Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pmac.c
Go to the documentation of this file.
1 /*
2  * Support for IDE interfaces on PowerMacs.
3  *
4  * These IDE interfaces are memory-mapped and have a DBDMA channel
5  * for doing DMA.
6  *
7  * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8  * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Some code taken from drivers/ide/ide-dma.c:
16  *
17  * Copyright (c) 1995-1998 Mark Lord
18  *
19  * TODO: - Use pre-calculated (kauai) timing tables all the time and
20  * get rid of the "rounded" tables used previously, so we have the
21  * same table format for all controllers and can then just have one
22  * big table
23  *
24  */
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/module.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 
39 #include <asm/prom.h>
40 #include <asm/io.h>
41 #include <asm/dbdma.h>
42 #include <asm/ide.h>
43 #include <asm/pci-bridge.h>
44 #include <asm/machdep.h>
45 #include <asm/pmac_feature.h>
46 #include <asm/sections.h>
47 #include <asm/irq.h>
48 #include <asm/mediabay.h>
49 
50 #define DRV_NAME "ide-pmac"
51 
52 #undef IDE_PMAC_DEBUG
53 
54 #define DMA_WAIT_TIMEOUT 50
55 
56 typedef struct pmac_ide_hwif {
57  unsigned long regbase;
58  int irq;
59  int kind;
61  unsigned broken_dma : 1;
62  unsigned broken_dma_warn : 1;
63  struct device_node* node;
64  struct macio_dev *mdev;
66  volatile u32 __iomem * *kauai_fcr;
68 
69  /* Those fields are duplicating what is in hwif. We currently
70  * can't use the hwif ones because of some assumptions that are
71  * beeing done by the generic code about the kind of dma controller
72  * and format of the dma table. This will have to be fixed though.
73  */
74  volatile struct dbdma_regs __iomem * dma_regs;
75  struct dbdma_cmd* dma_table_cpu;
77 
78 enum {
79  controller_ohare, /* OHare based */
80  controller_heathrow, /* Heathrow/Paddington */
81  controller_kl_ata3, /* KeyLargo ATA-3 */
82  controller_kl_ata4, /* KeyLargo ATA-4 */
83  controller_un_ata6, /* UniNorth2 ATA-6 */
84  controller_k2_ata6, /* K2 ATA-6 */
85  controller_sh_ata6, /* Shasta ATA-6 */
86 };
87 
88 static const char* model_name[] = {
89  "OHare ATA", /* OHare based */
90  "Heathrow ATA", /* Heathrow/Paddington */
91  "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
92  "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
93  "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
94  "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
95  "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
96 };
97 
98 /*
99  * Extra registers, both 32-bit little-endian
100  */
101 #define IDE_TIMING_CONFIG 0x200
102 #define IDE_INTERRUPT 0x300
103 
104 /* Kauai (U2) ATA has different register setup */
105 #define IDE_KAUAI_PIO_CONFIG 0x200
106 #define IDE_KAUAI_ULTRA_CONFIG 0x210
107 #define IDE_KAUAI_POLL_CONFIG 0x220
108 
109 /*
110  * Timing configuration register definitions
111  */
112 
113 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
114 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
115 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
116 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
117 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
118 
119 /* 133Mhz cell, found in shasta.
120  * See comments about 100 Mhz Uninorth 2...
121  * Note that PIO_MASK and MDMA_MASK seem to overlap
122  */
123 #define TR_133_PIOREG_PIO_MASK 0xff000fff
124 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
125 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
126 #define TR_133_UDMAREG_UDMA_EN 0x00000001
127 
128 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
129  * this one yet, it appears as a pci device (106b/0033) on uninorth
130  * internal PCI bus and it's clock is controlled like gem or fw. It
131  * appears to be an evolution of keylargo ATA4 with a timing register
132  * extended to 2 32bits registers and a similar DBDMA channel. Other
133  * registers seem to exist but I can't tell much about them.
134  *
135  * So far, I'm using pre-calculated tables for this extracted from
136  * the values used by the MacOS X driver.
137  *
138  * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
139  * register controls the UDMA timings. At least, it seems bit 0
140  * of this one enables UDMA vs. MDMA, and bits 4..7 are the
141  * cycle time in units of 10ns. Bits 8..15 are used by I don't
142  * know their meaning yet
143  */
144 #define TR_100_PIOREG_PIO_MASK 0xff000fff
145 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
146 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
147 #define TR_100_UDMAREG_UDMA_EN 0x00000001
148 
149 
150 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
151  * 40 connector cable and to 4 on 80 connector one.
152  * Clock unit is 15ns (66Mhz)
153  *
154  * 3 Values can be programmed:
155  * - Write data setup, which appears to match the cycle time. They
156  * also call it DIOW setup.
157  * - Ready to pause time (from spec)
158  * - Address setup. That one is weird. I don't see where exactly
159  * it fits in UDMA cycles, I got it's name from an obscure piece
160  * of commented out code in Darwin. They leave it to 0, we do as
161  * well, despite a comment that would lead to think it has a
162  * min value of 45ns.
163  * Apple also add 60ns to the write data setup (or cycle time ?) on
164  * reads.
165  */
166 #define TR_66_UDMA_MASK 0xfff00000
167 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
168 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
169 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
170 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
171 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
172 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
173 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
174 #define TR_66_MDMA_MASK 0x000ffc00
175 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
176 #define TR_66_MDMA_RECOVERY_SHIFT 15
177 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
178 #define TR_66_MDMA_ACCESS_SHIFT 10
179 #define TR_66_PIO_MASK 0x000003ff
180 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
181 #define TR_66_PIO_RECOVERY_SHIFT 5
182 #define TR_66_PIO_ACCESS_MASK 0x0000001f
183 #define TR_66_PIO_ACCESS_SHIFT 0
184 
185 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
186  * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
187  *
188  * The access time and recovery time can be programmed. Some older
189  * Darwin code base limit OHare to 150ns cycle time. I decided to do
190  * the same here fore safety against broken old hardware ;)
191  * The HalfTick bit, when set, adds half a clock (15ns) to the access
192  * time and removes one from recovery. It's not supported on KeyLargo
193  * implementation afaik. The E bit appears to be set for PIO mode 0 and
194  * is used to reach long timings used in this mode.
195  */
196 #define TR_33_MDMA_MASK 0x003ff800
197 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
198 #define TR_33_MDMA_RECOVERY_SHIFT 16
199 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
200 #define TR_33_MDMA_ACCESS_SHIFT 11
201 #define TR_33_MDMA_HALFTICK 0x00200000
202 #define TR_33_PIO_MASK 0x000007ff
203 #define TR_33_PIO_E 0x00000400
204 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
205 #define TR_33_PIO_RECOVERY_SHIFT 5
206 #define TR_33_PIO_ACCESS_MASK 0x0000001f
207 #define TR_33_PIO_ACCESS_SHIFT 0
208 
209 /*
210  * Interrupt register definitions
211  */
212 #define IDE_INTR_DMA 0x80000000
213 #define IDE_INTR_DEVICE 0x40000000
214 
215 /*
216  * FCR Register on Kauai. Not sure what bit 0x4 is ...
217  */
218 #define KAUAI_FCR_UATA_MAGIC 0x00000004
219 #define KAUAI_FCR_UATA_RESET_N 0x00000002
220 #define KAUAI_FCR_UATA_ENABLE 0x00000001
221 
222 /* Rounded Multiword DMA timings
223  *
224  * I gave up finding a generic formula for all controller
225  * types and instead, built tables based on timing values
226  * used by Apple in Darwin's implementation.
227  */
232 };
233 
235 {
236  { 240, 240, 480 },
237  { 180, 180, 360 },
238  { 135, 135, 270 },
239  { 120, 120, 240 },
240  { 105, 105, 210 },
241  { 90, 90, 180 },
242  { 75, 75, 150 },
243  { 75, 45, 120 },
244  { 0, 0, 0 }
245 };
246 
248 {
249  { 240, 240, 480 },
250  { 180, 180, 360 },
251  { 150, 150, 300 },
252  { 120, 120, 240 },
253  { 90, 120, 210 },
254  { 90, 90, 180 },
255  { 90, 60, 150 },
256  { 90, 30, 120 },
257  { 0, 0, 0 }
258 };
259 
261 {
262  { 240, 240, 480 },
263  { 180, 180, 360 },
264  { 135, 135, 270 },
265  { 120, 120, 240 },
266  { 105, 105, 210 },
267  { 90, 90, 180 },
268  { 90, 75, 165 },
269  { 75, 45, 120 },
270  { 0, 0, 0 }
271 };
272 
273 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
274 struct {
275  int addrSetup; /* ??? */
278 } kl66_udma_timings[] =
279 {
280  { 0, 180, 120 }, /* Mode 0 */
281  { 0, 150, 90 }, /* 1 */
282  { 0, 120, 60 }, /* 2 */
283  { 0, 90, 45 }, /* 3 */
284  { 0, 90, 30 } /* 4 */
285 };
286 
287 /* UniNorth 2 ATA/100 timings */
288 struct kauai_timing {
291 };
292 
293 static struct kauai_timing kauai_pio_timings[] =
294 {
295  { 930 , 0x08000fff },
296  { 600 , 0x08000a92 },
297  { 383 , 0x0800060f },
298  { 360 , 0x08000492 },
299  { 330 , 0x0800048f },
300  { 300 , 0x080003cf },
301  { 270 , 0x080003cc },
302  { 240 , 0x0800038b },
303  { 239 , 0x0800030c },
304  { 180 , 0x05000249 },
305  { 120 , 0x04000148 },
306  { 0 , 0 },
307 };
308 
309 static struct kauai_timing kauai_mdma_timings[] =
310 {
311  { 1260 , 0x00fff000 },
312  { 480 , 0x00618000 },
313  { 360 , 0x00492000 },
314  { 270 , 0x0038e000 },
315  { 240 , 0x0030c000 },
316  { 210 , 0x002cb000 },
317  { 180 , 0x00249000 },
318  { 150 , 0x00209000 },
319  { 120 , 0x00148000 },
320  { 0 , 0 },
321 };
322 
323 static struct kauai_timing kauai_udma_timings[] =
324 {
325  { 120 , 0x000070c0 },
326  { 90 , 0x00005d80 },
327  { 60 , 0x00004a60 },
328  { 45 , 0x00003a50 },
329  { 30 , 0x00002a30 },
330  { 20 , 0x00002921 },
331  { 0 , 0 },
332 };
333 
334 static struct kauai_timing shasta_pio_timings[] =
335 {
336  { 930 , 0x08000fff },
337  { 600 , 0x0A000c97 },
338  { 383 , 0x07000712 },
339  { 360 , 0x040003cd },
340  { 330 , 0x040003cd },
341  { 300 , 0x040003cd },
342  { 270 , 0x040003cd },
343  { 240 , 0x040003cd },
344  { 239 , 0x040003cd },
345  { 180 , 0x0400028b },
346  { 120 , 0x0400010a },
347  { 0 , 0 },
348 };
349 
350 static struct kauai_timing shasta_mdma_timings[] =
351 {
352  { 1260 , 0x00fff000 },
353  { 480 , 0x00820800 },
354  { 360 , 0x00820800 },
355  { 270 , 0x00820800 },
356  { 240 , 0x00820800 },
357  { 210 , 0x00820800 },
358  { 180 , 0x00820800 },
359  { 150 , 0x0028b000 },
360  { 120 , 0x001ca000 },
361  { 0 , 0 },
362 };
363 
364 static struct kauai_timing shasta_udma133_timings[] =
365 {
366  { 120 , 0x00035901, },
367  { 90 , 0x000348b1, },
368  { 60 , 0x00033881, },
369  { 45 , 0x00033861, },
370  { 30 , 0x00033841, },
371  { 20 , 0x00033031, },
372  { 15 , 0x00033021, },
373  { 0 , 0 },
374 };
375 
376 
377 static inline u32
378 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
379 {
380  int i;
381 
382  for (i=0; table[i].cycle_time; i++)
383  if (cycle_time > table[i+1].cycle_time)
384  return table[i].timing_reg;
385  BUG();
386  return 0;
387 }
388 
389 /* allow up to 256 DBDMA commands per xfer */
390 #define MAX_DCMDS 256
391 
392 /*
393  * Wait 1s for disk to answer on IDE bus after a hard reset
394  * of the device (via GPIO/FCR).
395  *
396  * Some devices seem to "pollute" the bus even after dropping
397  * the BSY bit (typically some combo drives slave on the UDMA
398  * bus) after a hard reset. Since we hard reset all drives on
399  * KeyLargo ATA66, we have to keep that delay around. I may end
400  * up not hard resetting anymore on these and keep the delay only
401  * for older interfaces instead (we have to reset when coming
402  * from MacOS...) --BenH.
403  */
404 #define IDE_WAKEUP_DELAY (1*HZ)
405 
406 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
407 
408 #define PMAC_IDE_REG(x) \
409  ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
410 
411 /*
412  * Apply the timings of the proper unit (master/slave) to the shared
413  * timing register when selecting that unit. This version is for
414  * ASICs with a single timing register
415  */
416 static void pmac_ide_apply_timings(ide_drive_t *drive)
417 {
418  ide_hwif_t *hwif = drive->hwif;
419  pmac_ide_hwif_t *pmif =
420  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
421 
422  if (drive->dn & 1)
424  else
427 }
428 
429 /*
430  * Apply the timings of the proper unit (master/slave) to the shared
431  * timing register when selecting that unit. This version is for
432  * ASICs with a dual timing register (Kauai)
433  */
434 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
435 {
436  ide_hwif_t *hwif = drive->hwif;
437  pmac_ide_hwif_t *pmif =
438  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
439 
440  if (drive->dn & 1) {
443  } else {
446  }
448 }
449 
450 /*
451  * Force an update of controller timing values for a given drive
452  */
453 static void
454 pmac_ide_do_update_timings(ide_drive_t *drive)
455 {
456  ide_hwif_t *hwif = drive->hwif;
457  pmac_ide_hwif_t *pmif =
458  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
459 
460  if (pmif->kind == controller_sh_ata6 ||
461  pmif->kind == controller_un_ata6 ||
462  pmif->kind == controller_k2_ata6)
463  pmac_ide_kauai_apply_timings(drive);
464  else
465  pmac_ide_apply_timings(drive);
466 }
467 
468 static void pmac_dev_select(ide_drive_t *drive)
469 {
470  pmac_ide_apply_timings(drive);
471 
472  writeb(drive->select | ATA_DEVICE_OBS,
473  (void __iomem *)drive->hwif->io_ports.device_addr);
474 }
475 
476 static void pmac_kauai_dev_select(ide_drive_t *drive)
477 {
478  pmac_ide_kauai_apply_timings(drive);
479 
480  writeb(drive->select | ATA_DEVICE_OBS,
481  (void __iomem *)drive->hwif->io_ports.device_addr);
482 }
483 
484 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
485 {
486  writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
487  (void)readl((void __iomem *)(hwif->io_ports.data_addr
488  + IDE_TIMING_CONFIG));
489 }
490 
491 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
492 {
493  writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
494  (void)readl((void __iomem *)(hwif->io_ports.data_addr
495  + IDE_TIMING_CONFIG));
496 }
497 
498 /*
499  * Old tuning functions (called on hdparm -p), sets up drive PIO timings
500  */
501 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
502 {
503  pmac_ide_hwif_t *pmif =
504  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
505  const u8 pio = drive->pio_mode - XFER_PIO_0;
506  struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
507  u32 *timings, t;
508  unsigned accessTicks, recTicks;
509  unsigned accessTime, recTime;
510  unsigned int cycle_time;
511 
512  /* which drive is it ? */
513  timings = &pmif->timings[drive->dn & 1];
514  t = *timings;
515 
516  cycle_time = ide_pio_cycle_time(drive, pio);
517 
518  switch (pmif->kind) {
519  case controller_sh_ata6: {
520  /* 133Mhz cell */
521  u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
522  t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
523  break;
524  }
525  case controller_un_ata6:
526  case controller_k2_ata6: {
527  /* 100Mhz cell */
528  u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
529  t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
530  break;
531  }
532  case controller_kl_ata4:
533  /* 66Mhz cell */
534  recTime = cycle_time - tim->active - tim->setup;
535  recTime = max(recTime, 150U);
536  accessTime = tim->active;
537  accessTime = max(accessTime, 150U);
538  accessTicks = SYSCLK_TICKS_66(accessTime);
539  accessTicks = min(accessTicks, 0x1fU);
540  recTicks = SYSCLK_TICKS_66(recTime);
541  recTicks = min(recTicks, 0x1fU);
542  t = (t & ~TR_66_PIO_MASK) |
543  (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
544  (recTicks << TR_66_PIO_RECOVERY_SHIFT);
545  break;
546  default: {
547  /* 33Mhz cell */
548  int ebit = 0;
549  recTime = cycle_time - tim->active - tim->setup;
550  recTime = max(recTime, 150U);
551  accessTime = tim->active;
552  accessTime = max(accessTime, 150U);
553  accessTicks = SYSCLK_TICKS(accessTime);
554  accessTicks = min(accessTicks, 0x1fU);
555  accessTicks = max(accessTicks, 4U);
556  recTicks = SYSCLK_TICKS(recTime);
557  recTicks = min(recTicks, 0x1fU);
558  recTicks = max(recTicks, 5U) - 4;
559  if (recTicks > 9) {
560  recTicks--; /* guess, but it's only for PIO0, so... */
561  ebit = 1;
562  }
563  t = (t & ~TR_33_PIO_MASK) |
564  (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
565  (recTicks << TR_33_PIO_RECOVERY_SHIFT);
566  if (ebit)
567  t |= TR_33_PIO_E;
568  break;
569  }
570  }
571 
572 #ifdef IDE_PMAC_DEBUG
573  printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
574  drive->name, pio, *timings);
575 #endif
576 
577  *timings = t;
578  pmac_ide_do_update_timings(drive);
579 }
580 
581 /*
582  * Calculate KeyLargo ATA/66 UDMA timings
583  */
584 static int
585 set_timings_udma_ata4(u32 *timings, u8 speed)
586 {
587  unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
588 
589  if (speed > XFER_UDMA_4)
590  return 1;
591 
592  rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
593  wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
594  addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
595 
596  *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
597  (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
598  (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
599  (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
601 #ifdef IDE_PMAC_DEBUG
602  printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
603  speed & 0xf, *timings);
604 #endif
605 
606  return 0;
607 }
608 
609 /*
610  * Calculate Kauai ATA/100 UDMA timings
611  */
612 static int
613 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
614 {
615  struct ide_timing *t = ide_timing_find_mode(speed);
616  u32 tr;
617 
618  if (speed > XFER_UDMA_5 || t == NULL)
619  return 1;
620  tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
621  *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
622  *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
623 
624  return 0;
625 }
626 
627 /*
628  * Calculate Shasta ATA/133 UDMA timings
629  */
630 static int
631 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
632 {
633  struct ide_timing *t = ide_timing_find_mode(speed);
634  u32 tr;
635 
636  if (speed > XFER_UDMA_6 || t == NULL)
637  return 1;
638  tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
639  *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
640  *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
641 
642  return 0;
643 }
644 
645 /*
646  * Calculate MDMA timings for all cells
647  */
648 static void
649 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
650  u8 speed)
651 {
652  u16 *id = drive->id;
653  int cycleTime, accessTime = 0, recTime = 0;
654  unsigned accessTicks, recTicks;
655  struct mdma_timings_t* tm = NULL;
656  int i;
657 
658  /* Get default cycle time for mode */
659  switch(speed & 0xf) {
660  case 0: cycleTime = 480; break;
661  case 1: cycleTime = 150; break;
662  case 2: cycleTime = 120; break;
663  default:
664  BUG();
665  break;
666  }
667 
668  /* Check if drive provides explicit DMA cycle time */
669  if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
670  cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
671 
672  /* OHare limits according to some old Apple sources */
673  if ((intf_type == controller_ohare) && (cycleTime < 150))
674  cycleTime = 150;
675  /* Get the proper timing array for this controller */
676  switch(intf_type) {
677  case controller_sh_ata6:
678  case controller_un_ata6:
679  case controller_k2_ata6:
680  break;
681  case controller_kl_ata4:
682  tm = mdma_timings_66;
683  break;
684  case controller_kl_ata3:
685  tm = mdma_timings_33k;
686  break;
687  default:
688  tm = mdma_timings_33;
689  break;
690  }
691  if (tm != NULL) {
692  /* Lookup matching access & recovery times */
693  i = -1;
694  for (;;) {
695  if (tm[i+1].cycleTime < cycleTime)
696  break;
697  i++;
698  }
699  cycleTime = tm[i].cycleTime;
700  accessTime = tm[i].accessTime;
701  recTime = tm[i].recoveryTime;
702 
703 #ifdef IDE_PMAC_DEBUG
704  printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
705  drive->name, cycleTime, accessTime, recTime);
706 #endif
707  }
708  switch(intf_type) {
709  case controller_sh_ata6: {
710  /* 133Mhz cell */
711  u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
712  *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
713  *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
714  }
715  case controller_un_ata6:
716  case controller_k2_ata6: {
717  /* 100Mhz cell */
718  u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
719  *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
720  *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
721  }
722  break;
723  case controller_kl_ata4:
724  /* 66Mhz cell */
725  accessTicks = SYSCLK_TICKS_66(accessTime);
726  accessTicks = min(accessTicks, 0x1fU);
727  accessTicks = max(accessTicks, 0x1U);
728  recTicks = SYSCLK_TICKS_66(recTime);
729  recTicks = min(recTicks, 0x1fU);
730  recTicks = max(recTicks, 0x3U);
731  /* Clear out mdma bits and disable udma */
732  *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
733  (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
734  (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
735  break;
736  case controller_kl_ata3:
737  /* 33Mhz cell on KeyLargo */
738  accessTicks = SYSCLK_TICKS(accessTime);
739  accessTicks = max(accessTicks, 1U);
740  accessTicks = min(accessTicks, 0x1fU);
741  accessTime = accessTicks * IDE_SYSCLK_NS;
742  recTicks = SYSCLK_TICKS(recTime);
743  recTicks = max(recTicks, 1U);
744  recTicks = min(recTicks, 0x1fU);
745  *timings = ((*timings) & ~TR_33_MDMA_MASK) |
746  (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
747  (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
748  break;
749  default: {
750  /* 33Mhz cell on others */
751  int halfTick = 0;
752  int origAccessTime = accessTime;
753  int origRecTime = recTime;
754 
755  accessTicks = SYSCLK_TICKS(accessTime);
756  accessTicks = max(accessTicks, 1U);
757  accessTicks = min(accessTicks, 0x1fU);
758  accessTime = accessTicks * IDE_SYSCLK_NS;
759  recTicks = SYSCLK_TICKS(recTime);
760  recTicks = max(recTicks, 2U) - 1;
761  recTicks = min(recTicks, 0x1fU);
762  recTime = (recTicks + 1) * IDE_SYSCLK_NS;
763  if ((accessTicks > 1) &&
764  ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
765  ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
766  halfTick = 1;
767  accessTicks--;
768  }
769  *timings = ((*timings) & ~TR_33_MDMA_MASK) |
770  (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
771  (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
772  if (halfTick)
773  *timings |= TR_33_MDMA_HALFTICK;
774  }
775  }
776 #ifdef IDE_PMAC_DEBUG
777  printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
778  drive->name, speed & 0xf, *timings);
779 #endif
780 }
781 
782 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
783 {
784  pmac_ide_hwif_t *pmif =
785  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
786  int ret = 0;
787  u32 *timings, *timings2, tl[2];
788  u8 unit = drive->dn & 1;
789  const u8 speed = drive->dma_mode;
790 
791  timings = &pmif->timings[unit];
792  timings2 = &pmif->timings[unit+2];
793 
794  /* Copy timings to local image */
795  tl[0] = *timings;
796  tl[1] = *timings2;
797 
798  if (speed >= XFER_UDMA_0) {
799  if (pmif->kind == controller_kl_ata4)
800  ret = set_timings_udma_ata4(&tl[0], speed);
801  else if (pmif->kind == controller_un_ata6
802  || pmif->kind == controller_k2_ata6)
803  ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
804  else if (pmif->kind == controller_sh_ata6)
805  ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
806  else
807  ret = -1;
808  } else
809  set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
810 
811  if (ret)
812  return;
813 
814  /* Apply timings to controller */
815  *timings = tl[0];
816  *timings2 = tl[1];
817 
818  pmac_ide_do_update_timings(drive);
819 }
820 
821 /*
822  * Blast some well known "safe" values to the timing registers at init or
823  * wakeup from sleep time, before we do real calculation
824  */
825 static void
826 sanitize_timings(pmac_ide_hwif_t *pmif)
827 {
828  unsigned int value, value2 = 0;
829 
830  switch(pmif->kind) {
831  case controller_sh_ata6:
832  value = 0x0a820c97;
833  value2 = 0x00033031;
834  break;
835  case controller_un_ata6:
836  case controller_k2_ata6:
837  value = 0x08618a92;
838  value2 = 0x00002921;
839  break;
840  case controller_kl_ata4:
841  value = 0x0008438c;
842  break;
843  case controller_kl_ata3:
844  value = 0x00084526;
845  break;
846  case controller_heathrow:
847  case controller_ohare:
848  default:
849  value = 0x00074526;
850  break;
851  }
852  pmif->timings[0] = pmif->timings[1] = value;
853  pmif->timings[2] = pmif->timings[3] = value2;
854 }
855 
856 static int on_media_bay(pmac_ide_hwif_t *pmif)
857 {
858  return pmif->mdev && pmif->mdev->media_bay != NULL;
859 }
860 
861 /* Suspend call back, should be called after the child devices
862  * have actually been suspended
863  */
864 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
865 {
866  /* We clear the timings */
867  pmif->timings[0] = 0;
868  pmif->timings[1] = 0;
869 
870  disable_irq(pmif->irq);
871 
872  /* The media bay will handle itself just fine */
873  if (on_media_bay(pmif))
874  return 0;
875 
876  /* Kauai has bus control FCRs directly here */
877  if (pmif->kauai_fcr) {
878  u32 fcr = readl(pmif->kauai_fcr);
880  writel(fcr, pmif->kauai_fcr);
881  }
882 
883  /* Disable the bus on older machines and the cell on kauai */
884  ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
885  0);
886 
887  return 0;
888 }
889 
890 /* Resume call back, should be called before the child devices
891  * are resumed
892  */
893 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
894 {
895  /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
896  if (!on_media_bay(pmif)) {
897  ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
898  ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
899  msleep(10);
900  ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
901 
902  /* Kauai has it different */
903  if (pmif->kauai_fcr) {
904  u32 fcr = readl(pmif->kauai_fcr);
906  writel(fcr, pmif->kauai_fcr);
907  }
908 
910  }
911 
912  /* Sanitize drive timings */
913  sanitize_timings(pmif);
914 
915  enable_irq(pmif->irq);
916 
917  return 0;
918 }
919 
920 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
921 {
922  pmac_ide_hwif_t *pmif =
923  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
924  struct device_node *np = pmif->node;
925  const char *cable = of_get_property(np, "cable-type", NULL);
926  struct device_node *root = of_find_node_by_path("/");
927  const char *model = of_get_property(root, "model", NULL);
928 
929  /* Get cable type from device-tree. */
930  if (cable && !strncmp(cable, "80-", 3)) {
931  /* Some drives fail to detect 80c cable in PowerBook */
932  /* These machine use proprietary short IDE cable anyway */
933  if (!strncmp(model, "PowerBook", 9))
934  return ATA_CBL_PATA40_SHORT;
935  else
936  return ATA_CBL_PATA80;
937  }
938 
939  /*
940  * G5's seem to have incorrect cable type in device-tree.
941  * Let's assume they have a 80 conductor cable, this seem
942  * to be always the case unless the user mucked around.
943  */
944  if (of_device_is_compatible(np, "K2-UATA") ||
945  of_device_is_compatible(np, "shasta-ata"))
946  return ATA_CBL_PATA80;
947 
948  return ATA_CBL_PATA40;
949 }
950 
951 static void pmac_ide_init_dev(ide_drive_t *drive)
952 {
953  ide_hwif_t *hwif = drive->hwif;
954  pmac_ide_hwif_t *pmif =
955  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
956 
957  if (on_media_bay(pmif)) {
958  if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
959  drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
960  return;
961  }
962  drive->dev_flags |= IDE_DFLAG_NOPROBE;
963  }
964 }
965 
966 static const struct ide_tp_ops pmac_tp_ops = {
967  .exec_command = pmac_exec_command,
968  .read_status = ide_read_status,
969  .read_altstatus = ide_read_altstatus,
970  .write_devctl = pmac_write_devctl,
971 
972  .dev_select = pmac_dev_select,
973  .tf_load = ide_tf_load,
974  .tf_read = ide_tf_read,
975 
976  .input_data = ide_input_data,
977  .output_data = ide_output_data,
978 };
979 
980 static const struct ide_tp_ops pmac_ata6_tp_ops = {
981  .exec_command = pmac_exec_command,
982  .read_status = ide_read_status,
983  .read_altstatus = ide_read_altstatus,
984  .write_devctl = pmac_write_devctl,
985 
986  .dev_select = pmac_kauai_dev_select,
987  .tf_load = ide_tf_load,
988  .tf_read = ide_tf_read,
989 
990  .input_data = ide_input_data,
991  .output_data = ide_output_data,
992 };
993 
994 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
995  .init_dev = pmac_ide_init_dev,
996  .set_pio_mode = pmac_ide_set_pio_mode,
997  .set_dma_mode = pmac_ide_set_dma_mode,
998  .cable_detect = pmac_ide_cable_detect,
999 };
1000 
1001 static const struct ide_port_ops pmac_ide_port_ops = {
1002  .init_dev = pmac_ide_init_dev,
1003  .set_pio_mode = pmac_ide_set_pio_mode,
1004  .set_dma_mode = pmac_ide_set_dma_mode,
1005 };
1006 
1007 static const struct ide_dma_ops pmac_dma_ops;
1008 
1009 static const struct ide_port_info pmac_port_info = {
1010  .name = DRV_NAME,
1011  .init_dma = pmac_ide_init_dma,
1012  .chipset = ide_pmac,
1013  .tp_ops = &pmac_tp_ops,
1014  .port_ops = &pmac_ide_port_ops,
1015  .dma_ops = &pmac_dma_ops,
1016  .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1018  IDE_HFLAG_MMIO |
1020  .pio_mask = ATA_PIO4,
1021  .mwdma_mask = ATA_MWDMA2,
1022 };
1023 
1024 /*
1025  * Setup, register & probe an IDE channel driven by this driver, this is
1026  * called by one of the 2 probe functions (macio or PCI).
1027  */
1028 static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1029  struct ide_hw *hw)
1030 {
1031  struct device_node *np = pmif->node;
1032  const int *bidp;
1033  struct ide_host *host;
1034  ide_hwif_t *hwif;
1035  struct ide_hw *hws[] = { hw };
1036  struct ide_port_info d = pmac_port_info;
1037  int rc;
1038 
1039  pmif->broken_dma = pmif->broken_dma_warn = 0;
1040  if (of_device_is_compatible(np, "shasta-ata")) {
1041  pmif->kind = controller_sh_ata6;
1042  d.tp_ops = &pmac_ata6_tp_ops;
1043  d.port_ops = &pmac_ide_ata4_port_ops;
1044  d.udma_mask = ATA_UDMA6;
1045  } else if (of_device_is_compatible(np, "kauai-ata")) {
1046  pmif->kind = controller_un_ata6;
1047  d.tp_ops = &pmac_ata6_tp_ops;
1048  d.port_ops = &pmac_ide_ata4_port_ops;
1049  d.udma_mask = ATA_UDMA5;
1050  } else if (of_device_is_compatible(np, "K2-UATA")) {
1051  pmif->kind = controller_k2_ata6;
1052  d.tp_ops = &pmac_ata6_tp_ops;
1053  d.port_ops = &pmac_ide_ata4_port_ops;
1054  d.udma_mask = ATA_UDMA5;
1055  } else if (of_device_is_compatible(np, "keylargo-ata")) {
1056  if (strcmp(np->name, "ata-4") == 0) {
1057  pmif->kind = controller_kl_ata4;
1058  d.port_ops = &pmac_ide_ata4_port_ops;
1059  d.udma_mask = ATA_UDMA4;
1060  } else
1061  pmif->kind = controller_kl_ata3;
1062  } else if (of_device_is_compatible(np, "heathrow-ata")) {
1063  pmif->kind = controller_heathrow;
1064  } else {
1065  pmif->kind = controller_ohare;
1066  pmif->broken_dma = 1;
1067  }
1068 
1069  bidp = of_get_property(np, "AAPL,bus-id", NULL);
1070  pmif->aapl_bus_id = bidp ? *bidp : 0;
1071 
1072  /* On Kauai-type controllers, we make sure the FCR is correct */
1073  if (pmif->kauai_fcr)
1077 
1078  /* Make sure we have sane timings */
1079  sanitize_timings(pmif);
1080 
1081  /* If we are on a media bay, wait for it to settle and lock it */
1082  if (pmif->mdev)
1083  lock_media_bay(pmif->mdev->media_bay);
1084 
1085  host = ide_host_alloc(&d, hws, 1);
1086  if (host == NULL) {
1087  rc = -ENOMEM;
1088  goto bail;
1089  }
1090  hwif = pmif->hwif = host->ports[0];
1091 
1092  if (on_media_bay(pmif)) {
1093  /* Fixup bus ID for media bay */
1094  if (!bidp)
1095  pmif->aapl_bus_id = 1;
1096  } else if (pmif->kind == controller_ohare) {
1097  /* The code below is having trouble on some ohare machines
1098  * (timing related ?). Until I can put my hand on one of these
1099  * units, I keep the old way
1100  */
1101  ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1102  } else {
1103  /* This is necessary to enable IDE when net-booting */
1104  ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1105  ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1106  msleep(10);
1107  ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1109  }
1110 
1111  printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1112  "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1113  pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1114  on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1115 
1116  rc = ide_host_register(host, &d, hws);
1117  if (rc)
1118  pmif->hwif = NULL;
1119 
1120  if (pmif->mdev)
1121  unlock_media_bay(pmif->mdev->media_bay);
1122 
1123  bail:
1124  if (rc && host)
1125  ide_host_free(host);
1126  return rc;
1127 }
1128 
1129 static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1130 {
1131  int i;
1132 
1133  for (i = 0; i < 8; ++i)
1134  hw->io_ports_array[i] = base + i * 0x10;
1135 
1136  hw->io_ports.ctl_addr = base + 0x160;
1137 }
1138 
1139 /*
1140  * Attach to a macio probed interface
1141  */
1142 static int __devinit
1143 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1144 {
1145  void __iomem *base;
1146  unsigned long regbase;
1147  pmac_ide_hwif_t *pmif;
1148  int irq, rc;
1149  struct ide_hw hw;
1150 
1151  pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1152  if (pmif == NULL)
1153  return -ENOMEM;
1154 
1155  if (macio_resource_count(mdev) == 0) {
1156  printk(KERN_WARNING "ide-pmac: no address for %s\n",
1157  mdev->ofdev.dev.of_node->full_name);
1158  rc = -ENXIO;
1159  goto out_free_pmif;
1160  }
1161 
1162  /* Request memory resource for IO ports */
1163  if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1164  printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1165  "%s!\n", mdev->ofdev.dev.of_node->full_name);
1166  rc = -EBUSY;
1167  goto out_free_pmif;
1168  }
1169 
1170  /* XXX This is bogus. Should be fixed in the registry by checking
1171  * the kind of host interrupt controller, a bit like gatwick
1172  * fixes in irq.c. That works well enough for the single case
1173  * where that happens though...
1174  */
1175  if (macio_irq_count(mdev) == 0) {
1176  printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1177  "13\n", mdev->ofdev.dev.of_node->full_name);
1178  irq = irq_create_mapping(NULL, 13);
1179  } else
1180  irq = macio_irq(mdev, 0);
1181 
1182  base = ioremap(macio_resource_start(mdev, 0), 0x400);
1183  regbase = (unsigned long) base;
1184 
1185  pmif->mdev = mdev;
1186  pmif->node = mdev->ofdev.dev.of_node;
1187  pmif->regbase = regbase;
1188  pmif->irq = irq;
1189  pmif->kauai_fcr = NULL;
1190 
1191  if (macio_resource_count(mdev) >= 2) {
1192  if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1193  printk(KERN_WARNING "ide-pmac: can't request DMA "
1194  "resource for %s!\n",
1195  mdev->ofdev.dev.of_node->full_name);
1196  else
1197  pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1198  } else
1199  pmif->dma_regs = NULL;
1200 
1201  dev_set_drvdata(&mdev->ofdev.dev, pmif);
1202 
1203  memset(&hw, 0, sizeof(hw));
1204  pmac_ide_init_ports(&hw, pmif->regbase);
1205  hw.irq = irq;
1206  hw.dev = &mdev->bus->pdev->dev;
1207  hw.parent = &mdev->ofdev.dev;
1208 
1209  rc = pmac_ide_setup_device(pmif, &hw);
1210  if (rc != 0) {
1211  /* The inteface is released to the common IDE layer */
1212  dev_set_drvdata(&mdev->ofdev.dev, NULL);
1213  iounmap(base);
1214  if (pmif->dma_regs) {
1215  iounmap(pmif->dma_regs);
1216  macio_release_resource(mdev, 1);
1217  }
1218  macio_release_resource(mdev, 0);
1219  kfree(pmif);
1220  }
1221 
1222  return rc;
1223 
1224 out_free_pmif:
1225  kfree(pmif);
1226  return rc;
1227 }
1228 
1229 static int
1230 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1231 {
1232  pmac_ide_hwif_t *pmif =
1233  (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1234  int rc = 0;
1235 
1236  if (mesg.event != mdev->ofdev.dev.power.power_state.event
1237  && (mesg.event & PM_EVENT_SLEEP)) {
1238  rc = pmac_ide_do_suspend(pmif);
1239  if (rc == 0)
1240  mdev->ofdev.dev.power.power_state = mesg;
1241  }
1242 
1243  return rc;
1244 }
1245 
1246 static int
1247 pmac_ide_macio_resume(struct macio_dev *mdev)
1248 {
1249  pmac_ide_hwif_t *pmif =
1250  (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1251  int rc = 0;
1252 
1253  if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1254  rc = pmac_ide_do_resume(pmif);
1255  if (rc == 0)
1256  mdev->ofdev.dev.power.power_state = PMSG_ON;
1257  }
1258 
1259  return rc;
1260 }
1261 
1262 /*
1263  * Attach to a PCI probed interface
1264  */
1265 static int __devinit
1266 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1267 {
1268  struct device_node *np;
1269  pmac_ide_hwif_t *pmif;
1270  void __iomem *base;
1271  unsigned long rbase, rlen;
1272  int rc;
1273  struct ide_hw hw;
1274 
1275  np = pci_device_to_OF_node(pdev);
1276  if (np == NULL) {
1277  printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1278  return -ENODEV;
1279  }
1280 
1281  pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1282  if (pmif == NULL)
1283  return -ENOMEM;
1284 
1285  if (pci_enable_device(pdev)) {
1286  printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1287  "%s\n", np->full_name);
1288  rc = -ENXIO;
1289  goto out_free_pmif;
1290  }
1291  pci_set_master(pdev);
1292 
1293  if (pci_request_regions(pdev, "Kauai ATA")) {
1294  printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1295  "%s\n", np->full_name);
1296  rc = -ENXIO;
1297  goto out_free_pmif;
1298  }
1299 
1300  pmif->mdev = NULL;
1301  pmif->node = np;
1302 
1303  rbase = pci_resource_start(pdev, 0);
1304  rlen = pci_resource_len(pdev, 0);
1305 
1306  base = ioremap(rbase, rlen);
1307  pmif->regbase = (unsigned long) base + 0x2000;
1308  pmif->dma_regs = base + 0x1000;
1309  pmif->kauai_fcr = base;
1310  pmif->irq = pdev->irq;
1311 
1312  pci_set_drvdata(pdev, pmif);
1313 
1314  memset(&hw, 0, sizeof(hw));
1315  pmac_ide_init_ports(&hw, pmif->regbase);
1316  hw.irq = pdev->irq;
1317  hw.dev = &pdev->dev;
1318 
1319  rc = pmac_ide_setup_device(pmif, &hw);
1320  if (rc != 0) {
1321  /* The inteface is released to the common IDE layer */
1322  pci_set_drvdata(pdev, NULL);
1323  iounmap(base);
1324  pci_release_regions(pdev);
1325  kfree(pmif);
1326  }
1327 
1328  return rc;
1329 
1330 out_free_pmif:
1331  kfree(pmif);
1332  return rc;
1333 }
1334 
1335 static int
1336 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1337 {
1338  pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1339  int rc = 0;
1340 
1341  if (mesg.event != pdev->dev.power.power_state.event
1342  && (mesg.event & PM_EVENT_SLEEP)) {
1343  rc = pmac_ide_do_suspend(pmif);
1344  if (rc == 0)
1345  pdev->dev.power.power_state = mesg;
1346  }
1347 
1348  return rc;
1349 }
1350 
1351 static int
1352 pmac_ide_pci_resume(struct pci_dev *pdev)
1353 {
1354  pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1355  int rc = 0;
1356 
1357  if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1358  rc = pmac_ide_do_resume(pmif);
1359  if (rc == 0)
1360  pdev->dev.power.power_state = PMSG_ON;
1361  }
1362 
1363  return rc;
1364 }
1365 
1366 #ifdef CONFIG_PMAC_MEDIABAY
1367 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1368 {
1369  pmac_ide_hwif_t *pmif =
1370  (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1371 
1372  switch(mb_state) {
1373  case MB_CD:
1374  if (!pmif->hwif->present)
1375  ide_port_scan(pmif->hwif);
1376  break;
1377  default:
1378  if (pmif->hwif->present)
1380  }
1381 }
1382 #endif /* CONFIG_PMAC_MEDIABAY */
1383 
1384 
1385 static struct of_device_id pmac_ide_macio_match[] =
1386 {
1387  {
1388  .name = "IDE",
1389  },
1390  {
1391  .name = "ATA",
1392  },
1393  {
1394  .type = "ide",
1395  },
1396  {
1397  .type = "ata",
1398  },
1399  {},
1400 };
1401 
1402 static struct macio_driver pmac_ide_macio_driver =
1403 {
1404  .driver = {
1405  .name = "ide-pmac",
1406  .owner = THIS_MODULE,
1407  .of_match_table = pmac_ide_macio_match,
1408  },
1409  .probe = pmac_ide_macio_attach,
1410  .suspend = pmac_ide_macio_suspend,
1411  .resume = pmac_ide_macio_resume,
1412 #ifdef CONFIG_PMAC_MEDIABAY
1413  .mediabay_event = pmac_ide_macio_mb_event,
1414 #endif
1415 };
1416 
1417 static const struct pci_device_id pmac_ide_pci_match[] = {
1421  { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1423  {},
1424 };
1425 
1426 static struct pci_driver pmac_ide_pci_driver = {
1427  .name = "ide-pmac",
1428  .id_table = pmac_ide_pci_match,
1429  .probe = pmac_ide_pci_attach,
1430  .suspend = pmac_ide_pci_suspend,
1431  .resume = pmac_ide_pci_resume,
1432 };
1433 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1434 
1436 {
1437  int error;
1438 
1439  if (!machine_is(powermac))
1440  return -ENODEV;
1441 
1442 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1443  error = pci_register_driver(&pmac_ide_pci_driver);
1444  if (error)
1445  goto out;
1446  error = macio_register_driver(&pmac_ide_macio_driver);
1447  if (error) {
1448  pci_unregister_driver(&pmac_ide_pci_driver);
1449  goto out;
1450  }
1451 #else
1452  error = macio_register_driver(&pmac_ide_macio_driver);
1453  if (error)
1454  goto out;
1455  error = pci_register_driver(&pmac_ide_pci_driver);
1456  if (error) {
1457  macio_unregister_driver(&pmac_ide_macio_driver);
1458  goto out;
1459  }
1460 #endif
1461 out:
1462  return error;
1463 }
1464 
1465 /*
1466  * pmac_ide_build_dmatable builds the DBDMA command list
1467  * for a transfer and sets the DBDMA channel to point to it.
1468  */
1469 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1470 {
1471  ide_hwif_t *hwif = drive->hwif;
1472  pmac_ide_hwif_t *pmif =
1473  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1474  struct dbdma_cmd *table;
1475  volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1476  struct scatterlist *sg;
1477  int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1478  int i = cmd->sg_nents, count = 0;
1479 
1480  /* DMA table is already aligned */
1481  table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1482 
1483  /* Make sure DMA controller is stopped (necessary ?) */
1484  writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1485  while (readl(&dma->status) & RUN)
1486  udelay(1);
1487 
1488  /* Build DBDMA commands list */
1489  sg = hwif->sg_table;
1490  while (i && sg_dma_len(sg)) {
1491  u32 cur_addr;
1492  u32 cur_len;
1493 
1494  cur_addr = sg_dma_address(sg);
1495  cur_len = sg_dma_len(sg);
1496 
1497  if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1498  if (pmif->broken_dma_warn == 0) {
1499  printk(KERN_WARNING "%s: DMA on non aligned address, "
1500  "switching to PIO on Ohare chipset\n", drive->name);
1501  pmif->broken_dma_warn = 1;
1502  }
1503  return 0;
1504  }
1505  while (cur_len) {
1506  unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1507 
1508  if (count++ >= MAX_DCMDS) {
1509  printk(KERN_WARNING "%s: DMA table too small\n",
1510  drive->name);
1511  return 0;
1512  }
1513  st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1514  st_le16(&table->req_count, tc);
1515  st_le32(&table->phy_addr, cur_addr);
1516  table->cmd_dep = 0;
1517  table->xfer_status = 0;
1518  table->res_count = 0;
1519  cur_addr += tc;
1520  cur_len -= tc;
1521  ++table;
1522  }
1523  sg = sg_next(sg);
1524  i--;
1525  }
1526 
1527  /* convert the last command to an input/output last command */
1528  if (count) {
1529  st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1530  /* add the stop command to the end of the list */
1531  memset(table, 0, sizeof(struct dbdma_cmd));
1532  st_le16(&table->command, DBDMA_STOP);
1533  mb();
1534  writel(hwif->dmatable_dma, &dma->cmdptr);
1535  return 1;
1536  }
1537 
1538  printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1539 
1540  return 0; /* revert to PIO for this request */
1541 }
1542 
1543 /*
1544  * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1545  * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1546  */
1547 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1548 {
1549  ide_hwif_t *hwif = drive->hwif;
1550  pmac_ide_hwif_t *pmif =
1551  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1552  u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1553  u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1554 
1555  if (pmac_ide_build_dmatable(drive, cmd) == 0)
1556  return 1;
1557 
1558  /* Apple adds 60ns to wrDataSetup on reads */
1559  if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1560  writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1563  }
1564 
1565  return 0;
1566 }
1567 
1568 /*
1569  * Kick the DMA controller into life after the DMA command has been issued
1570  * to the drive.
1571  */
1572 static void
1573 pmac_ide_dma_start(ide_drive_t *drive)
1574 {
1575  ide_hwif_t *hwif = drive->hwif;
1576  pmac_ide_hwif_t *pmif =
1577  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1578  volatile struct dbdma_regs __iomem *dma;
1579 
1580  dma = pmif->dma_regs;
1581 
1582  writel((RUN << 16) | RUN, &dma->control);
1583  /* Make sure it gets to the controller right now */
1584  (void)readl(&dma->control);
1585 }
1586 
1587 /*
1588  * After a DMA transfer, make sure the controller is stopped
1589  */
1590 static int
1591 pmac_ide_dma_end (ide_drive_t *drive)
1592 {
1593  ide_hwif_t *hwif = drive->hwif;
1594  pmac_ide_hwif_t *pmif =
1595  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1596  volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1597  u32 dstat;
1598 
1599  dstat = readl(&dma->status);
1600  writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1601 
1602  /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1603  * in theory, but with ATAPI decices doing buffer underruns, that would
1604  * cause us to disable DMA, which isn't what we want
1605  */
1606  return (dstat & (RUN|DEAD)) != RUN;
1607 }
1608 
1609 /*
1610  * Check out that the interrupt we got was for us. We can't always know this
1611  * for sure with those Apple interfaces (well, we could on the recent ones but
1612  * that's not implemented yet), on the other hand, we don't have shared interrupts
1613  * so it's not really a problem
1614  */
1615 static int
1616 pmac_ide_dma_test_irq (ide_drive_t *drive)
1617 {
1618  ide_hwif_t *hwif = drive->hwif;
1619  pmac_ide_hwif_t *pmif =
1620  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1621  volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1622  unsigned long status, timeout;
1623 
1624  /* We have to things to deal with here:
1625  *
1626  * - The dbdma won't stop if the command was started
1627  * but completed with an error without transferring all
1628  * datas. This happens when bad blocks are met during
1629  * a multi-block transfer.
1630  *
1631  * - The dbdma fifo hasn't yet finished flushing to
1632  * to system memory when the disk interrupt occurs.
1633  *
1634  */
1635 
1636  /* If ACTIVE is cleared, the STOP command have passed and
1637  * transfer is complete.
1638  */
1639  status = readl(&dma->status);
1640  if (!(status & ACTIVE))
1641  return 1;
1642 
1643  /* If dbdma didn't execute the STOP command yet, the
1644  * active bit is still set. We consider that we aren't
1645  * sharing interrupts (which is hopefully the case with
1646  * those controllers) and so we just try to flush the
1647  * channel for pending data in the fifo
1648  */
1649  udelay(1);
1650  writel((FLUSH << 16) | FLUSH, &dma->control);
1651  timeout = 0;
1652  for (;;) {
1653  udelay(1);
1654  status = readl(&dma->status);
1655  if ((status & FLUSH) == 0)
1656  break;
1657  if (++timeout > 100) {
1658  printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1659  hwif->index);
1660  break;
1661  }
1662  }
1663  return 1;
1664 }
1665 
1666 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1667 {
1668 }
1669 
1670 static void
1671 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1672 {
1673  ide_hwif_t *hwif = drive->hwif;
1674  pmac_ide_hwif_t *pmif =
1675  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1676  volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1677  unsigned long status = readl(&dma->status);
1678 
1679  printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1680 }
1681 
1682 static const struct ide_dma_ops pmac_dma_ops = {
1683  .dma_host_set = pmac_ide_dma_host_set,
1684  .dma_setup = pmac_ide_dma_setup,
1685  .dma_start = pmac_ide_dma_start,
1686  .dma_end = pmac_ide_dma_end,
1687  .dma_test_irq = pmac_ide_dma_test_irq,
1688  .dma_lost_irq = pmac_ide_dma_lost_irq,
1689 };
1690 
1691 /*
1692  * Allocate the data structures needed for using DMA with an interface
1693  * and fill the proper list of functions pointers
1694  */
1695 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1696  const struct ide_port_info *d)
1697 {
1698  pmac_ide_hwif_t *pmif =
1699  (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1700  struct pci_dev *dev = to_pci_dev(hwif->dev);
1701 
1702  /* We won't need pci_dev if we switch to generic consistent
1703  * DMA routines ...
1704  */
1705  if (dev == NULL || pmif->dma_regs == 0)
1706  return -ENODEV;
1707  /*
1708  * Allocate space for the DBDMA commands.
1709  * The +2 is +1 for the stop command and +1 to allow for
1710  * aligning the start address to a multiple of 16 bytes.
1711  */
1713  dev,
1714  (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1715  &hwif->dmatable_dma);
1716  if (pmif->dma_table_cpu == NULL) {
1717  printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1718  hwif->name);
1719  return -ENOMEM;
1720  }
1721 
1722  hwif->sg_max_nents = MAX_DCMDS;
1723 
1724  return 0;
1725 }
1726 
1728 
1729 MODULE_LICENSE("GPL");