Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dscc4.c
Go to the documentation of this file.
1 /*
2  * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3  *
4  * This software may be used and distributed according to the terms of the
5  * GNU General Public License.
6  *
7  * The author may be reached as [email protected].
8  * Specific bug reports/asian food will be welcome.
9  *
10  * Special thanks to the nice people at CS-Telecom for the hardware and the
11  * access to the test/measure tools.
12  *
13  *
14  * Theory of Operation
15  *
16  * I. Board Compatibility
17  *
18  * This device driver is designed for the Siemens PEB20534 4 ports serial
19  * controller as found on Etinc PCISYNC cards. The documentation for the
20  * chipset is available at http://www.infineon.com:
21  * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22  * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23  * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24  * - Errata sheet DS5 (courtesy of Michael Skerritt).
25  * Jens David has built an adapter based on the same chipset. Take a look
26  * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27  * driver.
28  * Sample code (2 revisions) is available at Infineon.
29  *
30  * II. Board-specific settings
31  *
32  * Pcisync can transmit some clock signal to the outside world on the
33  * *first two* ports provided you put a quartz and a line driver on it and
34  * remove the jumpers. The operation is described on Etinc web site. If you
35  * go DCE on these ports, don't forget to use an adequate cable.
36  *
37  * Sharing of the PCI interrupt line for this board is possible.
38  *
39  * III. Driver operation
40  *
41  * The rx/tx operations are based on a linked list of descriptors. The driver
42  * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43  * I tried to fix it, the more it started to look like (convoluted) software
44  * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45  * this a rfc2119 MUST.
46  *
47  * Tx direction
48  * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49  * The device is supposed to be enabled again during an ALLS irq (we could
50  * use HI but as it's easy to lose events, it's fscked).
51  *
52  * Rx direction
53  * The received frames aren't supposed to span over multiple receiving areas.
54  * I may implement it some day but it isn't the highest ranked item.
55  *
56  * IV. Notes
57  * The current error (XDU, RFO) recovery code is untested.
58  * So far, RDO takes his RX channel down and the right sequence to enable it
59  * again is still a mystery. If RDO happens, plan a reboot. More details
60  * in the code (NB: as this happens, TX still works).
61  * Don't mess the cables during operation, especially on DTE ports. I don't
62  * suggest it for DCE either but at least one can get some messages instead
63  * of a complete instant freeze.
64  * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65  * the documentation/chipset releases.
66  *
67  * TODO:
68  * - test X25.
69  * - use polling at high irq/s,
70  * - performance analysis,
71  * - endianness.
72  *
73  * 2001/12/10 Daniela Squassoni <[email protected]>
74  * - Contribution to support the new generic HDLC layer.
75  *
76  * 2002/01 Ueimor
77  * - old style interface removal
78  * - dscc4_release_ring fix (related to DMA mapping)
79  * - hard_start_xmit fix (hint: TxSizeMax)
80  * - misc crapectomy.
81  */
82 
83 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
84 
85 #include <linux/module.h>
86 #include <linux/sched.h>
87 #include <linux/types.h>
88 #include <linux/errno.h>
89 #include <linux/list.h>
90 #include <linux/ioport.h>
91 #include <linux/pci.h>
92 #include <linux/kernel.h>
93 #include <linux/mm.h>
94 #include <linux/slab.h>
95 
96 #include <asm/cache.h>
97 #include <asm/byteorder.h>
98 #include <asm/uaccess.h>
99 #include <asm/io.h>
100 #include <asm/irq.h>
101 
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/string.h>
105 
106 #include <linux/if_arp.h>
107 #include <linux/netdevice.h>
108 #include <linux/skbuff.h>
109 #include <linux/delay.h>
110 #include <linux/hdlc.h>
111 #include <linux/mutex.h>
112 
113 /* Version */
114 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
115 static int debug;
116 static int quartz;
117 
118 #ifdef CONFIG_DSCC4_PCI_RST
119 static DEFINE_MUTEX(dscc4_mutex);
120 static u32 dscc4_pci_config_store[16];
121 #endif
122 
123 #define DRV_NAME "dscc4"
124 
125 #undef DSCC4_POLLING
126 
127 /* Module parameters */
128 
129 MODULE_AUTHOR("Maintainer: Francois Romieu <[email protected]>");
130 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller");
131 MODULE_LICENSE("GPL");
132 module_param(debug, int, 0);
133 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
134 module_param(quartz, int, 0);
135 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
136 
137 /* Structures */
138 
139 struct thingie {
140  int define;
142 };
143 
144 struct TxFD {
149  u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
150  /* FWIW, datasheet calls that "dummy" and says that card
151  * never looks at it; neither does the driver */
152 };
153 
154 struct RxFD {
160 };
161 
162 #define DUMMY_SKB_SIZE 64
163 #define TX_LOW 8
164 #define TX_RING_SIZE 32
165 #define RX_RING_SIZE 32
166 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
167 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
168 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
169 #define TX_TIMEOUT (HZ/10)
170 #define DSCC4_HZ_MAX 33000000
171 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
172 #define dev_per_card 4
173 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
174 
175 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
176 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
177 
178 /*
179  * Given the operating range of Linux HDLC, the 2 defines below could be
180  * made simpler. However they are a fine reminder for the limitations of
181  * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
182  */
183 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
184 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
185 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
186 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
187 
190  int cfg_cur;
192  struct pci_dev *pdev;
193 
197 };
198 
202 
203  struct RxFD *rx_fd;
204  struct TxFD *tx_fd;
207 
208  /* FIXME: check all the volatile are required */
209  volatile u32 tx_current;
213 
214  volatile u32 tx_dirty;
215  volatile u32 ltda;
218 
223 
224  u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
225 
227 
230 
231  int dev_id;
232  volatile u32 flags;
234 
235  unsigned short encoding;
236  unsigned short parity;
237  struct net_device *dev;
240  u32 __pad __attribute__ ((aligned (4)));
241 };
242 
243 /* GLOBAL registers definitions */
244 #define GCMDR 0x00
245 #define GSTAR 0x04
246 #define GMODE 0x08
247 #define IQLENR0 0x0C
248 #define IQLENR1 0x10
249 #define IQRX0 0x14
250 #define IQTX0 0x24
251 #define IQCFG 0x3c
252 #define FIFOCR1 0x44
253 #define FIFOCR2 0x48
254 #define FIFOCR3 0x4c
255 #define FIFOCR4 0x34
256 #define CH0CFG 0x50
257 #define CH0BRDA 0x54
258 #define CH0BTDA 0x58
259 #define CH0FRDA 0x98
260 #define CH0FTDA 0xb0
261 #define CH0LRDA 0xc8
262 #define CH0LTDA 0xe0
263 
264 /* SCC registers definitions */
265 #define SCC_START 0x0100
266 #define SCC_OFFSET 0x80
267 #define CMDR 0x00
268 #define STAR 0x04
269 #define CCR0 0x08
270 #define CCR1 0x0c
271 #define CCR2 0x10
272 #define BRR 0x2C
273 #define RLCR 0x40
274 #define IMR 0x54
275 #define ISR 0x58
276 
277 #define GPDIR 0x0400
278 #define GPDATA 0x0404
279 #define GPIM 0x0408
280 
281 /* Bit masks */
282 #define EncodingMask 0x00700000
283 #define CrcMask 0x00000003
284 
285 #define IntRxScc0 0x10000000
286 #define IntTxScc0 0x01000000
287 
288 #define TxPollCmd 0x00000400
289 #define RxActivate 0x08000000
290 #define MTFi 0x04000000
291 #define Rdr 0x00400000
292 #define Rdt 0x00200000
293 #define Idr 0x00100000
294 #define Idt 0x00080000
295 #define TxSccRes 0x01000000
296 #define RxSccRes 0x00010000
297 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
298 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
299 
300 #define Ccr0ClockMask 0x0000003f
301 #define Ccr1LoopMask 0x00000200
302 #define IsrMask 0x000fffff
303 #define BrrExpMask 0x00000f00
304 #define BrrMultMask 0x0000003f
305 #define EncodingMask 0x00700000
306 #define Hold cpu_to_le32(0x40000000)
307 #define SccBusy 0x10000000
308 #define PowerUp 0x80000000
309 #define Vis 0x00001000
310 #define FrameOk (FrameVfr | FrameCrc)
311 #define FrameVfr 0x80
312 #define FrameRdo 0x40
313 #define FrameCrc 0x20
314 #define FrameRab 0x10
315 #define FrameAborted cpu_to_le32(0x00000200)
316 #define FrameEnd cpu_to_le32(0x80000000)
317 #define DataComplete cpu_to_le32(0x40000000)
318 #define LengthCheck 0x00008000
319 #define SccEvt 0x02000000
320 #define NoAck 0x00000200
321 #define Action 0x00000001
322 #define HiDesc cpu_to_le32(0x20000000)
323 
324 /* SCC events */
325 #define RxEvt 0xf0000000
326 #define TxEvt 0x0f000000
327 #define Alls 0x00040000
328 #define Xdu 0x00010000
329 #define Cts 0x00004000
330 #define Xmr 0x00002000
331 #define Xpr 0x00001000
332 #define Rdo 0x00000080
333 #define Rfs 0x00000040
334 #define Cd 0x00000004
335 #define Rfo 0x00000002
336 #define Flex 0x00000001
337 
338 /* DMA core events */
339 #define Cfg 0x00200000
340 #define Hi 0x00040000
341 #define Fi 0x00020000
342 #define Err 0x00010000
343 #define Arf 0x00000002
344 #define ArAck 0x00000001
345 
346 /* State flags */
347 #define Ready 0x00000000
348 #define NeedIDR 0x00000001
349 #define NeedIDT 0x00000002
350 #define RdoSet 0x00000004
351 #define FakeReset 0x00000008
352 
353 /* Don't mask RDO. Ever. */
354 #ifdef DSCC4_POLLING
355 #define EventsMask 0xfffeef7f
356 #else
357 #define EventsMask 0xfffa8f7a
358 #endif
359 
360 /* Functions prototypes */
361 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
362 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
363 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
364 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
365 static int dscc4_open(struct net_device *);
366 static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
367  struct net_device *);
368 static int dscc4_close(struct net_device *);
369 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
370 static int dscc4_init_ring(struct net_device *);
371 static void dscc4_release_ring(struct dscc4_dev_priv *);
372 static void dscc4_timer(unsigned long);
373 static void dscc4_tx_timeout(struct net_device *);
374 static irqreturn_t dscc4_irq(int irq, void *dev_id);
375 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
376 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
377 #ifdef DSCC4_POLLING
378 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
379 #endif
380 
381 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
382 {
383  return dev_to_hdlc(dev)->priv;
384 }
385 
386 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
387 {
388  return p->dev;
389 }
390 
391 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
392  struct net_device *dev, int offset)
393 {
394  u32 state;
395 
396  /* Cf scc_writel for concern regarding thread-safety */
397  state = dpriv->scc_regs[offset >> 2];
398  state &= ~mask;
399  state |= value;
400  dpriv->scc_regs[offset >> 2] = state;
401  writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
402 }
403 
404 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
405  struct net_device *dev, int offset)
406 {
407  /*
408  * Thread-UNsafe.
409  * As of 2002/02/16, there are no thread racing for access.
410  */
411  dpriv->scc_regs[offset >> 2] = bits;
412  writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
413 }
414 
415 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
416 {
417  return dpriv->scc_regs[offset >> 2];
418 }
419 
420 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
421 {
422  /* Cf errata DS5 p.4 */
423  readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
424  return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
425 }
426 
427 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
428  struct net_device *dev)
429 {
430  dpriv->ltda = dpriv->tx_fd_dma +
431  ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
432  writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
433  /* Flush posted writes *NOW* */
434  readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
435 }
436 
437 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
438  struct net_device *dev)
439 {
440  dpriv->lrda = dpriv->rx_fd_dma +
441  ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
442  writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
443 }
444 
445 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
446 {
447  return dpriv->tx_current == dpriv->tx_dirty;
448 }
449 
450 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
451  struct net_device *dev)
452 {
453  return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
454 }
455 
456 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
457  struct net_device *dev, const char *msg)
458 {
459  int ret = 0;
460 
461  if (debug > 1) {
462  if (SOURCE_ID(state) != dpriv->dev_id) {
463  printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
464  dev->name, msg, SOURCE_ID(state), state );
465  ret = -1;
466  }
467  if (state & 0x0df80c00) {
468  printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
469  dev->name, msg, state);
470  ret = -1;
471  }
472  }
473  return ret;
474 }
475 
476 static void dscc4_tx_print(struct net_device *dev,
477  struct dscc4_dev_priv *dpriv,
478  char *msg)
479 {
480  printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
481  dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
482 }
483 
484 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
485 {
486  struct pci_dev *pdev = dpriv->pci_priv->pdev;
487  struct TxFD *tx_fd = dpriv->tx_fd;
488  struct RxFD *rx_fd = dpriv->rx_fd;
489  struct sk_buff **skbuff;
490  int i;
491 
492  pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
493  pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
494 
495  skbuff = dpriv->tx_skbuff;
496  for (i = 0; i < TX_RING_SIZE; i++) {
497  if (*skbuff) {
498  pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
499  (*skbuff)->len, PCI_DMA_TODEVICE);
500  dev_kfree_skb(*skbuff);
501  }
502  skbuff++;
503  tx_fd++;
504  }
505 
506  skbuff = dpriv->rx_skbuff;
507  for (i = 0; i < RX_RING_SIZE; i++) {
508  if (*skbuff) {
509  pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
511  dev_kfree_skb(*skbuff);
512  }
513  skbuff++;
514  rx_fd++;
515  }
516 }
517 
518 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
519  struct net_device *dev)
520 {
521  unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
522  struct RxFD *rx_fd = dpriv->rx_fd + dirty;
523  const int len = RX_MAX(HDLC_MAX_MRU);
524  struct sk_buff *skb;
525  int ret = 0;
526 
527  skb = dev_alloc_skb(len);
528  dpriv->rx_skbuff[dirty] = skb;
529  if (skb) {
530  skb->protocol = hdlc_type_trans(skb, dev);
531  rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
532  skb->data, len, PCI_DMA_FROMDEVICE));
533  } else {
534  rx_fd->data = 0;
535  ret = -1;
536  }
537  return ret;
538 }
539 
540 /*
541  * IRQ/thread/whatever safe
542  */
543 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
544  struct net_device *dev, char *msg)
545 {
546  s8 i = 0;
547 
548  do {
549  if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
550  printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
551  msg, i);
552  goto done;
553  }
555  rmb();
556  } while (++i > 0);
557  netdev_err(dev, "%s timeout\n", msg);
558 done:
559  return (i >= 0) ? i : -EAGAIN;
560 }
561 
562 static int dscc4_do_action(struct net_device *dev, char *msg)
563 {
564  void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
565  s16 i = 0;
566 
567  writel(Action, ioaddr + GCMDR);
568  ioaddr += GSTAR;
569  do {
570  u32 state = readl(ioaddr);
571 
572  if (state & ArAck) {
573  netdev_dbg(dev, "%s ack\n", msg);
574  writel(ArAck, ioaddr);
575  goto done;
576  } else if (state & Arf) {
577  netdev_err(dev, "%s failed\n", msg);
578  writel(Arf, ioaddr);
579  i = -1;
580  goto done;
581  }
582  rmb();
583  } while (++i > 0);
584  netdev_err(dev, "%s timeout\n", msg);
585 done:
586  return i;
587 }
588 
589 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
590 {
591  int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
592  s8 i = 0;
593 
594  do {
595  if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
596  (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
597  break;
598  smp_rmb();
600  } while (++i > 0);
601 
602  return (i >= 0 ) ? i : -EAGAIN;
603 }
604 
605 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
606 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
607 {
608  unsigned long flags;
609 
610  spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
611  /* Cf errata DS5 p.6 */
612  writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
613  scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
614  readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
615  writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
616  writel(Action, dpriv->base_addr + GCMDR);
617  spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
618 }
619 
620 #endif
621 
622 #if 0
623 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
624 {
625  u16 i = 0;
626 
627  /* Cf errata DS5 p.7 */
628  scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
629  scc_writel(0x00050000, dpriv, dev, CCR2);
630  /*
631  * Must be longer than the time required to fill the fifo.
632  */
633  while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
634  udelay(1);
635  wmb();
636  }
637 
638  writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
639  if (dscc4_do_action(dev, "Rdt") < 0)
640  netdev_err(dev, "Tx reset failed\n");
641 }
642 #endif
643 
644 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
645 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
646  struct net_device *dev)
647 {
648  struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
649  struct pci_dev *pdev = dpriv->pci_priv->pdev;
650  struct sk_buff *skb;
651  int pkt_len;
652 
653  skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
654  if (!skb) {
655  printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
656  goto refill;
657  }
658  pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
659  pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
661  if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
662  dev->stats.rx_packets++;
663  dev->stats.rx_bytes += pkt_len;
664  skb_put(skb, pkt_len);
665  if (netif_running(dev))
666  skb->protocol = hdlc_type_trans(skb, dev);
667  netif_rx(skb);
668  } else {
669  if (skb->data[pkt_len] & FrameRdo)
670  dev->stats.rx_fifo_errors++;
671  else if (!(skb->data[pkt_len] & FrameCrc))
672  dev->stats.rx_crc_errors++;
673  else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
674  (FrameVfr | FrameRab))
675  dev->stats.rx_length_errors++;
676  dev->stats.rx_errors++;
677  dev_kfree_skb_irq(skb);
678  }
679 refill:
680  while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
681  if (try_get_rx_skb(dpriv, dev) < 0)
682  break;
683  dpriv->rx_dirty++;
684  }
685  dscc4_rx_update(dpriv, dev);
686  rx_fd->state2 = 0x00000000;
687  rx_fd->end = cpu_to_le32(0xbabeface);
688 }
689 
690 static void dscc4_free1(struct pci_dev *pdev)
691 {
692  struct dscc4_pci_priv *ppriv;
693  struct dscc4_dev_priv *root;
694  int i;
695 
696  ppriv = pci_get_drvdata(pdev);
697  root = ppriv->root;
698 
699  for (i = 0; i < dev_per_card; i++)
700  unregister_hdlc_device(dscc4_to_dev(root + i));
701 
702  pci_set_drvdata(pdev, NULL);
703 
704  for (i = 0; i < dev_per_card; i++)
705  free_netdev(root[i].dev);
706  kfree(root);
707  kfree(ppriv);
708 }
709 
710 static int __devinit dscc4_init_one(struct pci_dev *pdev,
711  const struct pci_device_id *ent)
712 {
713  struct dscc4_pci_priv *priv;
714  struct dscc4_dev_priv *dpriv;
715  void __iomem *ioaddr;
716  int i, rc;
717 
718  printk(KERN_DEBUG "%s", version);
719 
720  rc = pci_enable_device(pdev);
721  if (rc < 0)
722  goto out;
723 
724  rc = pci_request_region(pdev, 0, "registers");
725  if (rc < 0) {
726  pr_err("can't reserve MMIO region (regs)\n");
727  goto err_disable_0;
728  }
729  rc = pci_request_region(pdev, 1, "LBI interface");
730  if (rc < 0) {
731  pr_err("can't reserve MMIO region (lbi)\n");
732  goto err_free_mmio_region_1;
733  }
734 
735  ioaddr = pci_ioremap_bar(pdev, 0);
736  if (!ioaddr) {
737  pr_err("cannot remap MMIO region %llx @ %llx\n",
738  (unsigned long long)pci_resource_len(pdev, 0),
739  (unsigned long long)pci_resource_start(pdev, 0));
740  rc = -EIO;
741  goto err_free_mmio_regions_2;
742  }
743  printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
744  (unsigned long long)pci_resource_start(pdev, 0),
745  (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
746 
747  /* Cf errata DS5 p.2 */
748  pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
749  pci_set_master(pdev);
750 
751  rc = dscc4_found1(pdev, ioaddr);
752  if (rc < 0)
753  goto err_iounmap_3;
754 
755  priv = pci_get_drvdata(pdev);
756 
757  rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
758  if (rc < 0) {
759  pr_warn("IRQ %d busy\n", pdev->irq);
760  goto err_release_4;
761  }
762 
763  /* power up/little endian/dma core controlled via lrda/ltda */
764  writel(0x00000001, ioaddr + GMODE);
765  /* Shared interrupt queue */
766  {
767  u32 bits;
768 
769  bits = (IRQ_RING_SIZE >> 5) - 1;
770  bits |= bits << 4;
771  bits |= bits << 8;
772  bits |= bits << 16;
773  writel(bits, ioaddr + IQLENR0);
774  }
775  /* Global interrupt queue */
776  writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
777 
778  rc = -ENOMEM;
779 
780  priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
781  IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
782  if (!priv->iqcfg)
783  goto err_free_irq_5;
784  writel(priv->iqcfg_dma, ioaddr + IQCFG);
785 
786  /*
787  * SCC 0-3 private rx/tx irq structures
788  * IQRX/TXi needs to be set soon. Learned it the hard way...
789  */
790  for (i = 0; i < dev_per_card; i++) {
791  dpriv = priv->root + i;
792  dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
793  IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
794  if (!dpriv->iqtx)
795  goto err_free_iqtx_6;
796  writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
797  }
798  for (i = 0; i < dev_per_card; i++) {
799  dpriv = priv->root + i;
800  dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
801  IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
802  if (!dpriv->iqrx)
803  goto err_free_iqrx_7;
804  writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
805  }
806 
807  /* Cf application hint. Beware of hard-lock condition on threshold. */
808  writel(0x42104000, ioaddr + FIFOCR1);
809  //writel(0x9ce69800, ioaddr + FIFOCR2);
810  writel(0xdef6d800, ioaddr + FIFOCR2);
811  //writel(0x11111111, ioaddr + FIFOCR4);
812  writel(0x18181818, ioaddr + FIFOCR4);
813  // FIXME: should depend on the chipset revision
814  writel(0x0000000e, ioaddr + FIFOCR3);
815 
816  writel(0xff200001, ioaddr + GCMDR);
817 
818  rc = 0;
819 out:
820  return rc;
821 
822 err_free_iqrx_7:
823  while (--i >= 0) {
824  dpriv = priv->root + i;
825  pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
826  dpriv->iqrx, dpriv->iqrx_dma);
827  }
828  i = dev_per_card;
829 err_free_iqtx_6:
830  while (--i >= 0) {
831  dpriv = priv->root + i;
832  pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
833  dpriv->iqtx, dpriv->iqtx_dma);
834  }
835  pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
836  priv->iqcfg_dma);
837 err_free_irq_5:
838  free_irq(pdev->irq, priv->root);
839 err_release_4:
840  dscc4_free1(pdev);
841 err_iounmap_3:
842  iounmap (ioaddr);
843 err_free_mmio_regions_2:
844  pci_release_region(pdev, 1);
845 err_free_mmio_region_1:
846  pci_release_region(pdev, 0);
847 err_disable_0:
848  pci_disable_device(pdev);
849  goto out;
850 };
851 
852 /*
853  * Let's hope the default values are decent enough to protect my
854  * feet from the user's gun - Ueimor
855  */
856 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
857  struct net_device *dev)
858 {
859  /* No interrupts, SCC core disabled. Let's relax */
860  scc_writel(0x00000000, dpriv, dev, CCR0);
861 
862  scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
863 
864  /*
865  * No address recognition/crc-CCITT/cts enabled
866  * Shared flags transmission disabled - cf errata DS5 p.11
867  * Carrier detect disabled - cf errata p.14
868  * FIXME: carrier detection/polarity may be handled more gracefully.
869  */
870  scc_writel(0x02408000, dpriv, dev, CCR1);
871 
872  /* crc not forwarded - Cf errata DS5 p.11 */
873  scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
874  // crc forwarded
875  //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
876 }
877 
878 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
879 {
880  int ret = 0;
881 
882  if ((hz < 0) || (hz > DSCC4_HZ_MAX))
883  ret = -EOPNOTSUPP;
884  else
885  dpriv->pci_priv->xtal_hz = hz;
886 
887  return ret;
888 }
889 
890 static const struct net_device_ops dscc4_ops = {
891  .ndo_open = dscc4_open,
892  .ndo_stop = dscc4_close,
893  .ndo_change_mtu = hdlc_change_mtu,
894  .ndo_start_xmit = hdlc_start_xmit,
895  .ndo_do_ioctl = dscc4_ioctl,
896  .ndo_tx_timeout = dscc4_tx_timeout,
897 };
898 
899 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
900 {
901  struct dscc4_pci_priv *ppriv;
902  struct dscc4_dev_priv *root;
903  int i, ret = -ENOMEM;
904 
905  root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
906  if (!root)
907  goto err_out;
908 
909  for (i = 0; i < dev_per_card; i++) {
910  root[i].dev = alloc_hdlcdev(root + i);
911  if (!root[i].dev)
912  goto err_free_dev;
913  }
914 
915  ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
916  if (!ppriv)
917  goto err_free_dev;
918 
919  ppriv->root = root;
920  spin_lock_init(&ppriv->lock);
921 
922  for (i = 0; i < dev_per_card; i++) {
923  struct dscc4_dev_priv *dpriv = root + i;
924  struct net_device *d = dscc4_to_dev(dpriv);
925  hdlc_device *hdlc = dev_to_hdlc(d);
926 
927  d->base_addr = (unsigned long)ioaddr;
928  d->irq = pdev->irq;
929  d->netdev_ops = &dscc4_ops;
931  SET_NETDEV_DEV(d, &pdev->dev);
932 
933  dpriv->dev_id = i;
934  dpriv->pci_priv = ppriv;
935  dpriv->base_addr = ioaddr;
936  spin_lock_init(&dpriv->lock);
937 
938  hdlc->xmit = dscc4_start_xmit;
939  hdlc->attach = dscc4_hdlc_attach;
940 
941  dscc4_init_registers(dpriv, d);
943  dpriv->encoding = ENCODING_NRZ;
944 
945  ret = dscc4_init_ring(d);
946  if (ret < 0)
947  goto err_unregister;
948 
949  ret = register_hdlc_device(d);
950  if (ret < 0) {
951  pr_err("unable to register\n");
952  dscc4_release_ring(dpriv);
953  goto err_unregister;
954  }
955  }
956 
957  ret = dscc4_set_quartz(root, quartz);
958  if (ret < 0)
959  goto err_unregister;
960 
961  pci_set_drvdata(pdev, ppriv);
962  return ret;
963 
964 err_unregister:
965  while (i-- > 0) {
966  dscc4_release_ring(root + i);
967  unregister_hdlc_device(dscc4_to_dev(root + i));
968  }
969  kfree(ppriv);
970  i = dev_per_card;
971 err_free_dev:
972  while (i-- > 0)
973  free_netdev(root[i].dev);
974  kfree(root);
975 err_out:
976  return ret;
977 };
978 
979 /* FIXME: get rid of the unneeded code */
980 static void dscc4_timer(unsigned long data)
981 {
982  struct net_device *dev = (struct net_device *)data;
983  struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
984 // struct dscc4_pci_priv *ppriv;
985 
986  goto done;
987 done:
988  dpriv->timer.expires = jiffies + TX_TIMEOUT;
989  add_timer(&dpriv->timer);
990 }
991 
992 static void dscc4_tx_timeout(struct net_device *dev)
993 {
994  /* FIXME: something is missing there */
995 }
996 
997 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
998 {
1000 
1001  if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
1002  struct net_device *dev = dscc4_to_dev(dpriv);
1003 
1004  netdev_info(dev, "loopback requires clock\n");
1005  return -1;
1006  }
1007  return 0;
1008 }
1009 
1010 #ifdef CONFIG_DSCC4_PCI_RST
1011 /*
1012  * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1013  * so as to provide a safe way to reset the asic while not the whole machine
1014  * rebooting.
1015  *
1016  * This code doesn't need to be efficient. Keep It Simple
1017  */
1018 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1019 {
1020  int i;
1021 
1022  mutex_lock(&dscc4_mutex);
1023  for (i = 0; i < 16; i++)
1024  pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1025 
1026  /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1027  writel(0x001c0000, ioaddr + GMODE);
1028  /* Configure GPIO port as output */
1029  writel(0x0000ffff, ioaddr + GPDIR);
1030  /* Disable interruption */
1031  writel(0x0000ffff, ioaddr + GPIM);
1032 
1033  writel(0x0000ffff, ioaddr + GPDATA);
1034  writel(0x00000000, ioaddr + GPDATA);
1035 
1036  /* Flush posted writes */
1037  readl(ioaddr + GSTAR);
1038 
1040 
1041  for (i = 0; i < 16; i++)
1042  pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1043  mutex_unlock(&dscc4_mutex);
1044 }
1045 #else
1046 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1047 #endif /* CONFIG_DSCC4_PCI_RST */
1048 
1049 static int dscc4_open(struct net_device *dev)
1050 {
1051  struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1052  struct dscc4_pci_priv *ppriv;
1053  int ret = -EAGAIN;
1054 
1055  if ((dscc4_loopback_check(dpriv) < 0))
1056  goto err;
1057 
1058  if ((ret = hdlc_open(dev)))
1059  goto err;
1060 
1061  ppriv = dpriv->pci_priv;
1062 
1063  /*
1064  * Due to various bugs, there is no way to reliably reset a
1065  * specific port (manufacturer's dependent special PCI #RST wiring
1066  * apart: it affects all ports). Thus the device goes in the best
1067  * silent mode possible at dscc4_close() time and simply claims to
1068  * be up if it's opened again. It still isn't possible to change
1069  * the HDLC configuration without rebooting but at least the ports
1070  * can be up/down ifconfig'ed without killing the host.
1071  */
1072  if (dpriv->flags & FakeReset) {
1073  dpriv->flags &= ~FakeReset;
1074  scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1075  scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1076  scc_writel(EventsMask, dpriv, dev, IMR);
1077  netdev_info(dev, "up again\n");
1078  goto done;
1079  }
1080 
1081  /* IDT+IDR during XPR */
1082  dpriv->flags = NeedIDR | NeedIDT;
1083 
1084  scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1085 
1086  /*
1087  * The following is a bit paranoid...
1088  *
1089  * NB: the datasheet "...CEC will stay active if the SCC is in
1090  * power-down mode or..." and CCR2.RAC = 1 are two different
1091  * situations.
1092  */
1093  if (scc_readl_star(dpriv, dev) & SccBusy) {
1094  netdev_err(dev, "busy - try later\n");
1095  ret = -EAGAIN;
1096  goto err_out;
1097  } else
1098  netdev_info(dev, "available - good\n");
1099 
1100  scc_writel(EventsMask, dpriv, dev, IMR);
1101 
1102  /* Posted write is flushed in the wait_ack loop */
1103  scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1104 
1105  if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1106  goto err_disable_scc_events;
1107 
1108  /*
1109  * I would expect XPR near CE completion (before ? after ?).
1110  * At worst, this code won't see a late XPR and people
1111  * will have to re-issue an ifconfig (this is harmless).
1112  * WARNING, a really missing XPR usually means a hardware
1113  * reset is needed. Suggestions anyone ?
1114  */
1115  if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1116  pr_err("XPR timeout\n");
1117  goto err_disable_scc_events;
1118  }
1119 
1120  if (debug > 2)
1121  dscc4_tx_print(dev, dpriv, "Open");
1122 
1123 done:
1124  netif_start_queue(dev);
1125 
1126  init_timer(&dpriv->timer);
1127  dpriv->timer.expires = jiffies + 10*HZ;
1128  dpriv->timer.data = (unsigned long)dev;
1129  dpriv->timer.function = dscc4_timer;
1130  add_timer(&dpriv->timer);
1131  netif_carrier_on(dev);
1132 
1133  return 0;
1134 
1135 err_disable_scc_events:
1136  scc_writel(0xffffffff, dpriv, dev, IMR);
1137  scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1138 err_out:
1139  hdlc_close(dev);
1140 err:
1141  return ret;
1142 }
1143 
1144 #ifdef DSCC4_POLLING
1145 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1146 {
1147  /* FIXME: it's gonna be easy (TM), for sure */
1148 }
1149 #endif /* DSCC4_POLLING */
1150 
1151 static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1152  struct net_device *dev)
1153 {
1154  struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1155  struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1156  struct TxFD *tx_fd;
1157  int next;
1158 
1159  next = dpriv->tx_current%TX_RING_SIZE;
1160  dpriv->tx_skbuff[next] = skb;
1161  tx_fd = dpriv->tx_fd + next;
1162  tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1163  tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1164  PCI_DMA_TODEVICE));
1165  tx_fd->complete = 0x00000000;
1166  tx_fd->jiffies = jiffies;
1167  mb();
1168 
1169 #ifdef DSCC4_POLLING
1170  spin_lock(&dpriv->lock);
1171  while (dscc4_tx_poll(dpriv, dev));
1172  spin_unlock(&dpriv->lock);
1173 #endif
1174 
1175  if (debug > 2)
1176  dscc4_tx_print(dev, dpriv, "Xmit");
1177  /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1178  if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1179  netif_stop_queue(dev);
1180 
1181  if (dscc4_tx_quiescent(dpriv, dev))
1182  dscc4_do_tx(dpriv, dev);
1183 
1184  return NETDEV_TX_OK;
1185 }
1186 
1187 static int dscc4_close(struct net_device *dev)
1188 {
1189  struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1190 
1191  del_timer_sync(&dpriv->timer);
1192  netif_stop_queue(dev);
1193 
1194  scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1195  scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1196  scc_writel(0xffffffff, dpriv, dev, IMR);
1197 
1198  dpriv->flags |= FakeReset;
1199 
1200  hdlc_close(dev);
1201 
1202  return 0;
1203 }
1204 
1205 static inline int dscc4_check_clock_ability(int port)
1206 {
1207  int ret = 0;
1208 
1209 #ifdef CONFIG_DSCC4_PCISYNC
1210  if (port >= 2)
1211  ret = -1;
1212 #endif
1213  return ret;
1214 }
1215 
1216 /*
1217  * DS1 p.137: "There are a total of 13 different clocking modes..."
1218  * ^^
1219  * Design choices:
1220  * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1221  * Clock mode 3b _should_ work but the testing seems to make this point
1222  * dubious (DIY testing requires setting CCR0 at 0x00000033).
1223  * This is supposed to provide least surprise "DTE like" behavior.
1224  * - if line rate is specified, clocks are assumed to be locally generated.
1225  * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1226  * between these it automagically done according on the required frequency
1227  * scaling. Of course some rounding may take place.
1228  * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1229  * appropriate external clocking device for testing.
1230  * - no time-slot/clock mode 5: shameless laziness.
1231  *
1232  * The clock signals wiring can be (is ?) manufacturer dependent. Good luck.
1233  *
1234  * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1235  * won't pass the init sequence. For example, straight back-to-back DTE without
1236  * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1237  * called.
1238  *
1239  * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1240  * DS0 for example)
1241  *
1242  * Clock mode related bits of CCR0:
1243  * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1244  * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1245  * | | +-------- High Speed: say 0
1246  * | | | +-+-+-- Clock Mode: 0..7
1247  * | | | | | |
1248  * -+-+-+-+-+-+-+-+
1249  * x|x|5|4|3|2|1|0| lower bits
1250  *
1251  * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1252  * +-+-+-+------------------ M (0..15)
1253  * | | | | +-+-+-+-+-+-- N (0..63)
1254  * 0 0 0 0 | | | | 0 0 | | | | | |
1255  * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1256  * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1257  *
1258  */
1259 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1260 {
1261  struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1262  int ret = -1;
1263  u32 brr;
1264 
1265  *state &= ~Ccr0ClockMask;
1266  if (*bps) { /* Clock generated - required for DCE */
1267  u32 n = 0, m = 0, divider;
1268  int xtal;
1269 
1270  xtal = dpriv->pci_priv->xtal_hz;
1271  if (!xtal)
1272  goto done;
1273  if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1274  goto done;
1275  divider = xtal / *bps;
1276  if (divider > BRR_DIVIDER_MAX) {
1277  divider >>= 4;
1278  *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1279  } else
1280  *state |= 0x00000037; /* Clock mode 7b (BRG) */
1281  if (divider >> 22) {
1282  n = 63;
1283  m = 15;
1284  } else if (divider) {
1285  /* Extraction of the 6 highest weighted bits */
1286  m = 0;
1287  while (0xffffffc0 & divider) {
1288  m++;
1289  divider >>= 1;
1290  }
1291  n = divider;
1292  }
1293  brr = (m << 8) | n;
1294  divider = n << m;
1295  if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1296  divider <<= 4;
1297  *bps = xtal / divider;
1298  } else {
1299  /*
1300  * External clock - DTE
1301  * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1302  * Nothing more to be done
1303  */
1304  brr = 0;
1305  }
1306  scc_writel(brr, dpriv, dev, BRR);
1307  ret = 0;
1308 done:
1309  return ret;
1310 }
1311 
1312 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1313 {
1314  sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1315  struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1316  const size_t size = sizeof(dpriv->settings);
1317  int ret = 0;
1318 
1319  if (dev->flags & IFF_UP)
1320  return -EBUSY;
1321 
1322  if (cmd != SIOCWANDEV)
1323  return -EOPNOTSUPP;
1324 
1325  switch(ifr->ifr_settings.type) {
1326  case IF_GET_IFACE:
1327  ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1328  if (ifr->ifr_settings.size < size) {
1329  ifr->ifr_settings.size = size; /* data size wanted */
1330  return -ENOBUFS;
1331  }
1332  if (copy_to_user(line, &dpriv->settings, size))
1333  return -EFAULT;
1334  break;
1335 
1336  case IF_IFACE_SYNC_SERIAL:
1337  if (!capable(CAP_NET_ADMIN))
1338  return -EPERM;
1339 
1340  if (dpriv->flags & FakeReset) {
1341  netdev_info(dev, "please reset the device before this command\n");
1342  return -EPERM;
1343  }
1344  if (copy_from_user(&dpriv->settings, line, size))
1345  return -EFAULT;
1346  ret = dscc4_set_iface(dpriv, dev);
1347  break;
1348 
1349  default:
1350  ret = hdlc_ioctl(dev, ifr, cmd);
1351  break;
1352  }
1353 
1354  return ret;
1355 }
1356 
1357 static int dscc4_match(const struct thingie *p, int value)
1358 {
1359  int i;
1360 
1361  for (i = 0; p[i].define != -1; i++) {
1362  if (value == p[i].define)
1363  break;
1364  }
1365  if (p[i].define == -1)
1366  return -1;
1367  else
1368  return i;
1369 }
1370 
1371 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1372  struct net_device *dev)
1373 {
1374  sync_serial_settings *settings = &dpriv->settings;
1375  int ret = -EOPNOTSUPP;
1376  u32 bps, state;
1377 
1378  bps = settings->clock_rate;
1379  state = scc_readl(dpriv, CCR0);
1380  if (dscc4_set_clock(dev, &bps, &state) < 0)
1381  goto done;
1382  if (bps) { /* DCE */
1383  printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1384  if (settings->clock_rate != bps) {
1385  printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1386  dev->name, settings->clock_rate, bps);
1387  settings->clock_rate = bps;
1388  }
1389  } else { /* DTE */
1390  state |= PowerUp | Vis;
1391  printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1392  }
1393  scc_writel(state, dpriv, dev, CCR0);
1394  ret = 0;
1395 done:
1396  return ret;
1397 }
1398 
1399 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1400  struct net_device *dev)
1401 {
1402  static const struct thingie encoding[] = {
1403  { ENCODING_NRZ, 0x00000000 },
1404  { ENCODING_NRZI, 0x00200000 },
1405  { ENCODING_FM_MARK, 0x00400000 },
1406  { ENCODING_FM_SPACE, 0x00500000 },
1407  { ENCODING_MANCHESTER, 0x00600000 },
1408  { -1, 0}
1409  };
1410  int i, ret = 0;
1411 
1412  i = dscc4_match(encoding, dpriv->encoding);
1413  if (i >= 0)
1414  scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1415  else
1416  ret = -EOPNOTSUPP;
1417  return ret;
1418 }
1419 
1420 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1421  struct net_device *dev)
1422 {
1423  sync_serial_settings *settings = &dpriv->settings;
1424  u32 state;
1425 
1426  state = scc_readl(dpriv, CCR1);
1427  if (settings->loopback) {
1428  printk(KERN_DEBUG "%s: loopback\n", dev->name);
1429  state |= 0x00000100;
1430  } else {
1431  printk(KERN_DEBUG "%s: normal\n", dev->name);
1432  state &= ~0x00000100;
1433  }
1434  scc_writel(state, dpriv, dev, CCR1);
1435  return 0;
1436 }
1437 
1438 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1439  struct net_device *dev)
1440 {
1441  static const struct thingie crc[] = {
1442  { PARITY_CRC16_PR0_CCITT, 0x00000010 },
1443  { PARITY_CRC16_PR1_CCITT, 0x00000000 },
1444  { PARITY_CRC32_PR0_CCITT, 0x00000011 },
1445  { PARITY_CRC32_PR1_CCITT, 0x00000001 }
1446  };
1447  int i, ret = 0;
1448 
1449  i = dscc4_match(crc, dpriv->parity);
1450  if (i >= 0)
1451  scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1452  else
1453  ret = -EOPNOTSUPP;
1454  return ret;
1455 }
1456 
1457 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1458 {
1459  struct {
1460  int (*action)(struct dscc4_dev_priv *, struct net_device *);
1461  } *p, do_setting[] = {
1462  { dscc4_encoding_setting },
1463  { dscc4_clock_setting },
1464  { dscc4_loopback_setting },
1465  { dscc4_crc_setting },
1466  { NULL }
1467  };
1468  int ret = 0;
1469 
1470  for (p = do_setting; p->action; p++) {
1471  if ((ret = p->action(dpriv, dev)) < 0)
1472  break;
1473  }
1474  return ret;
1475 }
1476 
1477 static irqreturn_t dscc4_irq(int irq, void *token)
1478 {
1479  struct dscc4_dev_priv *root = token;
1480  struct dscc4_pci_priv *priv;
1481  struct net_device *dev;
1482  void __iomem *ioaddr;
1483  u32 state;
1484  unsigned long flags;
1485  int i, handled = 1;
1486 
1487  priv = root->pci_priv;
1488  dev = dscc4_to_dev(root);
1489 
1490  spin_lock_irqsave(&priv->lock, flags);
1491 
1492  ioaddr = root->base_addr;
1493 
1494  state = readl(ioaddr + GSTAR);
1495  if (!state) {
1496  handled = 0;
1497  goto out;
1498  }
1499  if (debug > 3)
1500  printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1501  writel(state, ioaddr + GSTAR);
1502 
1503  if (state & Arf) {
1504  netdev_err(dev, "failure (Arf). Harass the maintainer\n");
1505  goto out;
1506  }
1507  state &= ~ArAck;
1508  if (state & Cfg) {
1509  if (debug > 0)
1510  printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1511  if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1512  netdev_err(dev, "CFG failed\n");
1513  if (!(state &= ~Cfg))
1514  goto out;
1515  }
1516  if (state & RxEvt) {
1517  i = dev_per_card - 1;
1518  do {
1519  dscc4_rx_irq(priv, root + i);
1520  } while (--i >= 0);
1521  state &= ~RxEvt;
1522  }
1523  if (state & TxEvt) {
1524  i = dev_per_card - 1;
1525  do {
1526  dscc4_tx_irq(priv, root + i);
1527  } while (--i >= 0);
1528  state &= ~TxEvt;
1529  }
1530 out:
1531  spin_unlock_irqrestore(&priv->lock, flags);
1532  return IRQ_RETVAL(handled);
1533 }
1534 
1535 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1536  struct dscc4_dev_priv *dpriv)
1537 {
1538  struct net_device *dev = dscc4_to_dev(dpriv);
1539  u32 state;
1540  int cur, loop = 0;
1541 
1542 try:
1543  cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1544  state = le32_to_cpu(dpriv->iqtx[cur]);
1545  if (!state) {
1546  if (debug > 4)
1547  printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1548  state);
1549  if ((debug > 1) && (loop > 1))
1550  printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1551  if (loop && netif_queue_stopped(dev))
1552  if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1553  netif_wake_queue(dev);
1554 
1555  if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1556  !dscc4_tx_done(dpriv))
1557  dscc4_do_tx(dpriv, dev);
1558  return;
1559  }
1560  loop++;
1561  dpriv->iqtx[cur] = 0;
1562  dpriv->iqtx_current++;
1563 
1564  if (state_check(state, dpriv, dev, "Tx") < 0)
1565  return;
1566 
1567  if (state & SccEvt) {
1568  if (state & Alls) {
1569  struct sk_buff *skb;
1570  struct TxFD *tx_fd;
1571 
1572  if (debug > 2)
1573  dscc4_tx_print(dev, dpriv, "Alls");
1574  /*
1575  * DataComplete can't be trusted for Tx completion.
1576  * Cf errata DS5 p.8
1577  */
1578  cur = dpriv->tx_dirty%TX_RING_SIZE;
1579  tx_fd = dpriv->tx_fd + cur;
1580  skb = dpriv->tx_skbuff[cur];
1581  if (skb) {
1582  pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1583  skb->len, PCI_DMA_TODEVICE);
1584  if (tx_fd->state & FrameEnd) {
1585  dev->stats.tx_packets++;
1586  dev->stats.tx_bytes += skb->len;
1587  }
1588  dev_kfree_skb_irq(skb);
1589  dpriv->tx_skbuff[cur] = NULL;
1590  ++dpriv->tx_dirty;
1591  } else {
1592  if (debug > 1)
1593  netdev_err(dev, "Tx: NULL skb %d\n",
1594  cur);
1595  }
1596  /*
1597  * If the driver ends sending crap on the wire, it
1598  * will be way easier to diagnose than the (not so)
1599  * random freeze induced by null sized tx frames.
1600  */
1601  tx_fd->data = tx_fd->next;
1602  tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1603  tx_fd->complete = 0x00000000;
1604  tx_fd->jiffies = 0;
1605 
1606  if (!(state &= ~Alls))
1607  goto try;
1608  }
1609  /*
1610  * Transmit Data Underrun
1611  */
1612  if (state & Xdu) {
1613  netdev_err(dev, "Tx Data Underrun. Ask maintainer\n");
1614  dpriv->flags = NeedIDT;
1615  /* Tx reset */
1616  writel(MTFi | Rdt,
1617  dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1618  writel(Action, dpriv->base_addr + GCMDR);
1619  return;
1620  }
1621  if (state & Cts) {
1622  netdev_info(dev, "CTS transition\n");
1623  if (!(state &= ~Cts)) /* DEBUG */
1624  goto try;
1625  }
1626  if (state & Xmr) {
1627  /* Frame needs to be sent again - FIXME */
1628  netdev_err(dev, "Tx ReTx. Ask maintainer\n");
1629  if (!(state &= ~Xmr)) /* DEBUG */
1630  goto try;
1631  }
1632  if (state & Xpr) {
1633  void __iomem *scc_addr;
1634  unsigned long ring;
1635  int i;
1636 
1637  /*
1638  * - the busy condition happens (sometimes);
1639  * - it doesn't seem to make the handler unreliable.
1640  */
1641  for (i = 1; i; i <<= 1) {
1642  if (!(scc_readl_star(dpriv, dev) & SccBusy))
1643  break;
1644  }
1645  if (!i)
1646  netdev_info(dev, "busy in irq\n");
1647 
1648  scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1649  /* Keep this order: IDT before IDR */
1650  if (dpriv->flags & NeedIDT) {
1651  if (debug > 2)
1652  dscc4_tx_print(dev, dpriv, "Xpr");
1653  ring = dpriv->tx_fd_dma +
1654  (dpriv->tx_dirty%TX_RING_SIZE)*
1655  sizeof(struct TxFD);
1656  writel(ring, scc_addr + CH0BTDA);
1657  dscc4_do_tx(dpriv, dev);
1658  writel(MTFi | Idt, scc_addr + CH0CFG);
1659  if (dscc4_do_action(dev, "IDT") < 0)
1660  goto err_xpr;
1661  dpriv->flags &= ~NeedIDT;
1662  }
1663  if (dpriv->flags & NeedIDR) {
1664  ring = dpriv->rx_fd_dma +
1665  (dpriv->rx_current%RX_RING_SIZE)*
1666  sizeof(struct RxFD);
1667  writel(ring, scc_addr + CH0BRDA);
1668  dscc4_rx_update(dpriv, dev);
1669  writel(MTFi | Idr, scc_addr + CH0CFG);
1670  if (dscc4_do_action(dev, "IDR") < 0)
1671  goto err_xpr;
1672  dpriv->flags &= ~NeedIDR;
1673  smp_wmb();
1674  /* Activate receiver and misc */
1675  scc_writel(0x08050008, dpriv, dev, CCR2);
1676  }
1677  err_xpr:
1678  if (!(state &= ~Xpr))
1679  goto try;
1680  }
1681  if (state & Cd) {
1682  if (debug > 0)
1683  netdev_info(dev, "CD transition\n");
1684  if (!(state &= ~Cd)) /* DEBUG */
1685  goto try;
1686  }
1687  } else { /* ! SccEvt */
1688  if (state & Hi) {
1689 #ifdef DSCC4_POLLING
1690  while (!dscc4_tx_poll(dpriv, dev));
1691 #endif
1692  netdev_info(dev, "Tx Hi\n");
1693  state &= ~Hi;
1694  }
1695  if (state & Err) {
1696  netdev_info(dev, "Tx ERR\n");
1697  dev->stats.tx_errors++;
1698  state &= ~Err;
1699  }
1700  }
1701  goto try;
1702 }
1703 
1704 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1705  struct dscc4_dev_priv *dpriv)
1706 {
1707  struct net_device *dev = dscc4_to_dev(dpriv);
1708  u32 state;
1709  int cur;
1710 
1711 try:
1712  cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1713  state = le32_to_cpu(dpriv->iqrx[cur]);
1714  if (!state)
1715  return;
1716  dpriv->iqrx[cur] = 0;
1717  dpriv->iqrx_current++;
1718 
1719  if (state_check(state, dpriv, dev, "Rx") < 0)
1720  return;
1721 
1722  if (!(state & SccEvt)){
1723  struct RxFD *rx_fd;
1724 
1725  if (debug > 4)
1726  printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1727  state);
1728  state &= 0x00ffffff;
1729  if (state & Err) { /* Hold or reset */
1730  printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1731  cur = dpriv->rx_current%RX_RING_SIZE;
1732  rx_fd = dpriv->rx_fd + cur;
1733  /*
1734  * Presume we're not facing a DMAC receiver reset.
1735  * As We use the rx size-filtering feature of the
1736  * DSCC4, the beginning of a new frame is waiting in
1737  * the rx fifo. I bet a Receive Data Overflow will
1738  * happen most of time but let's try and avoid it.
1739  * Btw (as for RDO) if one experiences ERR whereas
1740  * the system looks rather idle, there may be a
1741  * problem with latency. In this case, increasing
1742  * RX_RING_SIZE may help.
1743  */
1744  //while (dpriv->rx_needs_refill) {
1745  while (!(rx_fd->state1 & Hold)) {
1746  rx_fd++;
1747  cur++;
1748  if (!(cur = cur%RX_RING_SIZE))
1749  rx_fd = dpriv->rx_fd;
1750  }
1751  //dpriv->rx_needs_refill--;
1752  try_get_rx_skb(dpriv, dev);
1753  if (!rx_fd->data)
1754  goto try;
1755  rx_fd->state1 &= ~Hold;
1756  rx_fd->state2 = 0x00000000;
1757  rx_fd->end = cpu_to_le32(0xbabeface);
1758  //}
1759  goto try;
1760  }
1761  if (state & Fi) {
1762  dscc4_rx_skb(dpriv, dev);
1763  goto try;
1764  }
1765  if (state & Hi ) { /* HI bit */
1766  netdev_info(dev, "Rx Hi\n");
1767  state &= ~Hi;
1768  goto try;
1769  }
1770  } else { /* SccEvt */
1771  if (debug > 1) {
1772  //FIXME: verifier la presence de tous les evenements
1773  static struct {
1774  u32 mask;
1775  const char *irq_name;
1776  } evts[] = {
1777  { 0x00008000, "TIN"},
1778  { 0x00000020, "RSC"},
1779  { 0x00000010, "PCE"},
1780  { 0x00000008, "PLLA"},
1781  { 0, NULL}
1782  }, *evt;
1783 
1784  for (evt = evts; evt->irq_name; evt++) {
1785  if (state & evt->mask) {
1786  printk(KERN_DEBUG "%s: %s\n",
1787  dev->name, evt->irq_name);
1788  if (!(state &= ~evt->mask))
1789  goto try;
1790  }
1791  }
1792  } else {
1793  if (!(state &= ~0x0000c03c))
1794  goto try;
1795  }
1796  if (state & Cts) {
1797  netdev_info(dev, "CTS transition\n");
1798  if (!(state &= ~Cts)) /* DEBUG */
1799  goto try;
1800  }
1801  /*
1802  * Receive Data Overflow (FIXME: fscked)
1803  */
1804  if (state & Rdo) {
1805  struct RxFD *rx_fd;
1806  void __iomem *scc_addr;
1807  int cur;
1808 
1809  //if (debug)
1810  // dscc4_rx_dump(dpriv);
1811  scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1812 
1813  scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1814  /*
1815  * This has no effect. Why ?
1816  * ORed with TxSccRes, one sees the CFG ack (for
1817  * the TX part only).
1818  */
1819  scc_writel(RxSccRes, dpriv, dev, CMDR);
1820  dpriv->flags |= RdoSet;
1821 
1822  /*
1823  * Let's try and save something in the received data.
1824  * rx_current must be incremented at least once to
1825  * avoid HOLD in the BRDA-to-be-pointed desc.
1826  */
1827  do {
1828  cur = dpriv->rx_current++%RX_RING_SIZE;
1829  rx_fd = dpriv->rx_fd + cur;
1830  if (!(rx_fd->state2 & DataComplete))
1831  break;
1832  if (rx_fd->state2 & FrameAborted) {
1833  dev->stats.rx_over_errors++;
1834  rx_fd->state1 |= Hold;
1835  rx_fd->state2 = 0x00000000;
1836  rx_fd->end = cpu_to_le32(0xbabeface);
1837  } else
1838  dscc4_rx_skb(dpriv, dev);
1839  } while (1);
1840 
1841  if (debug > 0) {
1842  if (dpriv->flags & RdoSet)
1844  "%s: no RDO in Rx data\n", DRV_NAME);
1845  }
1846 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1847  /*
1848  * FIXME: must the reset be this violent ?
1849  */
1850 #warning "FIXME: CH0BRDA"
1851  writel(dpriv->rx_fd_dma +
1852  (dpriv->rx_current%RX_RING_SIZE)*
1853  sizeof(struct RxFD), scc_addr + CH0BRDA);
1854  writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1855  if (dscc4_do_action(dev, "RDR") < 0) {
1856  netdev_err(dev, "RDO recovery failed(RDR)\n");
1857  goto rdo_end;
1858  }
1859  writel(MTFi|Idr, scc_addr + CH0CFG);
1860  if (dscc4_do_action(dev, "IDR") < 0) {
1861  netdev_err(dev, "RDO recovery failed(IDR)\n");
1862  goto rdo_end;
1863  }
1864  rdo_end:
1865 #endif
1866  scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1867  goto try;
1868  }
1869  if (state & Cd) {
1870  netdev_info(dev, "CD transition\n");
1871  if (!(state &= ~Cd)) /* DEBUG */
1872  goto try;
1873  }
1874  if (state & Flex) {
1875  printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1876  if (!(state &= ~Flex))
1877  goto try;
1878  }
1879  }
1880 }
1881 
1882 /*
1883  * I had expected the following to work for the first descriptor
1884  * (tx_fd->state = 0xc0000000)
1885  * - Hold=1 (don't try and branch to the next descripto);
1886  * - No=0 (I want an empty data section, i.e. size=0);
1887  * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1888  * It failed and locked solid. Thus the introduction of a dummy skb.
1889  * Problem is acknowledged in errata sheet DS5. Joy :o/
1890  */
1891 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1892 {
1893  struct sk_buff *skb;
1894 
1895  skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1896  if (skb) {
1897  int last = dpriv->tx_dirty%TX_RING_SIZE;
1898  struct TxFD *tx_fd = dpriv->tx_fd + last;
1899 
1900  skb->len = DUMMY_SKB_SIZE;
1901  skb_copy_to_linear_data(skb, version,
1904  tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1905  skb->data, DUMMY_SKB_SIZE,
1906  PCI_DMA_TODEVICE));
1907  dpriv->tx_skbuff[last] = skb;
1908  }
1909  return skb;
1910 }
1911 
1912 static int dscc4_init_ring(struct net_device *dev)
1913 {
1914  struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1915  struct pci_dev *pdev = dpriv->pci_priv->pdev;
1916  struct TxFD *tx_fd;
1917  struct RxFD *rx_fd;
1918  void *ring;
1919  int i;
1920 
1921  ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1922  if (!ring)
1923  goto err_out;
1924  dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1925 
1926  ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1927  if (!ring)
1928  goto err_free_dma_rx;
1929  dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1930 
1931  memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1932  dpriv->tx_dirty = 0xffffffff;
1933  i = dpriv->tx_current = 0;
1934  do {
1935  tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1936  tx_fd->complete = 0x00000000;
1937  /* FIXME: NULL should be ok - to be tried */
1938  tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1939  (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1940  (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1941  } while (i < TX_RING_SIZE);
1942 
1943  if (!dscc4_init_dummy_skb(dpriv))
1944  goto err_free_dma_tx;
1945 
1946  memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1947  i = dpriv->rx_dirty = dpriv->rx_current = 0;
1948  do {
1949  /* size set by the host. Multiple of 4 bytes please */
1950  rx_fd->state1 = HiDesc;
1951  rx_fd->state2 = 0x00000000;
1952  rx_fd->end = cpu_to_le32(0xbabeface);
1953  rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1954  // FIXME: return value verifiee mais traitement suspect
1955  if (try_get_rx_skb(dpriv, dev) >= 0)
1956  dpriv->rx_dirty++;
1957  (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1958  (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1959  } while (i < RX_RING_SIZE);
1960 
1961  return 0;
1962 
1963 err_free_dma_tx:
1964  pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1965 err_free_dma_rx:
1966  pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1967 err_out:
1968  return -ENOMEM;
1969 }
1970 
1971 static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1972 {
1973  struct dscc4_pci_priv *ppriv;
1974  struct dscc4_dev_priv *root;
1975  void __iomem *ioaddr;
1976  int i;
1977 
1978  ppriv = pci_get_drvdata(pdev);
1979  root = ppriv->root;
1980 
1981  ioaddr = root->base_addr;
1982 
1983  dscc4_pci_reset(pdev, ioaddr);
1984 
1985  free_irq(pdev->irq, root);
1986  pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1987  ppriv->iqcfg_dma);
1988  for (i = 0; i < dev_per_card; i++) {
1989  struct dscc4_dev_priv *dpriv = root + i;
1990 
1991  dscc4_release_ring(dpriv);
1992  pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1993  dpriv->iqrx, dpriv->iqrx_dma);
1994  pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1995  dpriv->iqtx, dpriv->iqtx_dma);
1996  }
1997 
1998  dscc4_free1(pdev);
1999 
2000  iounmap(ioaddr);
2001 
2002  pci_release_region(pdev, 1);
2003  pci_release_region(pdev, 0);
2004 
2005  pci_disable_device(pdev);
2006 }
2007 
2008 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2009  unsigned short parity)
2010 {
2011  struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2012 
2013  if (encoding != ENCODING_NRZ &&
2014  encoding != ENCODING_NRZI &&
2015  encoding != ENCODING_FM_MARK &&
2016  encoding != ENCODING_FM_SPACE &&
2017  encoding != ENCODING_MANCHESTER)
2018  return -EINVAL;
2019 
2020  if (parity != PARITY_NONE &&
2021  parity != PARITY_CRC16_PR0_CCITT &&
2022  parity != PARITY_CRC16_PR1_CCITT &&
2023  parity != PARITY_CRC32_PR0_CCITT &&
2024  parity != PARITY_CRC32_PR1_CCITT)
2025  return -EINVAL;
2026 
2027  dpriv->encoding = encoding;
2028  dpriv->parity = parity;
2029  return 0;
2030 }
2031 
2032 #ifndef MODULE
2033 static int __init dscc4_setup(char *str)
2034 {
2035  int *args[] = { &debug, &quartz, NULL }, **p = args;
2036 
2037  while (*p && (get_option(&str, *p) == 2))
2038  p++;
2039  return 1;
2040 }
2041 
2042 __setup("dscc4.setup=", dscc4_setup);
2043 #endif
2044 
2045 static DEFINE_PCI_DEVICE_TABLE(dscc4_pci_tbl) = {
2047  PCI_ANY_ID, PCI_ANY_ID, },
2048  { 0,}
2049 };
2050 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2051 
2052 static struct pci_driver dscc4_driver = {
2053  .name = DRV_NAME,
2054  .id_table = dscc4_pci_tbl,
2055  .probe = dscc4_init_one,
2056  .remove = __devexit_p(dscc4_remove_one),
2057 };
2058 
2059 module_pci_driver(dscc4_driver);