD 0x00060000
1293 #define PLLCTL_B 0x00080000
1294 #define PLLCTL_AS 0x00100000
1295 #define PLLCTL_LF 0x03E00000
1296 #define PLLCTL_SPS 0x1C000000
1297 #define PLLCTL_AD 0x60000000
1298 
1299 #define PLLSTAT_CCS 0x00000007
1300 #define PLLSTAT_SPL 0x00000008
1301 #define PLLSTAT_CRD 0x000000F0
1302 #define PLLSTAT_CFD 0x0001FF00
1303 #define PLLSTAT_SL 0x00020000
1304 #define PLLSTAT_FAS 0x00040000
1305 #define PLLSTAT_B 0x00080000
1306 #define PLLSTAT_PD 0x00100000
1307 #define PLLSTAT_OCA 0x00200000
1308 #define PLLSTAT_NCA 0x00400000
1309 
1310 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1311 {
1312  unsigned int pllenb;
1313  unsigned int pllctl;
1314  unsigned int pllstat;
1315  int i;
1316 
1317  pllenb = 0xB;
1318  hw_write_20kx(hw, PLL_ENB, pllenb);
1319  pllctl = 0x20C00000;
1320  set_field(&pllctl, PLLCTL_B, 0);
1321  set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1322  set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1323  hw_write_20kx(hw, PLL_CTL, pllctl);
1324  mdelay(40);
1325 
1326  pllctl = hw_read_20kx(hw, PLL_CTL);
1327  set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1328  hw_write_20kx(hw, PLL_CTL, pllctl);
1329  mdelay(40);
1330 
1331  for (i = 0; i < 1000; i++) {
1332  pllstat = hw_read_20kx(hw, PLL_STAT);
1333  if (get_field(pllstat, PLLSTAT_PD))
1334  continue;
1335 
1336  if (get_field(pllstat, PLLSTAT_B) !=
1337  get_field(pllctl, PLLCTL_B))
1338  continue;
1339 
1340  if (get_field(pllstat, PLLSTAT_CCS) !=
1341  get_field(pllctl, PLLCTL_SRC))
1342  continue;
1343 
1344  if (get_field(pllstat, PLLSTAT_CRD) !=
1345  get_field(pllctl, PLLCTL_RD))
1346  continue;
1347 
1348  if (get_field(pllstat, PLLSTAT_CFD) !=
1349  get_field(pllctl, PLLCTL_FD))
1350  continue;
1351 
1352  break;
1353  }
1354  if (i >= 1000) {
1355  printk(KERN_ALERT "ctxfi: PLL initialization failed!!!\n");
1356  return -EBUSY;
1357  }
1358 
1359  return 0;
1360 }
1361 
1362 static int hw_auto_init(struct hw *hw)
1363 {
1364  unsigned int gctl;
1365  int i;
1366 
1367  gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1368  set_field(&gctl, GCTL_AIE, 0);
1369  hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1370  set_field(&gctl, GCTL_AIE, 1);
1371  hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1372  mdelay(10);
1373  for (i = 0; i < 400000; i++) {
1374  gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1375  if (get_field(gctl, GCTL_AID))
1376  break;
1377  }
1378  if (!get_field(gctl, GCTL_AID)) {
1379  printk(KERN_ALERT "ctxfi: Card Auto-init failed!!!\n");
1380  return -EBUSY;
1381  }
1382 
1383  return 0;
1384 }
1385 
1386 /* DAC operations */
1387 
1388 #define CS4382_MC1 0x1
1389 #define CS4382_MC2 0x2
1390 #define CS4382_MC3 0x3
1391 #define CS4382_FC 0x4
1392 #define CS4382_IC 0x5
1393 #define CS4382_XC1 0x6
1394 #define CS4382_VCA1 0x7
1395 #define CS4382_VCB1 0x8
1396 #define CS4382_XC2 0x9
1397 #define CS4382_VCA2 0xA
1398 #define CS4382_VCB2 0xB
1399 #define CS4382_XC3 0xC
1400 #define CS4382_VCA3 0xD
1401 #define CS4382_VCB3 0xE
1402 #define CS4382_XC4 0xF
1403 #define CS4382_VCA4 0x10
1404 #define CS4382_VCB4 0x11
1405 #define CS4382_CREV 0x12
1406 
1407 /* I2C status */
1408 #define STATE_LOCKED 0x00
1409 #define STATE_UNLOCKED 0xAA
1410 #define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */
1411 #define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */
1412 
1413 #define I2C_STATUS_DCM 0x00000001
1414 #define I2C_STATUS_BC 0x00000006
1415 #define I2C_STATUS_APD 0x00000008
1416 #define I2C_STATUS_AB 0x00010000
1417 #define I2C_STATUS_DR 0x00800000
1418 
1419 #define I2C_ADDRESS_PTAD 0x0000FFFF
1420 #define I2C_ADDRESS_SLAD 0x007F0000
1421 
1422 struct regs_cs4382 {
1426 
1429 
1433 
1437 
1441 
1445 };
1446 
1447 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1448 {
1449  u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4};
1450 
1451  /* Send keys for forced BIOS mode */
1452  hw_write_20kx(hw, I2C_IF_WLOCK,
1453  UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1454  hw_write_20kx(hw, I2C_IF_WLOCK,
1455  UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1456  /* Check whether the chip is unlocked */
1457  if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1458  return 0;
1459 
1460  return -1;
1461 }
1462 
1463 static int hw20k2_i2c_lock_chip(struct hw *hw)
1464 {
1465  /* Write twice */
1466  hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1467  hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1468  if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1469  return 0;
1470 
1471  return -1;
1472 }
1473 
1474 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1475 {
1476  struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1477  int err;
1478  unsigned int i2c_status;
1479  unsigned int i2c_addr;
1480 
1481  err = hw20k2_i2c_unlock_full_access(hw);
1482  if (err < 0)
1483  return err;
1484 
1485  hw20k2->addr_size = addr_size;
1486  hw20k2->data_size = data_size;
1487  hw20k2->dev_id = dev_id;
1488 
1489  i2c_addr = 0;
1490  set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1491 
1492  hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1493 
1494  i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1495 
1496  set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1497 
1498  hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1499 
1500  return 0;
1501 }
1502 
1503 static int hw20k2_i2c_uninit(struct hw *hw)
1504 {
1505  unsigned int i2c_status;
1506  unsigned int i2c_addr;
1507 
1508  i2c_addr = 0;
1509  set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1510 
1511  hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1512 
1513  i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1514 
1515  set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1516 
1517  hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1518 
1519  return hw20k2_i2c_lock_chip(hw);
1520 }
1521 
1522 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1523 {
1524  int i = 0x400000;
1525  unsigned int ret;
1526 
1527  do {
1528  ret = hw_read_20kx(hw, I2C_IF_STATUS);
1529  } while ((!(ret & DATA_READY)) && --i);
1530 
1531  return i;
1532 }
1533 
1534 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1535 {
1536  struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1537  unsigned int i2c_status;
1538 
1539  i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1540  set_field(&i2c_status, I2C_STATUS_BC,
1541  (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1542  hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1543  if (!hw20k2_i2c_wait_data_ready(hw))
1544  return -1;
1545 
1546  hw_write_20kx(hw, I2C_IF_WDATA, addr);
1547  if (!hw20k2_i2c_wait_data_ready(hw))
1548  return -1;
1549 
1550  /* Force a read operation */
1551  hw_write_20kx(hw, I2C_IF_RDATA, 0);
1552  if (!hw20k2_i2c_wait_data_ready(hw))
1553  return -1;
1554 
1555  *datap = hw_read_20kx(hw, I2C_IF_RDATA);
1556 
1557  return 0;
1558 }
1559 
1560 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1561 {
1562  struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1563  unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1564  unsigned int i2c_status;
1565 
1566  i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1567 
1568  set_field(&i2c_status, I2C_STATUS_BC,
1569  (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1570  0 : (hw20k2->addr_size + hw20k2->data_size));
1571 
1572  hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1573  hw20k2_i2c_wait_data_ready(hw);
1574  /* Dummy write to trigger the write operation */
1575  hw_write_20kx(hw, I2C_IF_WDATA, 0);
1576  hw20k2_i2c_wait_data_ready(hw);
1577 
1578  /* This is the real data */
1579  hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1580  hw20k2_i2c_wait_data_ready(hw);
1581 
1582  return 0;
1583 }
1584 
1585 static void hw_dac_stop(struct hw *hw)
1586 {
1587  u32 data;
1588  data = hw_read_20kx(hw, GPIO_DATA);
1589  data &= 0xFFFFFFFD;
1590  hw_write_20kx(hw, GPIO_DATA, data);
1591  mdelay(10);
1592 }
1593 
1594 static void hw_dac_start(struct hw *hw)
1595 {
1596  u32 data;
1597  data = hw_read_20kx(hw, GPIO_DATA);
1598  data |= 0x2;
1599  hw_write_20kx(hw, GPIO_DATA, data);
1600  mdelay(50);
1601 }
1602 
1603 static void hw_dac_reset(struct hw *hw)
1604 {
1605  hw_dac_stop(hw);
1606  hw_dac_start(hw);
1607 }
1608 
1609 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1610 {
1611  int err;
1612  u32 data;
1613  int i;
1614  struct regs_cs4382 cs_read = {0};
1615  struct regs_cs4382 cs_def = {
1616  0x00000001, /* Mode Control 1 */
1617  0x00000000, /* Mode Control 2 */
1618  0x00000084, /* Mode Control 3 */
1619  0x00000000, /* Filter Control */
1620  0x00000000, /* Invert Control */
1621  0x00000024, /* Mixing Control Pair 1 */
1622  0x00000000, /* Vol Control A1 */
1623  0x00000000, /* Vol Control B1 */
1624  0x00000024, /* Mixing Control Pair 2 */
1625  0x00000000, /* Vol Control A2 */
1626  0x00000000, /* Vol Control B2 */
1627  0x00000024, /* Mixing Control Pair 3 */
1628  0x00000000, /* Vol Control A3 */
1629  0x00000000, /* Vol Control B3 */
1630  0x00000024, /* Mixing Control Pair 4 */
1631  0x00000000, /* Vol Control A4 */
1632  0x00000000 /* Vol Control B4 */
1633  };
1634 
1635  if (hw->model == CTSB1270) {
1636  hw_dac_stop(hw);
1637  data = hw_read_20kx(hw, GPIO_DATA);
1638  data &= ~0x0600;
1639  if (1 == info->msr)
1640  data |= 0x0000; /* Single Speed Mode 0-50kHz */
1641  else if (2 == info->msr)
1642  data |= 0x0200; /* Double Speed Mode 50-100kHz */
1643  else
1644  data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1645  hw_write_20kx(hw, GPIO_DATA, data);
1646  hw_dac_start(hw);
1647  return 0;
1648  }
1649 
1650  /* Set DAC reset bit as output */
1651  data = hw_read_20kx(hw, GPIO_CTRL);
1652  data |= 0x02;
1653  hw_write_20kx(hw, GPIO_CTRL, data);
1654 
1655  err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1656  if (err < 0)
1657  goto End;
1658 
1659  for (i = 0; i < 2; i++) {
1660  /* Reset DAC twice just in-case the chip
1661  * didn't initialized properly */
1662  hw_dac_reset(hw);
1663  hw_dac_reset(hw);
1664 
1665  if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1))
1666  continue;
1667 
1668  if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2))
1669  continue;
1670 
1671  if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3))
1672  continue;
1673 
1674  if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control))
1675  continue;
1676 
1677  if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control))
1678  continue;
1679 
1680  if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1))
1681  continue;
1682 
1683  if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1684  continue;
1685 
1686  if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1687  continue;
1688 
1689  if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2))
1690  continue;
1691 
1692  if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1693  continue;
1694 
1695  if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1696  continue;
1697 
1698  if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3))
1699  continue;
1700 
1701  if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1702  continue;
1703 
1704  if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1705  continue;
1706 
1707  if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4))
1708  continue;
1709 
1710  if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1711  continue;
1712 
1713  if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1714  continue;
1715 
1716  if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1717  continue;
1718  else
1719  break;
1720  }
1721 
1722  if (i >= 2)
1723  goto End;
1724 
1725  /* Note: Every I2C write must have some delay.
1726  * This is not a requirement but the delay works here... */
1727  hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1728  hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1729  if (1 == info->msr) {
1730  hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1731  hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1732  hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1733  hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1734  } else if (2 == info->msr) {
1735  hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1736  hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1737  hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1738  hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1739  } else {
1740  hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1741  hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1742  hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1743  hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1744  }
1745 
1746  return 0;
1747 End:
1748 
1749  hw20k2_i2c_uninit(hw);
1750  return -1;
1751 }
1752 
1753 /* ADC operations */
1754 #define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1755 #define MAKE_WM8775_DATA(data) (u32)(data&0xFF)
1756 
1757 #define WM8775_IC 0x0B
1758 #define WM8775_MMC 0x0C
1759 #define WM8775_AADCL 0x0E
1760 #define WM8775_AADCR 0x0F
1761 #define WM8775_ADCMC 0x15
1762 #define WM8775_RESET 0x17
1763 
1764 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1765 {
1766  u32 data;
1767  if (hw->model == CTSB1270) {
1768  /* Titanium HD has two ADC chips, one for line in and one */
1769  /* for MIC. We don't need to switch the ADC input. */
1770  return 1;
1771  }
1772  data = hw_read_20kx(hw, GPIO_DATA);
1773  switch (type) {
1774  case ADC_MICIN:
1775  data = (data & (0x1 << 14)) ? 1 : 0;
1776  break;
1777  case ADC_LINEIN:
1778  data = (data & (0x1 << 14)) ? 0 : 1;
1779  break;
1780  default:
1781  data = 0;
1782  }
1783  return data;
1784 }
1785 
1786 #define MIC_BOOST_0DB 0xCF
1787 #define MIC_BOOST_STEPS_PER_DB 2
1788 
1789 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1790 {
1791  u32 adcmc, gain;
1792 
1793  if (input > 3)
1794  input = 3;
1795 
1796  adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1797 
1798  hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1799  MAKE_WM8775_DATA(adcmc));
1800 
1801  if (gain_in_db < -103)
1802  gain_in_db = -103;
1803  if (gain_in_db > 24)
1804  gain_in_db = 24;
1805 
1806  gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1807 
1808  hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1809  MAKE_WM8775_DATA(gain));
1810  /* ...so there should be no need for the following. */
1811  hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1812  MAKE_WM8775_DATA(gain));
1813 }
1814 
1815 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1816 {
1817  u32 data;
1818  data = hw_read_20kx(hw, GPIO_DATA);
1819  switch (type) {
1820  case ADC_MICIN:
1821  data |= (0x1 << 14);
1822  hw_write_20kx(hw, GPIO_DATA, data);
1823  hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1824  break;
1825  case ADC_LINEIN:
1826  data &= ~(0x1 << 14);
1827  hw_write_20kx(hw, GPIO_DATA, data);
1828  hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1829  break;
1830  default:
1831  break;
1832  }
1833 
1834  return 0;
1835 }
1836 
1837 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1838 {
1839  int err;
1840  u32 data, ctl;
1841 
1842  /* Set ADC reset bit as output */
1843  data = hw_read_20kx(hw, GPIO_CTRL);
1844  data |= (0x1 << 15);
1845  hw_write_20kx(hw, GPIO_CTRL, data);
1846 
1847  /* Initialize I2C */
1848  err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1849  if (err < 0) {
1850  printk(KERN_ALERT "ctxfi: Failure to acquire I2C!!!\n");
1851  goto error;
1852  }
1853 
1854  /* Reset the ADC (reset is active low). */
1855  data = hw_read_20kx(hw, GPIO_DATA);
1856  data &= ~(0x1 << 15);
1857  hw_write_20kx(hw, GPIO_DATA, data);
1858 
1859  if (hw->model == CTSB1270) {
1860  /* Set up the PCM4220 ADC on Titanium HD */
1861  data &= ~0x0C;
1862  if (1 == info->msr)
1863  data |= 0x00; /* Single Speed Mode 32-50kHz */
1864  else if (2 == info->msr)
1865  data |= 0x08; /* Double Speed Mode 50-108kHz */
1866  else
1867  data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1868  hw_write_20kx(hw, GPIO_DATA, data);
1869  }
1870 
1871  mdelay(10);
1872  /* Return the ADC to normal operation. */
1873  data |= (0x1 << 15);
1874  hw_write_20kx(hw, GPIO_DATA, data);
1875  mdelay(50);
1876 
1877  /* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1878  /* invert bit, interface format to I2S, word length to 24-bit, */
1879  /* enable ADC high pass filter. Fixes bug 5323? */
1880  hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1881  MAKE_WM8775_DATA(0x26));
1882 
1883  /* Set the master mode (256fs) */
1884  if (1 == info->msr) {
1885  /* slave mode, 128x oversampling 256fs */
1886  hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1887  MAKE_WM8775_DATA(0x02));
1888  } else if ((2 == info->msr) || (4 == info->msr)) {
1889  /* slave mode, 64x oversampling, 256fs */
1890  hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1891  MAKE_WM8775_DATA(0x0A));
1892  } else {
1893  printk(KERN_ALERT "ctxfi: Invalid master sampling "
1894  "rate (msr %d)!!!\n", info->msr);
1895  err = -EINVAL;
1896  goto error;
1897  }
1898 
1899  if (hw->model != CTSB1270) {
1900  /* Configure GPIO bit 14 change to line-in/mic-in */
1901  ctl = hw_read_20kx(hw, GPIO_CTRL);
1902  ctl |= 0x1 << 14;
1903  hw_write_20kx(hw, GPIO_CTRL, ctl);
1904  hw_adc_input_select(hw, ADC_LINEIN);
1905  } else {
1906  hw_wm8775_input_select(hw, 0, 0);
1907  }
1908 
1909  return 0;
1910 error:
1911  hw20k2_i2c_uninit(hw);
1912  return err;
1913 }
1914 
1915 static struct capabilities hw_capabilities(struct hw *hw)
1916 {
1917  struct capabilities cap;
1918 
1919  cap.digit_io_switch = 0;
1920  cap.dedicated_mic = hw->model == CTSB1270;
1921  cap.output_switch = hw->model == CTSB1270;
1922  cap.mic_source_switch = hw->model == CTSB1270;
1923 
1924  return cap;
1925 }
1926 
1927 static int hw_output_switch_get(struct hw *hw)
1928 {
1929  u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1930 
1931  switch (data & 0x30) {
1932  case 0x00:
1933  return 0;
1934  case 0x10:
1935  return 1;
1936  case 0x20:
1937  return 2;
1938  default:
1939  return 3;
1940  }
1941 }
1942 
1943 static int hw_output_switch_put(struct hw *hw, int position)
1944 {
1945  u32 data;
1946 
1947  if (position == hw_output_switch_get(hw))
1948  return 0;
1949 
1950  /* Mute line and headphones (intended for anti-pop). */
1951  data = hw_read_20kx(hw, GPIO_DATA);
1952  data |= (0x03 << 11);
1953  hw_write_20kx(hw, GPIO_DATA, data);
1954 
1955  data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1956  switch (position) {
1957  case 0:
1958  break;
1959  case 1:
1960  data |= 0x10;
1961  break;
1962  default:
1963  data |= 0x20;
1964  }
1965  hw_write_20kx(hw, GPIO_EXT_DATA, data);
1966 
1967  /* Unmute line and headphones. */
1968  data = hw_read_20kx(hw, GPIO_DATA);
1969  data &= ~(0x03 << 11);
1970  hw_write_20kx(hw, GPIO_DATA, data);
1971 
1972  return 1;
1973 }
1974 
1975 static int hw_mic_source_switch_get(struct hw *hw)
1976 {
1977  struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1978 
1979  return hw20k2->mic_source;
1980 }
1981 
1982 static int hw_mic_source_switch_put(struct hw *hw, int position)
1983 {
1984  struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1985 
1986  if (position == hw20k2->mic_source)
1987  return 0;
1988 
1989  switch (position) {
1990  case 0:
1991  hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1992  break;
1993  case 1:
1994  hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1995  break;
1996  case 2:
1997  hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1998  break;
1999  default:
2000  return 0;
2001  }
2002 
2003  hw20k2->mic_source = position;
2004 
2005  return 1;
2006 }
2007 
2008 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2009 {
2010  struct hw *hw = dev_id;
2011  unsigned int status;
2012 
2013  status = hw_read_20kx(hw, GIP);
2014  if (!status)
2015  return IRQ_NONE;
2016 
2017  if (hw->irq_callback)
2018  hw->irq_callback(hw->irq_callback_data, status);
2019 
2020  hw_write_20kx(hw, GIP, status);
2021  return IRQ_HANDLED;
2022 }
2023 
2024 static int hw_card_start(struct hw *hw)
2025 {
2026  int err = 0;
2027  struct pci_dev *pci = hw->pci;
2028  unsigned int gctl;
2029 
2030  err = pci_enable_device(pci);
2031  if (err < 0)
2032  return err;
2033 
2034  /* Set DMA transfer mask */
2035  if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
2036  pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
2037  printk(KERN_ERR "ctxfi: architecture does not support PCI "
2038  "busmaster DMA with mask 0x%llx\n", CT_XFI_DMA_MASK);
2039  err = -ENXIO;
2040  goto error1;
2041  }
2042 
2043  if (!hw->io_base) {
2044  err = pci_request_regions(pci, "XFi");
2045  if (err < 0)
2046  goto error1;
2047 
2048  hw->io_base = pci_resource_start(hw->pci, 2);
2049  hw->mem_base = (unsigned long)ioremap(hw->io_base,
2050  pci_resource_len(hw->pci, 2));
2051  if (!hw->mem_base) {
2052  err = -ENOENT;
2053  goto error2;
2054  }
2055  }
2056 
2057  /* Switch to 20k2 mode from UAA mode. */
2058  gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2059  set_field(&gctl, GCTL_UAA, 0);
2060  hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2061 
2062  if (hw->irq < 0) {
2063  err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2064  KBUILD_MODNAME, hw);
2065  if (err < 0) {
2066  printk(KERN_ERR "XFi: Cannot get irq %d\n", pci->irq);
2067  goto error2;
2068  }
2069  hw->irq = pci->irq;
2070  }
2071 
2072  pci_set_master(pci);
2073 
2074  return 0;
2075 
2076 /*error3:
2077  iounmap((void *)hw->mem_base);
2078  hw->mem_base = (unsigned long)NULL;*/
2079 error2:
2080  pci_release_regions(pci);
2081  hw->io_base = 0;
2082 error1:
2083  pci_disable_device(pci);
2084  return err;
2085 }
2086 
2087 static int hw_card_stop(struct hw *hw)
2088 {
2089  unsigned int data;
2090 
2091  /* disable transport bus master and queueing of request */
2092  hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2093 
2094  /* disable pll */
2095  data = hw_read_20kx(hw, PLL_ENB);
2096  hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2097 
2098  /* TODO: Disable interrupt and so on... */
2099  return 0;
2100 }
2101 
2102 static int hw_card_shutdown(struct hw *hw)
2103 {
2104  if (hw->irq >= 0)
2105  free_irq(hw->irq, hw);
2106 
2107  hw->irq = -1;
2108 
2109  if (hw->mem_base)
2110  iounmap((void *)hw->mem_base);
2111 
2112  hw->mem_base = (unsigned long)NULL;
2113 
2114  if (hw->io_base)
2115  pci_release_regions(hw->pci);
2116 
2117  hw->io_base = 0;
2118 
2119  pci_disable_device(hw->pci);
2120 
2121  return 0;
2122 }
2123 
2124 static int hw_card_init(struct hw *hw, struct card_conf *info)
2125 {
2126  int err;
2127  unsigned int gctl;
2128  u32 data = 0;
2129  struct dac_conf dac_info = {0};
2130  struct adc_conf adc_info = {0};
2131  struct daio_conf daio_info = {0};
2132  struct trn_conf trn_info = {0};
2133 
2134  /* Get PCI io port/memory base address and
2135  * do 20kx core switch if needed. */
2136  err = hw_card_start(hw);
2137  if (err)
2138  return err;
2139 
2140  /* PLL init */
2141  err = hw_pll_init(hw, info->rsr);
2142  if (err < 0)
2143  return err;
2144 
2145  /* kick off auto-init */
2146  err = hw_auto_init(hw);
2147  if (err < 0)
2148  return err;
2149 
2150  gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2151  set_field(&gctl, GCTL_DBP, 1);
2152  set_field(&gctl, GCTL_TBP, 1);
2153  set_field(&gctl, GCTL_FBP, 1);
2154  set_field(&gctl, GCTL_DPC, 0);
2155  hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2156 
2157  /* Reset all global pending interrupts */
2158  hw_write_20kx(hw, GIE, 0);
2159  /* Reset all SRC pending interrupts */
2160  hw_write_20kx(hw, SRC_IP, 0);
2161 
2162  if (hw->model != CTSB1270) {
2163  /* TODO: detect the card ID and configure GPIO accordingly. */
2164  /* Configures GPIO (0xD802 0x98028) */
2165  /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2166  /* Configures GPIO (SB0880) */
2167  /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2168  hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2169  } else {
2170  hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2171  }
2172  /* Enable audio ring */
2173  hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2174 
2175  trn_info.vm_pgt_phys = info->vm_pgt_phys;
2176  err = hw_trn_init(hw, &trn_info);
2177  if (err < 0)
2178  return err;
2179 
2180  daio_info.msr = info->msr;
2181  err = hw_daio_init(hw, &daio_info);
2182  if (err < 0)
2183  return err;
2184 
2185  dac_info.msr = info->msr;
2186  err = hw_dac_init(hw, &dac_info);
2187  if (err < 0)
2188  return err;
2189 
2190  adc_info.msr = info->msr;
2191  adc_info.input = ADC_LINEIN;
2192  adc_info.mic20db = 0;
2193  err = hw_adc_init(hw, &adc_info);
2194  if (err < 0)
2195  return err;
2196 
2197  data = hw_read_20kx(hw, SRC_MCTL);
2198  data |= 0x1; /* Enables input from the audio ring */
2199  hw_write_20kx(hw, SRC_MCTL, data);
2200 
2201  return 0;
2202 }
2203 
2204 #ifdef CONFIG_PM_SLEEP
2205 static int hw_suspend(struct hw *hw)
2206 {
2207  struct pci_dev *pci = hw->pci;
2208 
2209  hw_card_stop(hw);
2210 
2211  pci_disable_device(pci);
2212  pci_save_state(pci);
2214 
2215  return 0;
2216 }
2217 
2218 static int hw_resume(struct hw *hw, struct card_conf *info)
2219 {
2220  struct pci_dev *pci = hw->pci;
2221 
2223  pci_restore_state(pci);
2224 
2225  /* Re-initialize card hardware. */
2226  return hw_card_init(hw, info);
2227 }
2228 #endif
2229 
2230 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2231 {
2232  return readl((void *)(hw->mem_base + reg));
2233 }
2234 
2235 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2236 {
2237  writel(data, (void *)(hw->mem_base + reg));
2238 }
2239 
2240 static struct hw ct20k2_preset __devinitdata = {
2241  .irq = -1,
2242 
2243  .card_init = hw_card_init,
2244  .card_stop = hw_card_stop,
2245  .pll_init = hw_pll_init,
2246  .is_adc_source_selected = hw_is_adc_input_selected,
2247  .select_adc_source = hw_adc_input_select,
2248  .capabilities = hw_capabilities,
2249  .output_switch_get = hw_output_switch_get,
2250  .output_switch_put = hw_output_switch_put,
2251  .mic_source_switch_get = hw_mic_source_switch_get,
2252  .mic_source_switch_put = hw_mic_source_switch_put,
2253 #ifdef CONFIG_PM_SLEEP
2254  .suspend = hw_suspend,
2255  .resume = hw_resume,
2256 #endif
2257 
2258  .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2259  .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2260  .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2261  .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2262  .src_set_state = src_set_state,
2263  .src_set_bm = src_set_bm,
2264  .src_set_rsr = src_set_rsr,
2265  .src_set_sf = src_set_sf,
2266  .src_set_wr = src_set_wr,
2267  .src_set_pm = src_set_pm,
2268  .src_set_rom = src_set_rom,
2269  .src_set_vo = src_set_vo,
2270  .src_set_st = src_set_st,
2271  .src_set_ie = src_set_ie,
2272  .src_set_ilsz = src_set_ilsz,
2273  .src_set_bp = src_set_bp,
2274  .src_set_cisz = src_set_cisz,
2275  .src_set_ca = src_set_ca,
2276  .src_set_sa = src_set_sa,
2277  .src_set_la = src_set_la,
2278  .src_set_pitch = src_set_pitch,
2279  .src_set_dirty = src_set_dirty,
2280  .src_set_clear_zbufs = src_set_clear_zbufs,
2281  .src_set_dirty_all = src_set_dirty_all,
2282  .src_commit_write = src_commit_write,
2283  .src_get_ca = src_get_ca,
2284  .src_get_dirty = src_get_dirty,
2285  .src_dirty_conj_mask = src_dirty_conj_mask,
2286  .src_mgr_enbs_src = src_mgr_enbs_src,
2287  .src_mgr_enb_src = src_mgr_enb_src,
2288  .src_mgr_dsb_src = src_mgr_dsb_src,
2289  .src_mgr_commit_write = src_mgr_commit_write,
2290 
2291  .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2292  .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2293  .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2294  .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2295  .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2296  .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2297  .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2298 
2299  .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2300  .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2301  .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2302  .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2303  .amixer_set_mode = amixer_set_mode,
2304  .amixer_set_iv = amixer_set_iv,
2305  .amixer_set_x = amixer_set_x,
2306  .amixer_set_y = amixer_set_y,
2307  .amixer_set_sadr = amixer_set_sadr,
2308  .amixer_set_se = amixer_set_se,
2309  .amixer_set_dirty = amixer_set_dirty,
2310  .amixer_set_dirty_all = amixer_set_dirty_all,
2311  .amixer_commit_write = amixer_commit_write,
2312  .amixer_get_y = amixer_get_y,
2313  .amixer_get_dirty = amixer_get_dirty,
2314 
2315  .dai_get_ctrl_blk = dai_get_ctrl_blk,
2316  .dai_put_ctrl_blk = dai_put_ctrl_blk,
2317  .dai_srt_set_srco = dai_srt_set_srco,
2318  .dai_srt_set_srcm = dai_srt_set_srcm,
2319  .dai_srt_set_rsr = dai_srt_set_rsr,
2320  .dai_srt_set_drat = dai_srt_set_drat,
2321  .dai_srt_set_ec = dai_srt_set_ec,
2322  .dai_srt_set_et = dai_srt_set_et,
2323  .dai_commit_write = dai_commit_write,
2324 
2325  .dao_get_ctrl_blk = dao_get_ctrl_blk,
2326  .dao_put_ctrl_blk = dao_put_ctrl_blk,
2327  .dao_set_spos = dao_set_spos,
2328  .dao_commit_write = dao_commit_write,
2329  .dao_get_spos = dao_get_spos,
2330 
2331  .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2332  .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2333  .daio_mgr_enb_dai = daio_mgr_enb_dai,
2334  .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2335  .daio_mgr_enb_dao = daio_mgr_enb_dao,
2336  .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2337  .daio_mgr_dao_init = daio_mgr_dao_init,
2338  .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2339  .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2340  .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2341  .daio_mgr_commit_write = daio_mgr_commit_write,
2342 
2343  .set_timer_irq = set_timer_irq,
2344  .set_timer_tick = set_timer_tick,
2345  .get_wc = get_wc,
2346 };
2347 
2348 int __devinit create_20k2_hw_obj(struct hw **rhw)
2349 {
2350  struct hw20k2 *hw20k2;
2351 
2352  *rhw = NULL;
2353  hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2354  if (!hw20k2)
2355  return -ENOMEM;
2356 
2357  hw20k2->hw = ct20k2_preset;
2358  *rhw = &hw20k2->hw;
2359 
2360  return 0;
2361 }
2362 
2363 int destroy_20k2_hw_obj(struct hw *hw)
2364 {
2365  if (hw->io_base)
2366  hw_card_shutdown(hw);
2367 
2368  kfree(hw);
2369  return 0;
2370 }