Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
e1000_ethtool.c
Go to the documentation of this file.
1 /*******************************************************************************
2 
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2006 Intel Corporation.
5 
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9 
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  more details.
14 
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21 
22  Contact Information:
23  Linux NICS <[email protected]>
24  e1000-devel Mailing List <[email protected]>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33 
35 
36 struct e1000_stats {
38  int type;
41 };
42 
43 #define E1000_STAT(m) E1000_STATS, \
44  sizeof(((struct e1000_adapter *)0)->m), \
45  offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47  sizeof(((struct net_device *)0)->m), \
48  offsetof(struct net_device, m)
49 
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51  { "rx_packets", E1000_STAT(stats.gprc) },
52  { "tx_packets", E1000_STAT(stats.gptc) },
53  { "rx_bytes", E1000_STAT(stats.gorcl) },
54  { "tx_bytes", E1000_STAT(stats.gotcl) },
55  { "rx_broadcast", E1000_STAT(stats.bprc) },
56  { "tx_broadcast", E1000_STAT(stats.bptc) },
57  { "rx_multicast", E1000_STAT(stats.mprc) },
58  { "tx_multicast", E1000_STAT(stats.mptc) },
59  { "rx_errors", E1000_STAT(stats.rxerrc) },
60  { "tx_errors", E1000_STAT(stats.txerrc) },
61  { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62  { "multicast", E1000_STAT(stats.mprc) },
63  { "collisions", E1000_STAT(stats.colc) },
64  { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65  { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66  { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67  { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68  { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69  { "rx_missed_errors", E1000_STAT(stats.mpc) },
70  { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71  { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72  { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73  { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74  { "tx_window_errors", E1000_STAT(stats.latecol) },
75  { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76  { "tx_deferred_ok", E1000_STAT(stats.dc) },
77  { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78  { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79  { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80  { "tx_restart_queue", E1000_STAT(restart_queue) },
81  { "rx_long_length_errors", E1000_STAT(stats.roc) },
82  { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83  { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84  { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85  { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86  { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87  { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88  { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89  { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90  { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91  { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92  { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93  { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94  { "tx_smbus", E1000_STAT(stats.mgptc) },
95  { "rx_smbus", E1000_STAT(stats.mgprc) },
96  { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98 
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103  "Register test (offline)", "Eeprom test (offline)",
104  "Interrupt test (offline)", "Loopback test (offline)",
105  "Link test (on/offline)"
106 };
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
108 
109 static int e1000_get_settings(struct net_device *netdev,
110  struct ethtool_cmd *ecmd)
111 {
112  struct e1000_adapter *adapter = netdev_priv(netdev);
113  struct e1000_hw *hw = &adapter->hw;
114 
115  if (hw->media_type == e1000_media_type_copper) {
116 
123  SUPPORTED_TP);
124  ecmd->advertising = ADVERTISED_TP;
125 
126  if (hw->autoneg == 1) {
128  /* the e1000 autoneg seems to match ethtool nicely */
129  ecmd->advertising |= hw->autoneg_advertised;
130  }
131 
132  ecmd->port = PORT_TP;
133  ecmd->phy_address = hw->phy_addr;
134 
135  if (hw->mac_type == e1000_82543)
136  ecmd->transceiver = XCVR_EXTERNAL;
137  else
138  ecmd->transceiver = XCVR_INTERNAL;
139 
140  } else {
144 
148 
149  ecmd->port = PORT_FIBRE;
150 
151  if (hw->mac_type >= e1000_82545)
152  ecmd->transceiver = XCVR_INTERNAL;
153  else
154  ecmd->transceiver = XCVR_EXTERNAL;
155  }
156 
157  if (er32(STATUS) & E1000_STATUS_LU) {
158 
160  &adapter->link_duplex);
161  ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162 
163  /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164  * and HALF_DUPLEX != DUPLEX_HALF */
165 
166  if (adapter->link_duplex == FULL_DUPLEX)
167  ecmd->duplex = DUPLEX_FULL;
168  else
169  ecmd->duplex = DUPLEX_HALF;
170  } else {
171  ethtool_cmd_speed_set(ecmd, -1);
172  ecmd->duplex = -1;
173  }
174 
175  ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
177 
178  /* MDI-X => 1; MDI => 0 */
179  if ((hw->media_type == e1000_media_type_copper) &&
180  netif_carrier_ok(netdev))
181  ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
182  ETH_TP_MDI_X :
183  ETH_TP_MDI);
184  else
186 
187  if (hw->mdix == AUTO_ALL_MODES)
189  else
190  ecmd->eth_tp_mdix_ctrl = hw->mdix;
191  return 0;
192 }
193 
194 static int e1000_set_settings(struct net_device *netdev,
195  struct ethtool_cmd *ecmd)
196 {
197  struct e1000_adapter *adapter = netdev_priv(netdev);
198  struct e1000_hw *hw = &adapter->hw;
199 
200  /*
201  * MDI setting is only allowed when autoneg enabled because
202  * some hardware doesn't allow MDI setting when speed or
203  * duplex is forced.
204  */
205  if (ecmd->eth_tp_mdix_ctrl) {
207  return -EOPNOTSUPP;
208 
209  if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
210  (ecmd->autoneg != AUTONEG_ENABLE)) {
211  e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
212  return -EINVAL;
213  }
214  }
215 
216  while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
217  msleep(1);
218 
219  if (ecmd->autoneg == AUTONEG_ENABLE) {
220  hw->autoneg = 1;
225  else
226  hw->autoneg_advertised = ecmd->advertising |
227  ADVERTISED_TP |
229  ecmd->advertising = hw->autoneg_advertised;
230  } else {
231  u32 speed = ethtool_cmd_speed(ecmd);
232  /* calling this overrides forced MDI setting */
233  if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
234  clear_bit(__E1000_RESETTING, &adapter->flags);
235  return -EINVAL;
236  }
237  }
238 
239  /* MDI-X => 2; MDI => 1; Auto => 3 */
240  if (ecmd->eth_tp_mdix_ctrl) {
241  if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
242  hw->mdix = AUTO_ALL_MODES;
243  else
244  hw->mdix = ecmd->eth_tp_mdix_ctrl;
245  }
246 
247  /* reset the link */
248 
249  if (netif_running(adapter->netdev)) {
250  e1000_down(adapter);
251  e1000_up(adapter);
252  } else
253  e1000_reset(adapter);
254 
255  clear_bit(__E1000_RESETTING, &adapter->flags);
256  return 0;
257 }
258 
259 static u32 e1000_get_link(struct net_device *netdev)
260 {
261  struct e1000_adapter *adapter = netdev_priv(netdev);
262 
263  /*
264  * If the link is not reported up to netdev, interrupts are disabled,
265  * and so the physical link state may have changed since we last
266  * looked. Set get_link_status to make sure that the true link
267  * state is interrogated, rather than pulling a cached and possibly
268  * stale link state from the driver.
269  */
270  if (!netif_carrier_ok(netdev))
271  adapter->hw.get_link_status = 1;
272 
273  return e1000_has_link(adapter);
274 }
275 
276 static void e1000_get_pauseparam(struct net_device *netdev,
277  struct ethtool_pauseparam *pause)
278 {
279  struct e1000_adapter *adapter = netdev_priv(netdev);
280  struct e1000_hw *hw = &adapter->hw;
281 
282  pause->autoneg =
284 
285  if (hw->fc == E1000_FC_RX_PAUSE)
286  pause->rx_pause = 1;
287  else if (hw->fc == E1000_FC_TX_PAUSE)
288  pause->tx_pause = 1;
289  else if (hw->fc == E1000_FC_FULL) {
290  pause->rx_pause = 1;
291  pause->tx_pause = 1;
292  }
293 }
294 
295 static int e1000_set_pauseparam(struct net_device *netdev,
296  struct ethtool_pauseparam *pause)
297 {
298  struct e1000_adapter *adapter = netdev_priv(netdev);
299  struct e1000_hw *hw = &adapter->hw;
300  int retval = 0;
301 
302  adapter->fc_autoneg = pause->autoneg;
303 
304  while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
305  msleep(1);
306 
307  if (pause->rx_pause && pause->tx_pause)
308  hw->fc = E1000_FC_FULL;
309  else if (pause->rx_pause && !pause->tx_pause)
310  hw->fc = E1000_FC_RX_PAUSE;
311  else if (!pause->rx_pause && pause->tx_pause)
312  hw->fc = E1000_FC_TX_PAUSE;
313  else if (!pause->rx_pause && !pause->tx_pause)
314  hw->fc = E1000_FC_NONE;
315 
316  hw->original_fc = hw->fc;
317 
318  if (adapter->fc_autoneg == AUTONEG_ENABLE) {
319  if (netif_running(adapter->netdev)) {
320  e1000_down(adapter);
321  e1000_up(adapter);
322  } else
323  e1000_reset(adapter);
324  } else
325  retval = ((hw->media_type == e1000_media_type_fiber) ?
327 
328  clear_bit(__E1000_RESETTING, &adapter->flags);
329  return retval;
330 }
331 
332 static u32 e1000_get_msglevel(struct net_device *netdev)
333 {
334  struct e1000_adapter *adapter = netdev_priv(netdev);
335  return adapter->msg_enable;
336 }
337 
338 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
339 {
340  struct e1000_adapter *adapter = netdev_priv(netdev);
341  adapter->msg_enable = data;
342 }
343 
344 static int e1000_get_regs_len(struct net_device *netdev)
345 {
346 #define E1000_REGS_LEN 32
347  return E1000_REGS_LEN * sizeof(u32);
348 }
349 
350 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
351  void *p)
352 {
353  struct e1000_adapter *adapter = netdev_priv(netdev);
354  struct e1000_hw *hw = &adapter->hw;
355  u32 *regs_buff = p;
356  u16 phy_data;
357 
358  memset(p, 0, E1000_REGS_LEN * sizeof(u32));
359 
360  regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
361 
362  regs_buff[0] = er32(CTRL);
363  regs_buff[1] = er32(STATUS);
364 
365  regs_buff[2] = er32(RCTL);
366  regs_buff[3] = er32(RDLEN);
367  regs_buff[4] = er32(RDH);
368  regs_buff[5] = er32(RDT);
369  regs_buff[6] = er32(RDTR);
370 
371  regs_buff[7] = er32(TCTL);
372  regs_buff[8] = er32(TDLEN);
373  regs_buff[9] = er32(TDH);
374  regs_buff[10] = er32(TDT);
375  regs_buff[11] = er32(TIDV);
376 
377  regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
378  if (hw->phy_type == e1000_phy_igp) {
382  IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383  regs_buff[13] = (u32)phy_data; /* cable length */
387  IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388  regs_buff[14] = (u32)phy_data; /* cable length */
392  IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393  regs_buff[15] = (u32)phy_data; /* cable length */
397  IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398  regs_buff[16] = (u32)phy_data; /* cable length */
399  regs_buff[17] = 0; /* extended 10bt distance (not needed) */
402  IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403  regs_buff[18] = (u32)phy_data; /* cable polarity */
407  IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408  regs_buff[19] = (u32)phy_data; /* cable polarity */
409  regs_buff[20] = 0; /* polarity correction enabled (always) */
410  regs_buff[22] = 0; /* phy receive errors (unavailable) */
411  regs_buff[23] = regs_buff[18]; /* mdix mode */
413  } else {
415  regs_buff[13] = (u32)phy_data; /* cable length */
416  regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
417  regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
418  regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
420  regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
421  regs_buff[18] = regs_buff[13]; /* cable polarity */
422  regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
423  regs_buff[20] = regs_buff[17]; /* polarity correction */
424  /* phy receive errors */
425  regs_buff[22] = adapter->phy_stats.receive_errors;
426  regs_buff[23] = regs_buff[13]; /* mdix mode */
427  }
428  regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
429  e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
430  regs_buff[24] = (u32)phy_data; /* phy local receiver status */
431  regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
432  if (hw->mac_type >= e1000_82540 &&
434  regs_buff[26] = er32(MANC);
435  }
436 }
437 
438 static int e1000_get_eeprom_len(struct net_device *netdev)
439 {
440  struct e1000_adapter *adapter = netdev_priv(netdev);
441  struct e1000_hw *hw = &adapter->hw;
442 
443  return hw->eeprom.word_size * 2;
444 }
445 
446 static int e1000_get_eeprom(struct net_device *netdev,
447  struct ethtool_eeprom *eeprom, u8 *bytes)
448 {
449  struct e1000_adapter *adapter = netdev_priv(netdev);
450  struct e1000_hw *hw = &adapter->hw;
451  u16 *eeprom_buff;
452  int first_word, last_word;
453  int ret_val = 0;
454  u16 i;
455 
456  if (eeprom->len == 0)
457  return -EINVAL;
458 
459  eeprom->magic = hw->vendor_id | (hw->device_id << 16);
460 
461  first_word = eeprom->offset >> 1;
462  last_word = (eeprom->offset + eeprom->len - 1) >> 1;
463 
464  eeprom_buff = kmalloc(sizeof(u16) *
465  (last_word - first_word + 1), GFP_KERNEL);
466  if (!eeprom_buff)
467  return -ENOMEM;
468 
469  if (hw->eeprom.type == e1000_eeprom_spi)
470  ret_val = e1000_read_eeprom(hw, first_word,
471  last_word - first_word + 1,
472  eeprom_buff);
473  else {
474  for (i = 0; i < last_word - first_word + 1; i++) {
475  ret_val = e1000_read_eeprom(hw, first_word + i, 1,
476  &eeprom_buff[i]);
477  if (ret_val)
478  break;
479  }
480  }
481 
482  /* Device's eeprom is always little-endian, word addressable */
483  for (i = 0; i < last_word - first_word + 1; i++)
484  le16_to_cpus(&eeprom_buff[i]);
485 
486  memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
487  eeprom->len);
488  kfree(eeprom_buff);
489 
490  return ret_val;
491 }
492 
493 static int e1000_set_eeprom(struct net_device *netdev,
494  struct ethtool_eeprom *eeprom, u8 *bytes)
495 {
496  struct e1000_adapter *adapter = netdev_priv(netdev);
497  struct e1000_hw *hw = &adapter->hw;
498  u16 *eeprom_buff;
499  void *ptr;
500  int max_len, first_word, last_word, ret_val = 0;
501  u16 i;
502 
503  if (eeprom->len == 0)
504  return -EOPNOTSUPP;
505 
506  if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
507  return -EFAULT;
508 
509  max_len = hw->eeprom.word_size * 2;
510 
511  first_word = eeprom->offset >> 1;
512  last_word = (eeprom->offset + eeprom->len - 1) >> 1;
513  eeprom_buff = kmalloc(max_len, GFP_KERNEL);
514  if (!eeprom_buff)
515  return -ENOMEM;
516 
517  ptr = (void *)eeprom_buff;
518 
519  if (eeprom->offset & 1) {
520  /* need read/modify/write of first changed EEPROM word */
521  /* only the second byte of the word is being modified */
522  ret_val = e1000_read_eeprom(hw, first_word, 1,
523  &eeprom_buff[0]);
524  ptr++;
525  }
526  if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
527  /* need read/modify/write of last changed EEPROM word */
528  /* only the first byte of the word is being modified */
529  ret_val = e1000_read_eeprom(hw, last_word, 1,
530  &eeprom_buff[last_word - first_word]);
531  }
532 
533  /* Device's eeprom is always little-endian, word addressable */
534  for (i = 0; i < last_word - first_word + 1; i++)
535  le16_to_cpus(&eeprom_buff[i]);
536 
537  memcpy(ptr, bytes, eeprom->len);
538 
539  for (i = 0; i < last_word - first_word + 1; i++)
540  eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
541 
542  ret_val = e1000_write_eeprom(hw, first_word,
543  last_word - first_word + 1, eeprom_buff);
544 
545  /* Update the checksum over the first part of the EEPROM if needed */
546  if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
548 
549  kfree(eeprom_buff);
550  return ret_val;
551 }
552 
553 static void e1000_get_drvinfo(struct net_device *netdev,
554  struct ethtool_drvinfo *drvinfo)
555 {
556  struct e1000_adapter *adapter = netdev_priv(netdev);
557 
558  strlcpy(drvinfo->driver, e1000_driver_name,
559  sizeof(drvinfo->driver));
561  sizeof(drvinfo->version));
562 
563  strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
564  sizeof(drvinfo->bus_info));
565  drvinfo->regdump_len = e1000_get_regs_len(netdev);
566  drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
567 }
568 
569 static void e1000_get_ringparam(struct net_device *netdev,
570  struct ethtool_ringparam *ring)
571 {
572  struct e1000_adapter *adapter = netdev_priv(netdev);
573  struct e1000_hw *hw = &adapter->hw;
575  struct e1000_tx_ring *txdr = adapter->tx_ring;
576  struct e1000_rx_ring *rxdr = adapter->rx_ring;
577 
578  ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
580  ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
582  ring->rx_pending = rxdr->count;
583  ring->tx_pending = txdr->count;
584 }
585 
586 static int e1000_set_ringparam(struct net_device *netdev,
587  struct ethtool_ringparam *ring)
588 {
589  struct e1000_adapter *adapter = netdev_priv(netdev);
590  struct e1000_hw *hw = &adapter->hw;
592  struct e1000_tx_ring *txdr, *tx_old;
593  struct e1000_rx_ring *rxdr, *rx_old;
594  int i, err;
595 
596  if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
597  return -EINVAL;
598 
599  while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
600  msleep(1);
601 
602  if (netif_running(adapter->netdev))
603  e1000_down(adapter);
604 
605  tx_old = adapter->tx_ring;
606  rx_old = adapter->rx_ring;
607 
608  err = -ENOMEM;
609  txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
610  if (!txdr)
611  goto err_alloc_tx;
612 
613  rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
614  if (!rxdr)
615  goto err_alloc_rx;
616 
617  adapter->tx_ring = txdr;
618  adapter->rx_ring = rxdr;
619 
620  rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
621  rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
624 
625  txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
626  txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
629 
630  for (i = 0; i < adapter->num_tx_queues; i++)
631  txdr[i].count = txdr->count;
632  for (i = 0; i < adapter->num_rx_queues; i++)
633  rxdr[i].count = rxdr->count;
634 
635  if (netif_running(adapter->netdev)) {
636  /* Try to get new resources before deleting old */
637  err = e1000_setup_all_rx_resources(adapter);
638  if (err)
639  goto err_setup_rx;
640  err = e1000_setup_all_tx_resources(adapter);
641  if (err)
642  goto err_setup_tx;
643 
644  /* save the new, restore the old in order to free it,
645  * then restore the new back again */
646 
647  adapter->rx_ring = rx_old;
648  adapter->tx_ring = tx_old;
651  kfree(tx_old);
652  kfree(rx_old);
653  adapter->rx_ring = rxdr;
654  adapter->tx_ring = txdr;
655  err = e1000_up(adapter);
656  if (err)
657  goto err_setup;
658  }
659 
660  clear_bit(__E1000_RESETTING, &adapter->flags);
661  return 0;
662 err_setup_tx:
664 err_setup_rx:
665  adapter->rx_ring = rx_old;
666  adapter->tx_ring = tx_old;
667  kfree(rxdr);
668 err_alloc_rx:
669  kfree(txdr);
670 err_alloc_tx:
671  e1000_up(adapter);
672 err_setup:
673  clear_bit(__E1000_RESETTING, &adapter->flags);
674  return err;
675 }
676 
677 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
678  u32 mask, u32 write)
679 {
680  struct e1000_hw *hw = &adapter->hw;
681  static const u32 test[] =
682  {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
683  u8 __iomem *address = hw->hw_addr + reg;
684  u32 read;
685  int i;
686 
687  for (i = 0; i < ARRAY_SIZE(test); i++) {
688  writel(write & test[i], address);
689  read = readl(address);
690  if (read != (write & test[i] & mask)) {
691  e_err(drv, "pattern test reg %04X failed: "
692  "got 0x%08X expected 0x%08X\n",
693  reg, read, (write & test[i] & mask));
694  *data = reg;
695  return true;
696  }
697  }
698  return false;
699 }
700 
701 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
702  u32 mask, u32 write)
703 {
704  struct e1000_hw *hw = &adapter->hw;
705  u8 __iomem *address = hw->hw_addr + reg;
706  u32 read;
707 
708  writel(write & mask, address);
709  read = readl(address);
710  if ((read & mask) != (write & mask)) {
711  e_err(drv, "set/check reg %04X test failed: "
712  "got 0x%08X expected 0x%08X\n",
713  reg, (read & mask), (write & mask));
714  *data = reg;
715  return true;
716  }
717  return false;
718 }
719 
720 #define REG_PATTERN_TEST(reg, mask, write) \
721  do { \
722  if (reg_pattern_test(adapter, data, \
723  (hw->mac_type >= e1000_82543) \
724  ? E1000_##reg : E1000_82542_##reg, \
725  mask, write)) \
726  return 1; \
727  } while (0)
728 
729 #define REG_SET_AND_CHECK(reg, mask, write) \
730  do { \
731  if (reg_set_and_check(adapter, data, \
732  (hw->mac_type >= e1000_82543) \
733  ? E1000_##reg : E1000_82542_##reg, \
734  mask, write)) \
735  return 1; \
736  } while (0)
737 
738 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
739 {
740  u32 value, before, after;
741  u32 i, toggle;
742  struct e1000_hw *hw = &adapter->hw;
743 
744  /* The status register is Read Only, so a write should fail.
745  * Some bits that get toggled are ignored.
746  */
747 
748  /* there are several bits on newer hardware that are r/w */
749  toggle = 0xFFFFF833;
750 
751  before = er32(STATUS);
752  value = (er32(STATUS) & toggle);
753  ew32(STATUS, toggle);
754  after = er32(STATUS) & toggle;
755  if (value != after) {
756  e_err(drv, "failed STATUS register test got: "
757  "0x%08X expected: 0x%08X\n", after, value);
758  *data = 1;
759  return 1;
760  }
761  /* restore previous status */
762  ew32(STATUS, before);
763 
764  REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
765  REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
766  REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
767  REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
768 
769  REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
770  REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
771  REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
772  REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
773  REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
774  REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
775  REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
776  REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
777  REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
778  REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
779 
780  REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
781 
782  before = 0x06DFB3FE;
783  REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
784  REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
785 
786  if (hw->mac_type >= e1000_82543) {
787 
788  REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
789  REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
790  REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
791  REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
792  REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
793  value = E1000_RAR_ENTRIES;
794  for (i = 0; i < value; i++) {
795  REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
796  0xFFFFFFFF);
797  }
798 
799  } else {
800 
801  REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
802  REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
803  REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
804  REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
805 
806  }
807 
808  value = E1000_MC_TBL_SIZE;
809  for (i = 0; i < value; i++)
810  REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
811 
812  *data = 0;
813  return 0;
814 }
815 
816 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
817 {
818  struct e1000_hw *hw = &adapter->hw;
819  u16 temp;
820  u16 checksum = 0;
821  u16 i;
822 
823  *data = 0;
824  /* Read and add up the contents of the EEPROM */
825  for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
826  if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
827  *data = 1;
828  break;
829  }
830  checksum += temp;
831  }
832 
833  /* If Checksum is not Correct return error else test passed */
834  if ((checksum != (u16)EEPROM_SUM) && !(*data))
835  *data = 2;
836 
837  return *data;
838 }
839 
840 static irqreturn_t e1000_test_intr(int irq, void *data)
841 {
842  struct net_device *netdev = (struct net_device *)data;
843  struct e1000_adapter *adapter = netdev_priv(netdev);
844  struct e1000_hw *hw = &adapter->hw;
845 
846  adapter->test_icr |= er32(ICR);
847 
848  return IRQ_HANDLED;
849 }
850 
851 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
852 {
853  struct net_device *netdev = adapter->netdev;
854  u32 mask, i = 0;
855  bool shared_int = true;
856  u32 irq = adapter->pdev->irq;
857  struct e1000_hw *hw = &adapter->hw;
858 
859  *data = 0;
860 
861  /* NOTE: we don't test MSI interrupts here, yet */
862  /* Hook up test interrupt handler just for this test */
863  if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
864  netdev))
865  shared_int = false;
866  else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
867  netdev->name, netdev)) {
868  *data = 1;
869  return -1;
870  }
871  e_info(hw, "testing %s interrupt\n", (shared_int ?
872  "shared" : "unshared"));
873 
874  /* Disable all the interrupts */
875  ew32(IMC, 0xFFFFFFFF);
877  msleep(10);
878 
879  /* Test each interrupt */
880  for (; i < 10; i++) {
881 
882  /* Interrupt to test */
883  mask = 1 << i;
884 
885  if (!shared_int) {
886  /* Disable the interrupt to be reported in
887  * the cause register and then force the same
888  * interrupt and see if one gets posted. If
889  * an interrupt was posted to the bus, the
890  * test failed.
891  */
892  adapter->test_icr = 0;
893  ew32(IMC, mask);
894  ew32(ICS, mask);
896  msleep(10);
897 
898  if (adapter->test_icr & mask) {
899  *data = 3;
900  break;
901  }
902  }
903 
904  /* Enable the interrupt to be reported in
905  * the cause register and then force the same
906  * interrupt and see if one gets posted. If
907  * an interrupt was not posted to the bus, the
908  * test failed.
909  */
910  adapter->test_icr = 0;
911  ew32(IMS, mask);
912  ew32(ICS, mask);
914  msleep(10);
915 
916  if (!(adapter->test_icr & mask)) {
917  *data = 4;
918  break;
919  }
920 
921  if (!shared_int) {
922  /* Disable the other interrupts to be reported in
923  * the cause register and then force the other
924  * interrupts and see if any get posted. If
925  * an interrupt was posted to the bus, the
926  * test failed.
927  */
928  adapter->test_icr = 0;
929  ew32(IMC, ~mask & 0x00007FFF);
930  ew32(ICS, ~mask & 0x00007FFF);
932  msleep(10);
933 
934  if (adapter->test_icr) {
935  *data = 5;
936  break;
937  }
938  }
939  }
940 
941  /* Disable all the interrupts */
942  ew32(IMC, 0xFFFFFFFF);
944  msleep(10);
945 
946  /* Unhook test interrupt handler */
947  free_irq(irq, netdev);
948 
949  return *data;
950 }
951 
952 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
953 {
954  struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
955  struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
956  struct pci_dev *pdev = adapter->pdev;
957  int i;
958 
959  if (txdr->desc && txdr->buffer_info) {
960  for (i = 0; i < txdr->count; i++) {
961  if (txdr->buffer_info[i].dma)
962  dma_unmap_single(&pdev->dev,
963  txdr->buffer_info[i].dma,
964  txdr->buffer_info[i].length,
965  DMA_TO_DEVICE);
966  if (txdr->buffer_info[i].skb)
967  dev_kfree_skb(txdr->buffer_info[i].skb);
968  }
969  }
970 
971  if (rxdr->desc && rxdr->buffer_info) {
972  for (i = 0; i < rxdr->count; i++) {
973  if (rxdr->buffer_info[i].dma)
974  dma_unmap_single(&pdev->dev,
975  rxdr->buffer_info[i].dma,
976  rxdr->buffer_info[i].length,
978  if (rxdr->buffer_info[i].skb)
979  dev_kfree_skb(rxdr->buffer_info[i].skb);
980  }
981  }
982 
983  if (txdr->desc) {
984  dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
985  txdr->dma);
986  txdr->desc = NULL;
987  }
988  if (rxdr->desc) {
989  dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
990  rxdr->dma);
991  rxdr->desc = NULL;
992  }
993 
994  kfree(txdr->buffer_info);
995  txdr->buffer_info = NULL;
996  kfree(rxdr->buffer_info);
997  rxdr->buffer_info = NULL;
998 }
999 
1000 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1001 {
1002  struct e1000_hw *hw = &adapter->hw;
1003  struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1004  struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1005  struct pci_dev *pdev = adapter->pdev;
1006  u32 rctl;
1007  int i, ret_val;
1008 
1009  /* Setup Tx descriptor ring and Tx buffers */
1010 
1011  if (!txdr->count)
1012  txdr->count = E1000_DEFAULT_TXD;
1013 
1014  txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1015  GFP_KERNEL);
1016  if (!txdr->buffer_info) {
1017  ret_val = 1;
1018  goto err_nomem;
1019  }
1020 
1021  txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1022  txdr->size = ALIGN(txdr->size, 4096);
1023  txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1024  GFP_KERNEL);
1025  if (!txdr->desc) {
1026  ret_val = 2;
1027  goto err_nomem;
1028  }
1029  memset(txdr->desc, 0, txdr->size);
1030  txdr->next_to_use = txdr->next_to_clean = 0;
1031 
1032  ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1033  ew32(TDBAH, ((u64)txdr->dma >> 32));
1034  ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1035  ew32(TDH, 0);
1036  ew32(TDT, 0);
1040 
1041  for (i = 0; i < txdr->count; i++) {
1042  struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1043  struct sk_buff *skb;
1044  unsigned int size = 1024;
1045 
1046  skb = alloc_skb(size, GFP_KERNEL);
1047  if (!skb) {
1048  ret_val = 3;
1049  goto err_nomem;
1050  }
1051  skb_put(skb, size);
1052  txdr->buffer_info[i].skb = skb;
1053  txdr->buffer_info[i].length = skb->len;
1054  txdr->buffer_info[i].dma =
1055  dma_map_single(&pdev->dev, skb->data, skb->len,
1056  DMA_TO_DEVICE);
1057  tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1058  tx_desc->lower.data = cpu_to_le32(skb->len);
1059  tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1062  tx_desc->upper.data = 0;
1063  }
1064 
1065  /* Setup Rx descriptor ring and Rx buffers */
1066 
1067  if (!rxdr->count)
1068  rxdr->count = E1000_DEFAULT_RXD;
1069 
1070  rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1071  GFP_KERNEL);
1072  if (!rxdr->buffer_info) {
1073  ret_val = 4;
1074  goto err_nomem;
1075  }
1076 
1077  rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1078  rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1079  GFP_KERNEL);
1080  if (!rxdr->desc) {
1081  ret_val = 5;
1082  goto err_nomem;
1083  }
1084  memset(rxdr->desc, 0, rxdr->size);
1085  rxdr->next_to_use = rxdr->next_to_clean = 0;
1086 
1087  rctl = er32(RCTL);
1088  ew32(RCTL, rctl & ~E1000_RCTL_EN);
1089  ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1090  ew32(RDBAH, ((u64)rxdr->dma >> 32));
1091  ew32(RDLEN, rxdr->size);
1092  ew32(RDH, 0);
1093  ew32(RDT, 0);
1097  ew32(RCTL, rctl);
1098 
1099  for (i = 0; i < rxdr->count; i++) {
1100  struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1101  struct sk_buff *skb;
1102 
1103  skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1104  if (!skb) {
1105  ret_val = 6;
1106  goto err_nomem;
1107  }
1108  skb_reserve(skb, NET_IP_ALIGN);
1109  rxdr->buffer_info[i].skb = skb;
1110  rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1111  rxdr->buffer_info[i].dma =
1112  dma_map_single(&pdev->dev, skb->data,
1114  rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115  memset(skb->data, 0x00, skb->len);
1116  }
1117 
1118  return 0;
1119 
1120 err_nomem:
1121  e1000_free_desc_rings(adapter);
1122  return ret_val;
1123 }
1124 
1125 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1126 {
1127  struct e1000_hw *hw = &adapter->hw;
1128 
1129  /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1130  e1000_write_phy_reg(hw, 29, 0x001F);
1131  e1000_write_phy_reg(hw, 30, 0x8FFC);
1132  e1000_write_phy_reg(hw, 29, 0x001A);
1133  e1000_write_phy_reg(hw, 30, 0x8FF0);
1134 }
1135 
1136 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1137 {
1138  struct e1000_hw *hw = &adapter->hw;
1139  u16 phy_reg;
1140 
1141  /* Because we reset the PHY above, we need to re-force TX_CLK in the
1142  * Extended PHY Specific Control Register to 25MHz clock. This
1143  * value defaults back to a 2.5MHz clock when the PHY is reset.
1144  */
1146  phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1148  M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149 
1150  /* In addition, because of the s/w reset above, we need to enable
1151  * CRS on TX. This must be set for both full and half duplex
1152  * operation.
1153  */
1155  phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1157  M88E1000_PHY_SPEC_CTRL, phy_reg);
1158 }
1159 
1160 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1161 {
1162  struct e1000_hw *hw = &adapter->hw;
1163  u32 ctrl_reg;
1164  u16 phy_reg;
1165 
1166  /* Setup the Device Control Register for PHY loopback test. */
1167 
1168  ctrl_reg = er32(CTRL);
1169  ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1170  E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1171  E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1172  E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1173  E1000_CTRL_FD); /* Force Duplex to FULL */
1174 
1175  ew32(CTRL, ctrl_reg);
1176 
1177  /* Read the PHY Specific Control Register (0x10) */
1179 
1180  /* Clear Auto-Crossover bits in PHY Specific Control Register
1181  * (bits 6:5).
1182  */
1183  phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1185 
1186  /* Perform software reset on the PHY */
1187  e1000_phy_reset(hw);
1188 
1189  /* Have to setup TX_CLK and TX_CRS after software reset */
1190  e1000_phy_reset_clk_and_crs(adapter);
1191 
1192  e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1193 
1194  /* Wait for reset to complete. */
1195  udelay(500);
1196 
1197  /* Have to setup TX_CLK and TX_CRS after software reset */
1198  e1000_phy_reset_clk_and_crs(adapter);
1199 
1200  /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1201  e1000_phy_disable_receiver(adapter);
1202 
1203  /* Set the loopback bit in the PHY control register. */
1204  e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1205  phy_reg |= MII_CR_LOOPBACK;
1206  e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1207 
1208  /* Setup TX_CLK and TX_CRS one more time. */
1209  e1000_phy_reset_clk_and_crs(adapter);
1210 
1211  /* Check Phy Configuration */
1212  e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1213  if (phy_reg != 0x4100)
1214  return 9;
1215 
1217  if (phy_reg != 0x0070)
1218  return 10;
1219 
1220  e1000_read_phy_reg(hw, 29, &phy_reg);
1221  if (phy_reg != 0x001A)
1222  return 11;
1223 
1224  return 0;
1225 }
1226 
1227 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1228 {
1229  struct e1000_hw *hw = &adapter->hw;
1230  u32 ctrl_reg = 0;
1231  u32 stat_reg = 0;
1232 
1233  hw->autoneg = false;
1234 
1235  if (hw->phy_type == e1000_phy_m88) {
1236  /* Auto-MDI/MDIX Off */
1238  M88E1000_PHY_SPEC_CTRL, 0x0808);
1239  /* reset to update Auto-MDI/MDIX */
1240  e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1241  /* autoneg off */
1242  e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1243  }
1244 
1245  ctrl_reg = er32(CTRL);
1246 
1247  /* force 1000, set loopback */
1248  e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1249 
1250  /* Now set up the MAC to the same speed/duplex as the PHY. */
1251  ctrl_reg = er32(CTRL);
1252  ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1253  ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1254  E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1255  E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1256  E1000_CTRL_FD); /* Force Duplex to FULL */
1257 
1258  if (hw->media_type == e1000_media_type_copper &&
1259  hw->phy_type == e1000_phy_m88)
1260  ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1261  else {
1262  /* Set the ILOS bit on the fiber Nic is half
1263  * duplex link is detected. */
1264  stat_reg = er32(STATUS);
1265  if ((stat_reg & E1000_STATUS_FD) == 0)
1266  ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267  }
1268 
1269  ew32(CTRL, ctrl_reg);
1270 
1271  /* Disable the receiver on the PHY so when a cable is plugged in, the
1272  * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273  */
1274  if (hw->phy_type == e1000_phy_m88)
1275  e1000_phy_disable_receiver(adapter);
1276 
1277  udelay(500);
1278 
1279  return 0;
1280 }
1281 
1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283 {
1284  struct e1000_hw *hw = &adapter->hw;
1285  u16 phy_reg = 0;
1286  u16 count = 0;
1287 
1288  switch (hw->mac_type) {
1289  case e1000_82543:
1290  if (hw->media_type == e1000_media_type_copper) {
1291  /* Attempt to setup Loopback mode on Non-integrated PHY.
1292  * Some PHY registers get corrupted at random, so
1293  * attempt this 10 times.
1294  */
1295  while (e1000_nonintegrated_phy_loopback(adapter) &&
1296  count++ < 10);
1297  if (count < 11)
1298  return 0;
1299  }
1300  break;
1301 
1302  case e1000_82544:
1303  case e1000_82540:
1304  case e1000_82545:
1305  case e1000_82545_rev_3:
1306  case e1000_82546:
1307  case e1000_82546_rev_3:
1308  case e1000_82541:
1309  case e1000_82541_rev_2:
1310  case e1000_82547:
1311  case e1000_82547_rev_2:
1312  return e1000_integrated_phy_loopback(adapter);
1313  break;
1314  default:
1315  /* Default PHY loopback work is to read the MII
1316  * control register and assert bit 14 (loopback mode).
1317  */
1318  e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1319  phy_reg |= MII_CR_LOOPBACK;
1320  e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1321  return 0;
1322  break;
1323  }
1324 
1325  return 8;
1326 }
1327 
1328 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1329 {
1330  struct e1000_hw *hw = &adapter->hw;
1331  u32 rctl;
1332 
1333  if (hw->media_type == e1000_media_type_fiber ||
1335  switch (hw->mac_type) {
1336  case e1000_82545:
1337  case e1000_82546:
1338  case e1000_82545_rev_3:
1339  case e1000_82546_rev_3:
1340  return e1000_set_phy_loopback(adapter);
1341  break;
1342  default:
1343  rctl = er32(RCTL);
1344  rctl |= E1000_RCTL_LBM_TCVR;
1345  ew32(RCTL, rctl);
1346  return 0;
1347  }
1348  } else if (hw->media_type == e1000_media_type_copper)
1349  return e1000_set_phy_loopback(adapter);
1350 
1351  return 7;
1352 }
1353 
1354 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1355 {
1356  struct e1000_hw *hw = &adapter->hw;
1357  u32 rctl;
1358  u16 phy_reg;
1359 
1360  rctl = er32(RCTL);
1362  ew32(RCTL, rctl);
1363 
1364  switch (hw->mac_type) {
1365  case e1000_82545:
1366  case e1000_82546:
1367  case e1000_82545_rev_3:
1368  case e1000_82546_rev_3:
1369  default:
1370  hw->autoneg = true;
1371  e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1372  if (phy_reg & MII_CR_LOOPBACK) {
1373  phy_reg &= ~MII_CR_LOOPBACK;
1374  e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1375  e1000_phy_reset(hw);
1376  }
1377  break;
1378  }
1379 }
1380 
1381 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1382  unsigned int frame_size)
1383 {
1384  memset(skb->data, 0xFF, frame_size);
1385  frame_size &= ~1;
1386  memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1387  memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1388  memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1389 }
1390 
1391 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1392  unsigned int frame_size)
1393 {
1394  frame_size &= ~1;
1395  if (*(skb->data + 3) == 0xFF) {
1396  if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1397  (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1398  return 0;
1399  }
1400  }
1401  return 13;
1402 }
1403 
1404 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1405 {
1406  struct e1000_hw *hw = &adapter->hw;
1407  struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1408  struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1409  struct pci_dev *pdev = adapter->pdev;
1410  int i, j, k, l, lc, good_cnt, ret_val=0;
1411  unsigned long time;
1412 
1413  ew32(RDT, rxdr->count - 1);
1414 
1415  /* Calculate the loop count based on the largest descriptor ring
1416  * The idea is to wrap the largest ring a number of times using 64
1417  * send/receive pairs during each loop
1418  */
1419 
1420  if (rxdr->count <= txdr->count)
1421  lc = ((txdr->count / 64) * 2) + 1;
1422  else
1423  lc = ((rxdr->count / 64) * 2) + 1;
1424 
1425  k = l = 0;
1426  for (j = 0; j <= lc; j++) { /* loop count loop */
1427  for (i = 0; i < 64; i++) { /* send the packets */
1428  e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1429  1024);
1431  txdr->buffer_info[k].dma,
1432  txdr->buffer_info[k].length,
1433  DMA_TO_DEVICE);
1434  if (unlikely(++k == txdr->count)) k = 0;
1435  }
1436  ew32(TDT, k);
1438  msleep(200);
1439  time = jiffies; /* set the start time for the receive */
1440  good_cnt = 0;
1441  do { /* receive the sent packets */
1443  rxdr->buffer_info[l].dma,
1444  rxdr->buffer_info[l].length,
1445  DMA_FROM_DEVICE);
1446 
1447  ret_val = e1000_check_lbtest_frame(
1448  rxdr->buffer_info[l].skb,
1449  1024);
1450  if (!ret_val)
1451  good_cnt++;
1452  if (unlikely(++l == rxdr->count)) l = 0;
1453  /* time + 20 msecs (200 msecs on 2.4) is more than
1454  * enough time to complete the receives, if it's
1455  * exceeded, break and error off
1456  */
1457  } while (good_cnt < 64 && jiffies < (time + 20));
1458  if (good_cnt != 64) {
1459  ret_val = 13; /* ret_val is the same as mis-compare */
1460  break;
1461  }
1462  if (jiffies >= (time + 2)) {
1463  ret_val = 14; /* error code for time out error */
1464  break;
1465  }
1466  } /* end loop count loop */
1467  return ret_val;
1468 }
1469 
1470 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471 {
1472  *data = e1000_setup_desc_rings(adapter);
1473  if (*data)
1474  goto out;
1475  *data = e1000_setup_loopback_test(adapter);
1476  if (*data)
1477  goto err_loopback;
1478  *data = e1000_run_loopback_test(adapter);
1479  e1000_loopback_cleanup(adapter);
1480 
1481 err_loopback:
1482  e1000_free_desc_rings(adapter);
1483 out:
1484  return *data;
1485 }
1486 
1487 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488 {
1489  struct e1000_hw *hw = &adapter->hw;
1490  *data = 0;
1492  int i = 0;
1493  hw->serdes_has_link = false;
1494 
1495  /* On some blade server designs, link establishment
1496  * could take as long as 2-3 minutes */
1497  do {
1499  if (hw->serdes_has_link)
1500  return *data;
1501  msleep(20);
1502  } while (i++ < 3750);
1503 
1504  *data = 1;
1505  } else {
1507  if (hw->autoneg) /* if auto_neg is set wait for it */
1508  msleep(4000);
1509 
1510  if (!(er32(STATUS) & E1000_STATUS_LU)) {
1511  *data = 1;
1512  }
1513  }
1514  return *data;
1515 }
1516 
1517 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1518 {
1519  switch (sset) {
1520  case ETH_SS_TEST:
1521  return E1000_TEST_LEN;
1522  case ETH_SS_STATS:
1523  return E1000_STATS_LEN;
1524  default:
1525  return -EOPNOTSUPP;
1526  }
1527 }
1528 
1529 static void e1000_diag_test(struct net_device *netdev,
1530  struct ethtool_test *eth_test, u64 *data)
1531 {
1532  struct e1000_adapter *adapter = netdev_priv(netdev);
1533  struct e1000_hw *hw = &adapter->hw;
1534  bool if_running = netif_running(netdev);
1535 
1536  set_bit(__E1000_TESTING, &adapter->flags);
1537  if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1538  /* Offline tests */
1539 
1540  /* save speed, duplex, autoneg settings */
1543  u8 autoneg = hw->autoneg;
1544 
1545  e_info(hw, "offline testing starting\n");
1546 
1547  /* Link test performed before hardware reset so autoneg doesn't
1548  * interfere with test result */
1549  if (e1000_link_test(adapter, &data[4]))
1550  eth_test->flags |= ETH_TEST_FL_FAILED;
1551 
1552  if (if_running)
1553  /* indicate we're in test mode */
1554  dev_close(netdev);
1555  else
1556  e1000_reset(adapter);
1557 
1558  if (e1000_reg_test(adapter, &data[0]))
1559  eth_test->flags |= ETH_TEST_FL_FAILED;
1560 
1561  e1000_reset(adapter);
1562  if (e1000_eeprom_test(adapter, &data[1]))
1563  eth_test->flags |= ETH_TEST_FL_FAILED;
1564 
1565  e1000_reset(adapter);
1566  if (e1000_intr_test(adapter, &data[2]))
1567  eth_test->flags |= ETH_TEST_FL_FAILED;
1568 
1569  e1000_reset(adapter);
1570  /* make sure the phy is powered up */
1571  e1000_power_up_phy(adapter);
1572  if (e1000_loopback_test(adapter, &data[3]))
1573  eth_test->flags |= ETH_TEST_FL_FAILED;
1574 
1575  /* restore speed, duplex, autoneg settings */
1578  hw->autoneg = autoneg;
1579 
1580  e1000_reset(adapter);
1581  clear_bit(__E1000_TESTING, &adapter->flags);
1582  if (if_running)
1583  dev_open(netdev);
1584  } else {
1585  e_info(hw, "online testing starting\n");
1586  /* Online tests */
1587  if (e1000_link_test(adapter, &data[4]))
1588  eth_test->flags |= ETH_TEST_FL_FAILED;
1589 
1590  /* Online tests aren't run; pass by default */
1591  data[0] = 0;
1592  data[1] = 0;
1593  data[2] = 0;
1594  data[3] = 0;
1595 
1596  clear_bit(__E1000_TESTING, &adapter->flags);
1597  }
1598  msleep_interruptible(4 * 1000);
1599 }
1600 
1601 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1602  struct ethtool_wolinfo *wol)
1603 {
1604  struct e1000_hw *hw = &adapter->hw;
1605  int retval = 1; /* fail by default */
1606 
1607  switch (hw->device_id) {
1608  case E1000_DEV_ID_82542:
1617  /* these don't support WoL at all */
1618  wol->supported = 0;
1619  break;
1622  /* Wake events not supported on port B */
1623  if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1624  wol->supported = 0;
1625  break;
1626  }
1627  /* return success for non excluded adapter ports */
1628  retval = 0;
1629  break;
1631  /* quad port adapters only support WoL on port A */
1632  if (!adapter->quad_port_a) {
1633  wol->supported = 0;
1634  break;
1635  }
1636  /* return success for non excluded adapter ports */
1637  retval = 0;
1638  break;
1639  default:
1640  /* dual port cards only support WoL on port A from now on
1641  * unless it was enabled in the eeprom for port B
1642  * so exclude FUNC_1 ports from having WoL enabled */
1643  if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1644  !adapter->eeprom_wol) {
1645  wol->supported = 0;
1646  break;
1647  }
1648 
1649  retval = 0;
1650  }
1651 
1652  return retval;
1653 }
1654 
1655 static void e1000_get_wol(struct net_device *netdev,
1656  struct ethtool_wolinfo *wol)
1657 {
1658  struct e1000_adapter *adapter = netdev_priv(netdev);
1659  struct e1000_hw *hw = &adapter->hw;
1660 
1661  wol->supported = WAKE_UCAST | WAKE_MCAST |
1663  wol->wolopts = 0;
1664 
1665  /* this function will set ->supported = 0 and return 1 if wol is not
1666  * supported by this hardware */
1667  if (e1000_wol_exclusion(adapter, wol) ||
1668  !device_can_wakeup(&adapter->pdev->dev))
1669  return;
1670 
1671  /* apply any specific unsupported masks here */
1672  switch (hw->device_id) {
1674  /* KSP3 does not suppport UCAST wake-ups */
1675  wol->supported &= ~WAKE_UCAST;
1676 
1677  if (adapter->wol & E1000_WUFC_EX)
1678  e_err(drv, "Interface does not support directed "
1679  "(unicast) frame wake-up packets\n");
1680  break;
1681  default:
1682  break;
1683  }
1684 
1685  if (adapter->wol & E1000_WUFC_EX)
1686  wol->wolopts |= WAKE_UCAST;
1687  if (adapter->wol & E1000_WUFC_MC)
1688  wol->wolopts |= WAKE_MCAST;
1689  if (adapter->wol & E1000_WUFC_BC)
1690  wol->wolopts |= WAKE_BCAST;
1691  if (adapter->wol & E1000_WUFC_MAG)
1692  wol->wolopts |= WAKE_MAGIC;
1693 }
1694 
1695 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1696 {
1697  struct e1000_adapter *adapter = netdev_priv(netdev);
1698  struct e1000_hw *hw = &adapter->hw;
1699 
1700  if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1701  return -EOPNOTSUPP;
1702 
1703  if (e1000_wol_exclusion(adapter, wol) ||
1704  !device_can_wakeup(&adapter->pdev->dev))
1705  return wol->wolopts ? -EOPNOTSUPP : 0;
1706 
1707  switch (hw->device_id) {
1709  if (wol->wolopts & WAKE_UCAST) {
1710  e_err(drv, "Interface does not support directed "
1711  "(unicast) frame wake-up packets\n");
1712  return -EOPNOTSUPP;
1713  }
1714  break;
1715  default:
1716  break;
1717  }
1718 
1719  /* these settings will always override what we currently have */
1720  adapter->wol = 0;
1721 
1722  if (wol->wolopts & WAKE_UCAST)
1723  adapter->wol |= E1000_WUFC_EX;
1724  if (wol->wolopts & WAKE_MCAST)
1725  adapter->wol |= E1000_WUFC_MC;
1726  if (wol->wolopts & WAKE_BCAST)
1727  adapter->wol |= E1000_WUFC_BC;
1728  if (wol->wolopts & WAKE_MAGIC)
1729  adapter->wol |= E1000_WUFC_MAG;
1730 
1731  device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1732 
1733  return 0;
1734 }
1735 
1736 static int e1000_set_phys_id(struct net_device *netdev,
1738 {
1739  struct e1000_adapter *adapter = netdev_priv(netdev);
1740  struct e1000_hw *hw = &adapter->hw;
1741 
1742  switch (state) {
1743  case ETHTOOL_ID_ACTIVE:
1744  e1000_setup_led(hw);
1745  return 2;
1746 
1747  case ETHTOOL_ID_ON:
1748  e1000_led_on(hw);
1749  break;
1750 
1751  case ETHTOOL_ID_OFF:
1752  e1000_led_off(hw);
1753  break;
1754 
1755  case ETHTOOL_ID_INACTIVE:
1756  e1000_cleanup_led(hw);
1757  }
1758 
1759  return 0;
1760 }
1761 
1762 static int e1000_get_coalesce(struct net_device *netdev,
1763  struct ethtool_coalesce *ec)
1764 {
1765  struct e1000_adapter *adapter = netdev_priv(netdev);
1766 
1767  if (adapter->hw.mac_type < e1000_82545)
1768  return -EOPNOTSUPP;
1769 
1770  if (adapter->itr_setting <= 4)
1771  ec->rx_coalesce_usecs = adapter->itr_setting;
1772  else
1773  ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1774 
1775  return 0;
1776 }
1777 
1778 static int e1000_set_coalesce(struct net_device *netdev,
1779  struct ethtool_coalesce *ec)
1780 {
1781  struct e1000_adapter *adapter = netdev_priv(netdev);
1782  struct e1000_hw *hw = &adapter->hw;
1783 
1784  if (hw->mac_type < e1000_82545)
1785  return -EOPNOTSUPP;
1786 
1787  if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1788  ((ec->rx_coalesce_usecs > 4) &&
1790  (ec->rx_coalesce_usecs == 2))
1791  return -EINVAL;
1792 
1793  if (ec->rx_coalesce_usecs == 4) {
1794  adapter->itr = adapter->itr_setting = 4;
1795  } else if (ec->rx_coalesce_usecs <= 3) {
1796  adapter->itr = 20000;
1797  adapter->itr_setting = ec->rx_coalesce_usecs;
1798  } else {
1799  adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1800  adapter->itr_setting = adapter->itr & ~3;
1801  }
1802 
1803  if (adapter->itr_setting != 0)
1804  ew32(ITR, 1000000000 / (adapter->itr * 256));
1805  else
1806  ew32(ITR, 0);
1807 
1808  return 0;
1809 }
1810 
1811 static int e1000_nway_reset(struct net_device *netdev)
1812 {
1813  struct e1000_adapter *adapter = netdev_priv(netdev);
1814  if (netif_running(netdev))
1815  e1000_reinit_locked(adapter);
1816  return 0;
1817 }
1818 
1819 static void e1000_get_ethtool_stats(struct net_device *netdev,
1820  struct ethtool_stats *stats, u64 *data)
1821 {
1822  struct e1000_adapter *adapter = netdev_priv(netdev);
1823  int i;
1824  char *p = NULL;
1825 
1826  e1000_update_stats(adapter);
1827  for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1828  switch (e1000_gstrings_stats[i].type) {
1829  case NETDEV_STATS:
1830  p = (char *) netdev +
1831  e1000_gstrings_stats[i].stat_offset;
1832  break;
1833  case E1000_STATS:
1834  p = (char *) adapter +
1835  e1000_gstrings_stats[i].stat_offset;
1836  break;
1837  }
1838 
1839  data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1840  sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1841  }
1842 /* BUG_ON(i != E1000_STATS_LEN); */
1843 }
1844 
1845 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1846  u8 *data)
1847 {
1848  u8 *p = data;
1849  int i;
1850 
1851  switch (stringset) {
1852  case ETH_SS_TEST:
1853  memcpy(data, *e1000_gstrings_test,
1854  sizeof(e1000_gstrings_test));
1855  break;
1856  case ETH_SS_STATS:
1857  for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1858  memcpy(p, e1000_gstrings_stats[i].stat_string,
1859  ETH_GSTRING_LEN);
1860  p += ETH_GSTRING_LEN;
1861  }
1862 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1863  break;
1864  }
1865 }
1866 
1867 static const struct ethtool_ops e1000_ethtool_ops = {
1868  .get_settings = e1000_get_settings,
1869  .set_settings = e1000_set_settings,
1870  .get_drvinfo = e1000_get_drvinfo,
1871  .get_regs_len = e1000_get_regs_len,
1872  .get_regs = e1000_get_regs,
1873  .get_wol = e1000_get_wol,
1874  .set_wol = e1000_set_wol,
1875  .get_msglevel = e1000_get_msglevel,
1876  .set_msglevel = e1000_set_msglevel,
1877  .nway_reset = e1000_nway_reset,
1878  .get_link = e1000_get_link,
1879  .get_eeprom_len = e1000_get_eeprom_len,
1880  .get_eeprom = e1000_get_eeprom,
1881  .set_eeprom = e1000_set_eeprom,
1882  .get_ringparam = e1000_get_ringparam,
1883  .set_ringparam = e1000_set_ringparam,
1884  .get_pauseparam = e1000_get_pauseparam,
1885  .set_pauseparam = e1000_set_pauseparam,
1886  .self_test = e1000_diag_test,
1887  .get_strings = e1000_get_strings,
1888  .set_phys_id = e1000_set_phys_id,
1889  .get_ethtool_stats = e1000_get_ethtool_stats,
1890  .get_sset_count = e1000_get_sset_count,
1891  .get_coalesce = e1000_get_coalesce,
1892  .set_coalesce = e1000_set_coalesce,
1893  .get_ts_info = ethtool_op_get_ts_info,
1894 };
1895 
1896 void e1000_set_ethtool_ops(struct net_device *netdev)
1897 {
1898  SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1899 }