Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hfcsusb.c
Go to the documentation of this file.
1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger ([email protected])
5  * Copyright 2008 by Martin Bachem ([email protected])
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  * debug=<n>, default=0, with n=0xHHHHGGGG
24  * H - l1 driver flags described in hfcsusb.h
25  * G - common mISDN debug flags described at mISDNhw.h
26  *
27  * poll=<n>, default 128
28  * n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32 
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39 
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42 
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45 
46 
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
50 module_param(poll, int, 0);
51 
52 static int hfcsusb_cnt;
53 
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64 
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
70  printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71 
72  if (hw->ctrl_cnt) {
73  hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74  hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75  hw->ctrl_urb->transfer_buffer = NULL;
76  hw->ctrl_urb->transfer_buffer_length = 0;
77  hw->ctrl_write.wIndex =
78  cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79  hw->ctrl_write.wValue =
80  cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81 
83  }
84 }
85 
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92  struct ctrl_buf *buf;
93 
94  if (debug & DBG_HFC_CALL_TRACE)
95  printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96  hw->name, __func__, reg, val);
97 
98  spin_lock(&hw->ctrl_lock);
99  if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100  spin_unlock(&hw->ctrl_lock);
101  return 1;
102  }
103  buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104  buf->hfcs_reg = reg;
105  buf->reg_val = val;
106  if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107  hw->ctrl_in_idx = 0;
108  if (++hw->ctrl_cnt == 1)
109  ctrl_start_transfer(hw);
110  spin_unlock(&hw->ctrl_lock);
111 
112  return 0;
113 }
114 
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119  struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120 
121  if (debug & DBG_HFC_CALL_TRACE)
122  printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123 
124  urb->dev = hw->dev;
125  if (hw->ctrl_cnt) {
126  hw->ctrl_cnt--; /* decrement actual count */
127  if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128  hw->ctrl_out_idx = 0; /* pointer wrap */
129 
130  ctrl_start_transfer(hw); /* start next transfer */
131  }
132 }
133 
134 /* handle LED bits */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138  if (set_on) {
139  if (led_bits < 0)
140  hw->led_state &= ~abs(led_bits);
141  else
142  hw->led_state |= led_bits;
143  } else {
144  if (led_bits < 0)
145  hw->led_state |= abs(led_bits);
146  else
147  hw->led_state &= ~led_bits;
148  }
149 }
150 
151 /* handle LED requests */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155  struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156  hfcsusb_idtab[hw->vend_idx].driver_info;
157  __u8 tmpled;
158 
159  if (driver_info->led_scheme == LED_OFF)
160  return;
161  tmpled = hw->led_state;
162 
163  switch (event) {
164  case LED_POWER_ON:
165  set_led_bit(hw, driver_info->led_bits[0], 1);
166  set_led_bit(hw, driver_info->led_bits[1], 0);
167  set_led_bit(hw, driver_info->led_bits[2], 0);
168  set_led_bit(hw, driver_info->led_bits[3], 0);
169  break;
170  case LED_POWER_OFF:
171  set_led_bit(hw, driver_info->led_bits[0], 0);
172  set_led_bit(hw, driver_info->led_bits[1], 0);
173  set_led_bit(hw, driver_info->led_bits[2], 0);
174  set_led_bit(hw, driver_info->led_bits[3], 0);
175  break;
176  case LED_S0_ON:
177  set_led_bit(hw, driver_info->led_bits[1], 1);
178  break;
179  case LED_S0_OFF:
180  set_led_bit(hw, driver_info->led_bits[1], 0);
181  break;
182  case LED_B1_ON:
183  set_led_bit(hw, driver_info->led_bits[2], 1);
184  break;
185  case LED_B1_OFF:
186  set_led_bit(hw, driver_info->led_bits[2], 0);
187  break;
188  case LED_B2_ON:
189  set_led_bit(hw, driver_info->led_bits[3], 1);
190  break;
191  case LED_B2_OFF:
192  set_led_bit(hw, driver_info->led_bits[3], 0);
193  break;
194  }
195 
196  if (hw->led_state != tmpled) {
197  if (debug & DBG_HFC_CALL_TRACE)
198  printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199  hw->name, __func__,
200  HFCUSB_P_DATA, hw->led_state);
201 
203  }
204 }
205 
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212  struct bchannel *bch = container_of(ch, struct bchannel, ch);
213  struct hfcsusb *hw = bch->hw;
214  int ret = -EINVAL;
215  struct mISDNhead *hh = mISDN_HEAD_P(skb);
216  u_long flags;
217 
218  if (debug & DBG_HFC_CALL_TRACE)
219  printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220 
221  switch (hh->prim) {
222  case PH_DATA_REQ:
223  spin_lock_irqsave(&hw->lock, flags);
224  ret = bchannel_senddata(bch, skb);
225  spin_unlock_irqrestore(&hw->lock, flags);
226  if (debug & DBG_HFC_CALL_TRACE)
227  printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228  hw->name, __func__, ret);
229  if (ret > 0)
230  ret = 0;
231  return ret;
232  case PH_ACTIVATE_REQ:
233  if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234  hfcsusb_start_endpoint(hw, bch->nr - 1);
235  ret = hfcsusb_setup_bch(bch, ch->protocol);
236  } else
237  ret = 0;
238  if (!ret)
239  _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240  0, NULL, GFP_KERNEL);
241  break;
242  case PH_DEACTIVATE_REQ:
243  deactivate_bchannel(bch);
244  _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245  0, NULL, GFP_KERNEL);
246  ret = 0;
247  break;
248  }
249  if (!ret)
250  dev_kfree_skb(skb);
251  return ret;
252 }
253 
254 /*
255  * send full D/B channel status information
256  * as MPH_INFORMATION_IND
257  */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261  struct ph_info *phi;
262  struct dchannel *dch = &hw->dch;
263  int i;
264 
265  phi = kzalloc(sizeof(struct ph_info) +
266  dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267  phi->dch.ch.protocol = hw->protocol;
268  phi->dch.ch.Flags = dch->Flags;
269  phi->dch.state = dch->state;
270  phi->dch.num_bch = dch->dev.nrbchan;
271  for (i = 0; i < dch->dev.nrbchan; i++) {
272  phi->bch[i].protocol = hw->bch[i].ch.protocol;
273  phi->bch[i].Flags = hw->bch[i].Flags;
274  }
275  _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276  sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277  sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278  kfree(phi);
279 }
280 
281 /*
282  * Layer2 -> Layer 1 Dchannel data
283  */
284 static int
285 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
286 {
287  struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
288  struct dchannel *dch = container_of(dev, struct dchannel, dev);
289  struct mISDNhead *hh = mISDN_HEAD_P(skb);
290  struct hfcsusb *hw = dch->hw;
291  int ret = -EINVAL;
292  u_long flags;
293 
294  switch (hh->prim) {
295  case PH_DATA_REQ:
296  if (debug & DBG_HFC_CALL_TRACE)
297  printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298  hw->name, __func__);
299 
300  spin_lock_irqsave(&hw->lock, flags);
301  ret = dchannel_senddata(dch, skb);
302  spin_unlock_irqrestore(&hw->lock, flags);
303  if (ret > 0) {
304  ret = 0;
305  queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
306  }
307  break;
308 
309  case PH_ACTIVATE_REQ:
310  if (debug & DBG_HFC_CALL_TRACE)
311  printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312  hw->name, __func__,
313  (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
314 
315  if (hw->protocol == ISDN_P_NT_S0) {
316  ret = 0;
317  if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318  _queue_data(&dch->dev.D,
320  NULL, GFP_ATOMIC);
321  } else {
322  hfcsusb_ph_command(hw,
325  &dch->Flags);
326  }
327  } else {
328  hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329  ret = l1_event(dch->l1, hh->prim);
330  }
331  break;
332 
333  case PH_DEACTIVATE_REQ:
334  if (debug & DBG_HFC_CALL_TRACE)
335  printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336  hw->name, __func__);
338 
339  if (hw->protocol == ISDN_P_NT_S0) {
340  hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
341  spin_lock_irqsave(&hw->lock, flags);
342  skb_queue_purge(&dch->squeue);
343  if (dch->tx_skb) {
344  dev_kfree_skb(dch->tx_skb);
345  dch->tx_skb = NULL;
346  }
347  dch->tx_idx = 0;
348  if (dch->rx_skb) {
349  dev_kfree_skb(dch->rx_skb);
350  dch->rx_skb = NULL;
351  }
353  spin_unlock_irqrestore(&hw->lock, flags);
354 #ifdef FIXME
356  dchannel_sched_event(&hc->dch, D_CLEARBUSY);
357 #endif
358  ret = 0;
359  } else
360  ret = l1_event(dch->l1, hh->prim);
361  break;
362  case MPH_INFORMATION_REQ:
363  hfcsusb_ph_info(hw);
364  ret = 0;
365  break;
366  }
367 
368  return ret;
369 }
370 
371 /*
372  * Layer 1 callback function
373  */
374 static int
375 hfc_l1callback(struct dchannel *dch, u_int cmd)
376 {
377  struct hfcsusb *hw = dch->hw;
378 
379  if (debug & DBG_HFC_CALL_TRACE)
380  printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
381  hw->name, __func__, cmd);
382 
383  switch (cmd) {
384  case INFO3_P8:
385  case INFO3_P10:
386  case HW_RESET_REQ:
387  case HW_POWERUP_REQ:
388  break;
389 
390  case HW_DEACT_REQ:
391  skb_queue_purge(&dch->squeue);
392  if (dch->tx_skb) {
393  dev_kfree_skb(dch->tx_skb);
394  dch->tx_skb = NULL;
395  }
396  dch->tx_idx = 0;
397  if (dch->rx_skb) {
398  dev_kfree_skb(dch->rx_skb);
399  dch->rx_skb = NULL;
400  }
402  break;
403  case PH_ACTIVATE_IND:
405  _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
406  GFP_ATOMIC);
407  break;
408  case PH_DEACTIVATE_IND:
410  _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
411  GFP_ATOMIC);
412  break;
413  default:
414  if (dch->debug & DEBUG_HW)
415  printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
416  hw->name, __func__, cmd);
417  return -1;
418  }
419  hfcsusb_ph_info(hw);
420  return 0;
421 }
422 
423 static int
424 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
425  struct channel_req *rq)
426 {
427  int err = 0;
428 
429  if (debug & DEBUG_HW_OPEN)
430  printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
431  hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
432  __builtin_return_address(0));
433  if (rq->protocol == ISDN_P_NONE)
434  return -EINVAL;
435 
436  test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
437  test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
438  hfcsusb_start_endpoint(hw, HFC_CHAN_D);
439 
440  /* E-Channel logging */
441  if (rq->adr.channel == 1) {
442  if (hw->fifos[HFCUSB_PCM_RX].pipe) {
443  hfcsusb_start_endpoint(hw, HFC_CHAN_E);
444  set_bit(FLG_ACTIVE, &hw->ech.Flags);
445  _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
447  } else
448  return -EINVAL;
449  }
450 
451  if (!hw->initdone) {
452  hw->protocol = rq->protocol;
453  if (rq->protocol == ISDN_P_TE_S0) {
454  err = create_l1(&hw->dch, hfc_l1callback);
455  if (err)
456  return err;
457  }
458  setPortMode(hw);
459  ch->protocol = rq->protocol;
460  hw->initdone = 1;
461  } else {
462  if (rq->protocol != ch->protocol)
463  return -EPROTONOSUPPORT;
464  }
465 
466  if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
467  ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
468  _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
469  0, NULL, GFP_KERNEL);
470  rq->ch = ch;
471  if (!try_module_get(THIS_MODULE))
472  printk(KERN_WARNING "%s: %s: cannot get module\n",
473  hw->name, __func__);
474  return 0;
475 }
476 
477 static int
478 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
479 {
480  struct bchannel *bch;
481 
482  if (rq->adr.channel == 0 || rq->adr.channel > 2)
483  return -EINVAL;
484  if (rq->protocol == ISDN_P_NONE)
485  return -EINVAL;
486 
487  if (debug & DBG_HFC_CALL_TRACE)
488  printk(KERN_DEBUG "%s: %s B%i\n",
489  hw->name, __func__, rq->adr.channel);
490 
491  bch = &hw->bch[rq->adr.channel - 1];
492  if (test_and_set_bit(FLG_OPEN, &bch->Flags))
493  return -EBUSY; /* b-channel can be only open once */
494  bch->ch.protocol = rq->protocol;
495  rq->ch = &bch->ch;
496 
497  if (!try_module_get(THIS_MODULE))
498  printk(KERN_WARNING "%s: %s:cannot get module\n",
499  hw->name, __func__);
500  return 0;
501 }
502 
503 static int
504 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
505 {
506  int ret = 0;
507 
508  if (debug & DBG_HFC_CALL_TRACE)
509  printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
510  hw->name, __func__, (cq->op), (cq->channel));
511 
512  switch (cq->op) {
513  case MISDN_CTRL_GETOP:
516  break;
517  default:
518  printk(KERN_WARNING "%s: %s: unknown Op %x\n",
519  hw->name, __func__, cq->op);
520  ret = -EINVAL;
521  break;
522  }
523  return ret;
524 }
525 
526 /*
527  * device control function
528  */
529 static int
530 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
531 {
532  struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
533  struct dchannel *dch = container_of(dev, struct dchannel, dev);
534  struct hfcsusb *hw = dch->hw;
535  struct channel_req *rq;
536  int err = 0;
537 
538  if (dch->debug & DEBUG_HW)
539  printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
540  hw->name, __func__, cmd, arg);
541  switch (cmd) {
542  case OPEN_CHANNEL:
543  rq = arg;
544  if ((rq->protocol == ISDN_P_TE_S0) ||
545  (rq->protocol == ISDN_P_NT_S0))
546  err = open_dchannel(hw, ch, rq);
547  else
548  err = open_bchannel(hw, rq);
549  if (!err)
550  hw->open++;
551  break;
552  case CLOSE_CHANNEL:
553  hw->open--;
554  if (debug & DEBUG_HW_OPEN)
556  "%s: %s: dev(%d) close from %p (open %d)\n",
557  hw->name, __func__, hw->dch.dev.id,
558  __builtin_return_address(0), hw->open);
559  if (!hw->open) {
560  hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
561  if (hw->fifos[HFCUSB_PCM_RX].pipe)
562  hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
563  handle_led(hw, LED_POWER_ON);
564  }
565  module_put(THIS_MODULE);
566  break;
567  case CONTROL_CHANNEL:
568  err = channel_ctrl(hw, arg);
569  break;
570  default:
571  if (dch->debug & DEBUG_HW)
572  printk(KERN_DEBUG "%s: %s: unknown command %x\n",
573  hw->name, __func__, cmd);
574  return -EINVAL;
575  }
576  return err;
577 }
578 
579 /*
580  * S0 TE state change event handler
581  */
582 static void
583 ph_state_te(struct dchannel *dch)
584 {
585  struct hfcsusb *hw = dch->hw;
586 
587  if (debug & DEBUG_HW) {
588  if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
589  printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
590  HFC_TE_LAYER1_STATES[dch->state]);
591  else
592  printk(KERN_DEBUG "%s: %s: TE F%d\n",
593  hw->name, __func__, dch->state);
594  }
595 
596  switch (dch->state) {
597  case 0:
598  l1_event(dch->l1, HW_RESET_IND);
599  break;
600  case 3:
601  l1_event(dch->l1, HW_DEACT_IND);
602  break;
603  case 5:
604  case 8:
605  l1_event(dch->l1, ANYSIGNAL);
606  break;
607  case 6:
608  l1_event(dch->l1, INFO2);
609  break;
610  case 7:
611  l1_event(dch->l1, INFO4_P8);
612  break;
613  }
614  if (dch->state == 7)
615  handle_led(hw, LED_S0_ON);
616  else
617  handle_led(hw, LED_S0_OFF);
618 }
619 
620 /*
621  * S0 NT state change event handler
622  */
623 static void
624 ph_state_nt(struct dchannel *dch)
625 {
626  struct hfcsusb *hw = dch->hw;
627 
628  if (debug & DEBUG_HW) {
629  if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
630  printk(KERN_DEBUG "%s: %s: %s\n",
631  hw->name, __func__,
632  HFC_NT_LAYER1_STATES[dch->state]);
633 
634  else
635  printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
636  hw->name, __func__, dch->state);
637  }
638 
639  switch (dch->state) {
640  case (1):
643  hw->nt_timer = 0;
644  hw->timers &= ~NT_ACTIVATION_TIMER;
645  handle_led(hw, LED_S0_OFF);
646  break;
647 
648  case (2):
649  if (hw->nt_timer < 0) {
650  hw->nt_timer = 0;
651  hw->timers &= ~NT_ACTIVATION_TIMER;
652  hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
653  } else {
655  hw->nt_timer = NT_T1_COUNT;
656  /* allow G2 -> G3 transition */
658  }
659  break;
660  case (3):
661  hw->nt_timer = 0;
662  hw->timers &= ~NT_ACTIVATION_TIMER;
664  _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
666  handle_led(hw, LED_S0_ON);
667  break;
668  case (4):
669  hw->nt_timer = 0;
670  hw->timers &= ~NT_ACTIVATION_TIMER;
671  break;
672  default:
673  break;
674  }
675  hfcsusb_ph_info(hw);
676 }
677 
678 static void
679 ph_state(struct dchannel *dch)
680 {
681  struct hfcsusb *hw = dch->hw;
682 
683  if (hw->protocol == ISDN_P_NT_S0)
684  ph_state_nt(dch);
685  else if (hw->protocol == ISDN_P_TE_S0)
686  ph_state_te(dch);
687 }
688 
689 /*
690  * disable/enable BChannel for desired protocoll
691  */
692 static int
693 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
694 {
695  struct hfcsusb *hw = bch->hw;
696  __u8 conhdlc, sctrl, sctrl_r;
697 
698  if (debug & DEBUG_HW)
699  printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
700  hw->name, __func__, bch->state, protocol,
701  bch->nr);
702 
703  /* setup val for CON_HDLC */
704  conhdlc = 0;
705  if (protocol > ISDN_P_NONE)
706  conhdlc = 8; /* enable FIFO */
707 
708  switch (protocol) {
709  case (-1): /* used for init */
710  bch->state = -1;
711  /* fall through */
712  case (ISDN_P_NONE):
713  if (bch->state == ISDN_P_NONE)
714  return 0; /* already in idle state */
715  bch->state = ISDN_P_NONE;
716  clear_bit(FLG_HDLC, &bch->Flags);
718  break;
719  case (ISDN_P_B_RAW):
720  conhdlc |= 2;
721  bch->state = protocol;
722  set_bit(FLG_TRANSPARENT, &bch->Flags);
723  break;
724  case (ISDN_P_B_HDLC):
725  bch->state = protocol;
726  set_bit(FLG_HDLC, &bch->Flags);
727  break;
728  default:
729  if (debug & DEBUG_HW)
730  printk(KERN_DEBUG "%s: %s: prot not known %x\n",
731  hw->name, __func__, protocol);
732  return -ENOPROTOOPT;
733  }
734 
735  if (protocol >= ISDN_P_NONE) {
736  write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
737  write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
738  write_reg(hw, HFCUSB_INC_RES_F, 2);
739  write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
740  write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
741  write_reg(hw, HFCUSB_INC_RES_F, 2);
742 
743  sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
744  sctrl_r = 0x0;
745  if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
746  sctrl |= 1;
747  sctrl_r |= 1;
748  }
749  if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
750  sctrl |= 2;
751  sctrl_r |= 2;
752  }
753  write_reg(hw, HFCUSB_SCTRL, sctrl);
754  write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
755 
756  if (protocol > ISDN_P_NONE)
757  handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
758  else
759  handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
760  LED_B2_OFF);
761  }
762  hfcsusb_ph_info(hw);
763  return 0;
764 }
765 
766 static void
767 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
768 {
769  if (debug & DEBUG_HW)
770  printk(KERN_DEBUG "%s: %s: %x\n",
771  hw->name, __func__, command);
772 
773  switch (command) {
774  case HFC_L1_ACTIVATE_TE:
775  /* force sending sending INFO1 */
776  write_reg(hw, HFCUSB_STATES, 0x14);
777  /* start l1 activation */
778  write_reg(hw, HFCUSB_STATES, 0x04);
779  break;
780 
782  write_reg(hw, HFCUSB_STATES, 0x10);
783  write_reg(hw, HFCUSB_STATES, 0x03);
784  break;
785 
786  case HFC_L1_ACTIVATE_NT:
787  if (hw->dch.state == 3)
788  _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
790  else
793  break;
794 
798  break;
799  }
800 }
801 
802 /*
803  * Layer 1 B-channel hardware access
804  */
805 static int
806 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
807 {
808  return mISDN_ctrl_bchannel(bch, cq);
809 }
810 
811 /* collect data from incoming interrupt or isochron USB data */
812 static void
813 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
814  int finish)
815 {
816  struct hfcsusb *hw = fifo->hw;
817  struct sk_buff *rx_skb = NULL;
818  int maxlen = 0;
819  int fifon = fifo->fifonum;
820  int i;
821  int hdlc = 0;
822 
823  if (debug & DBG_HFC_CALL_TRACE)
824  printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
825  "dch(%p) bch(%p) ech(%p)\n",
826  hw->name, __func__, fifon, len,
827  fifo->dch, fifo->bch, fifo->ech);
828 
829  if (!len)
830  return;
831 
832  if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
833  printk(KERN_DEBUG "%s: %s: undefined channel\n",
834  hw->name, __func__);
835  return;
836  }
837 
838  spin_lock(&hw->lock);
839  if (fifo->dch) {
840  rx_skb = fifo->dch->rx_skb;
841  maxlen = fifo->dch->maxlen;
842  hdlc = 1;
843  }
844  if (fifo->bch) {
845  if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
846  fifo->bch->dropcnt += len;
847  spin_unlock(&hw->lock);
848  return;
849  }
850  maxlen = bchannel_get_rxbuf(fifo->bch, len);
851  rx_skb = fifo->bch->rx_skb;
852  if (maxlen < 0) {
853  if (rx_skb)
854  skb_trim(rx_skb, 0);
855  pr_warning("%s.B%d: No bufferspace for %d bytes\n",
856  hw->name, fifo->bch->nr, len);
857  spin_unlock(&hw->lock);
858  return;
859  }
860  maxlen = fifo->bch->maxlen;
861  hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
862  }
863  if (fifo->ech) {
864  rx_skb = fifo->ech->rx_skb;
865  maxlen = fifo->ech->maxlen;
866  hdlc = 1;
867  }
868 
869  if (fifo->dch || fifo->ech) {
870  if (!rx_skb) {
871  rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
872  if (rx_skb) {
873  if (fifo->dch)
874  fifo->dch->rx_skb = rx_skb;
875  if (fifo->ech)
876  fifo->ech->rx_skb = rx_skb;
877  skb_trim(rx_skb, 0);
878  } else {
879  printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
880  hw->name, __func__);
881  spin_unlock(&hw->lock);
882  return;
883  }
884  }
885  /* D/E-Channel SKB range check */
886  if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
887  printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
888  "for fifo(%d) HFCUSB_D_RX\n",
889  hw->name, __func__, fifon);
890  skb_trim(rx_skb, 0);
891  spin_unlock(&hw->lock);
892  return;
893  }
894  }
895 
896  memcpy(skb_put(rx_skb, len), data, len);
897 
898  if (hdlc) {
899  /* we have a complete hdlc packet */
900  if (finish) {
901  if ((rx_skb->len > 3) &&
902  (!(rx_skb->data[rx_skb->len - 1]))) {
903  if (debug & DBG_HFC_FIFO_VERBOSE) {
904  printk(KERN_DEBUG "%s: %s: fifon(%i)"
905  " new RX len(%i): ",
906  hw->name, __func__, fifon,
907  rx_skb->len);
908  i = 0;
909  while (i < rx_skb->len)
910  printk("%02x ",
911  rx_skb->data[i++]);
912  printk("\n");
913  }
914 
915  /* remove CRC & status */
916  skb_trim(rx_skb, rx_skb->len - 3);
917 
918  if (fifo->dch)
919  recv_Dchannel(fifo->dch);
920  if (fifo->bch)
922  0);
923  if (fifo->ech)
924  recv_Echannel(fifo->ech,
925  &hw->dch);
926  } else {
927  if (debug & DBG_HFC_FIFO_VERBOSE) {
929  "%s: CRC or minlen ERROR fifon(%i) "
930  "RX len(%i): ",
931  hw->name, fifon, rx_skb->len);
932  i = 0;
933  while (i < rx_skb->len)
934  printk("%02x ",
935  rx_skb->data[i++]);
936  printk("\n");
937  }
938  skb_trim(rx_skb, 0);
939  }
940  }
941  } else {
942  /* deliver transparent data to layer2 */
943  recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
944  }
945  spin_unlock(&hw->lock);
946 }
947 
948 static void
949 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
950  void *buf, int num_packets, int packet_size, int interval,
951  usb_complete_t complete, void *context)
952 {
953  int k;
954 
955  usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
956  complete, context);
957 
958  urb->number_of_packets = num_packets;
959  urb->transfer_flags = URB_ISO_ASAP;
960  urb->actual_length = 0;
961  urb->interval = interval;
962 
963  for (k = 0; k < num_packets; k++) {
964  urb->iso_frame_desc[k].offset = packet_size * k;
965  urb->iso_frame_desc[k].length = packet_size;
966  urb->iso_frame_desc[k].actual_length = 0;
967  }
968 }
969 
970 /* receive completion routine for all ISO tx fifos */
971 static void
972 rx_iso_complete(struct urb *urb)
973 {
974  struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
975  struct usb_fifo *fifo = context_iso_urb->owner_fifo;
976  struct hfcsusb *hw = fifo->hw;
977  int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
978  status, iso_status, i;
979  __u8 *buf;
980  static __u8 eof[8];
981  __u8 s0_state;
982 
983  fifon = fifo->fifonum;
984  status = urb->status;
985 
986  spin_lock(&hw->lock);
987  if (fifo->stop_gracefull) {
988  fifo->stop_gracefull = 0;
989  fifo->active = 0;
990  spin_unlock(&hw->lock);
991  return;
992  }
993  spin_unlock(&hw->lock);
994 
995  /*
996  * ISO transfer only partially completed,
997  * look at individual frame status for details
998  */
999  if (status == -EXDEV) {
1000  if (debug & DEBUG_HW)
1001  printk(KERN_DEBUG "%s: %s: with -EXDEV "
1002  "urb->status %d, fifonum %d\n",
1003  hw->name, __func__, status, fifon);
1004 
1005  /* clear status, so go on with ISO transfers */
1006  status = 0;
1007  }
1008 
1009  s0_state = 0;
1010  if (fifo->active && !status) {
1011  num_isoc_packets = iso_packets[fifon];
1012  maxlen = fifo->usb_packet_maxlen;
1013 
1014  for (k = 0; k < num_isoc_packets; ++k) {
1015  len = urb->iso_frame_desc[k].actual_length;
1016  offset = urb->iso_frame_desc[k].offset;
1017  buf = context_iso_urb->buffer + offset;
1018  iso_status = urb->iso_frame_desc[k].status;
1019 
1020  if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1021  printk(KERN_DEBUG "%s: %s: "
1022  "ISO packet %i, status: %i\n",
1023  hw->name, __func__, k, iso_status);
1024  }
1025 
1026  /* USB data log for every D ISO in */
1027  if ((fifon == HFCUSB_D_RX) &&
1028  (debug & DBG_HFC_USB_VERBOSE)) {
1030  "%s: %s: %d (%d/%d) len(%d) ",
1031  hw->name, __func__, urb->start_frame,
1032  k, num_isoc_packets - 1,
1033  len);
1034  for (i = 0; i < len; i++)
1035  printk("%x ", buf[i]);
1036  printk("\n");
1037  }
1038 
1039  if (!iso_status) {
1040  if (fifo->last_urblen != maxlen) {
1041  /*
1042  * save fifo fill-level threshold bits
1043  * to use them later in TX ISO URB
1044  * completions
1045  */
1046  hw->threshold_mask = buf[1];
1047 
1048  if (fifon == HFCUSB_D_RX)
1049  s0_state = (buf[0] >> 4);
1050 
1051  eof[fifon] = buf[0] & 1;
1052  if (len > 2)
1053  hfcsusb_rx_frame(fifo, buf + 2,
1054  len - 2, (len < maxlen)
1055  ? eof[fifon] : 0);
1056  } else
1057  hfcsusb_rx_frame(fifo, buf, len,
1058  (len < maxlen) ?
1059  eof[fifon] : 0);
1060  fifo->last_urblen = len;
1061  }
1062  }
1063 
1064  /* signal S0 layer1 state change */
1065  if ((s0_state) && (hw->initdone) &&
1066  (s0_state != hw->dch.state)) {
1067  hw->dch.state = s0_state;
1069  }
1070 
1071  fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1072  context_iso_urb->buffer, num_isoc_packets,
1073  fifo->usb_packet_maxlen, fifo->intervall,
1074  (usb_complete_t)rx_iso_complete, urb->context);
1076  if (errcode < 0) {
1077  if (debug & DEBUG_HW)
1078  printk(KERN_DEBUG "%s: %s: error submitting "
1079  "ISO URB: %d\n",
1080  hw->name, __func__, errcode);
1081  }
1082  } else {
1083  if (status && (debug & DBG_HFC_URB_INFO))
1084  printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1085  "urb->status %d, fifonum %d\n",
1086  hw->name, __func__, status, fifon);
1087  }
1088 }
1089 
1090 /* receive completion routine for all interrupt rx fifos */
1091 static void
1092 rx_int_complete(struct urb *urb)
1093 {
1094  int len, status, i;
1095  __u8 *buf, maxlen, fifon;
1096  struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1097  struct hfcsusb *hw = fifo->hw;
1098  static __u8 eof[8];
1099 
1100  spin_lock(&hw->lock);
1101  if (fifo->stop_gracefull) {
1102  fifo->stop_gracefull = 0;
1103  fifo->active = 0;
1104  spin_unlock(&hw->lock);
1105  return;
1106  }
1107  spin_unlock(&hw->lock);
1108 
1109  fifon = fifo->fifonum;
1110  if ((!fifo->active) || (urb->status)) {
1111  if (debug & DBG_HFC_URB_ERROR)
1113  "%s: %s: RX-Fifo %i is going down (%i)\n",
1114  hw->name, __func__, fifon, urb->status);
1115 
1116  fifo->urb->interval = 0; /* cancel automatic rescheduling */
1117  return;
1118  }
1119  len = urb->actual_length;
1120  buf = fifo->buffer;
1121  maxlen = fifo->usb_packet_maxlen;
1122 
1123  /* USB data log for every D INT in */
1124  if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1125  printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1126  hw->name, __func__, len);
1127  for (i = 0; i < len; i++)
1128  printk("%02x ", buf[i]);
1129  printk("\n");
1130  }
1131 
1132  if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1133  /* the threshold mask is in the 2nd status byte */
1134  hw->threshold_mask = buf[1];
1135 
1136  /* signal S0 layer1 state change */
1137  if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1138  hw->dch.state = (buf[0] >> 4);
1140  }
1141 
1142  eof[fifon] = buf[0] & 1;
1143  /* if we have more than the 2 status bytes -> collect data */
1144  if (len > 2)
1145  hfcsusb_rx_frame(fifo, buf + 2,
1146  urb->actual_length - 2,
1147  (len < maxlen) ? eof[fifon] : 0);
1148  } else {
1149  hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1150  (len < maxlen) ? eof[fifon] : 0);
1151  }
1152  fifo->last_urblen = urb->actual_length;
1153 
1154  status = usb_submit_urb(urb, GFP_ATOMIC);
1155  if (status) {
1156  if (debug & DEBUG_HW)
1157  printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1158  hw->name, __func__);
1159  }
1160 }
1161 
1162 /* transmit completion routine for all ISO tx fifos */
1163 static void
1164 tx_iso_complete(struct urb *urb)
1165 {
1166  struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1167  struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1168  struct hfcsusb *hw = fifo->hw;
1169  struct sk_buff *tx_skb;
1170  int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1171  errcode, hdlc, i;
1172  int *tx_idx;
1173  int frame_complete, fifon, status, fillempty = 0;
1174  __u8 threshbit, *p;
1175 
1176  spin_lock(&hw->lock);
1177  if (fifo->stop_gracefull) {
1178  fifo->stop_gracefull = 0;
1179  fifo->active = 0;
1180  spin_unlock(&hw->lock);
1181  return;
1182  }
1183 
1184  if (fifo->dch) {
1185  tx_skb = fifo->dch->tx_skb;
1186  tx_idx = &fifo->dch->tx_idx;
1187  hdlc = 1;
1188  } else if (fifo->bch) {
1189  tx_skb = fifo->bch->tx_skb;
1190  tx_idx = &fifo->bch->tx_idx;
1191  hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1192  if (!tx_skb && !hdlc &&
1193  test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1194  fillempty = 1;
1195  } else {
1196  printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1197  hw->name, __func__);
1198  spin_unlock(&hw->lock);
1199  return;
1200  }
1201 
1202  fifon = fifo->fifonum;
1203  status = urb->status;
1204 
1205  tx_offset = 0;
1206 
1207  /*
1208  * ISO transfer only partially completed,
1209  * look at individual frame status for details
1210  */
1211  if (status == -EXDEV) {
1212  if (debug & DBG_HFC_URB_ERROR)
1213  printk(KERN_DEBUG "%s: %s: "
1214  "-EXDEV (%i) fifon (%d)\n",
1215  hw->name, __func__, status, fifon);
1216 
1217  /* clear status, so go on with ISO transfers */
1218  status = 0;
1219  }
1220 
1221  if (fifo->active && !status) {
1222  /* is FifoFull-threshold set for our channel? */
1223  threshbit = (hw->threshold_mask & (1 << fifon));
1224  num_isoc_packets = iso_packets[fifon];
1225 
1226  /* predict dataflow to avoid fifo overflow */
1227  if (fifon >= HFCUSB_D_TX)
1228  sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1229  else
1230  sink = (threshbit) ? SINK_MIN : SINK_MAX;
1231  fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1232  context_iso_urb->buffer, num_isoc_packets,
1233  fifo->usb_packet_maxlen, fifo->intervall,
1234  (usb_complete_t)tx_iso_complete, urb->context);
1235  memset(context_iso_urb->buffer, 0,
1236  sizeof(context_iso_urb->buffer));
1237  frame_complete = 0;
1238 
1239  for (k = 0; k < num_isoc_packets; ++k) {
1240  /* analyze tx success of previous ISO packets */
1241  if (debug & DBG_HFC_URB_ERROR) {
1242  errcode = urb->iso_frame_desc[k].status;
1243  if (errcode) {
1244  printk(KERN_DEBUG "%s: %s: "
1245  "ISO packet %i, status: %i\n",
1246  hw->name, __func__, k, errcode);
1247  }
1248  }
1249 
1250  /* Generate next ISO Packets */
1251  if (tx_skb)
1252  remain = tx_skb->len - *tx_idx;
1253  else if (fillempty)
1254  remain = 15; /* > not complete */
1255  else
1256  remain = 0;
1257 
1258  if (remain > 0) {
1259  fifo->bit_line -= sink;
1260  current_len = (0 - fifo->bit_line) / 8;
1261  if (current_len > 14)
1262  current_len = 14;
1263  if (current_len < 0)
1264  current_len = 0;
1265  if (remain < current_len)
1266  current_len = remain;
1267 
1268  /* how much bit do we put on the line? */
1269  fifo->bit_line += current_len * 8;
1270 
1271  context_iso_urb->buffer[tx_offset] = 0;
1272  if (current_len == remain) {
1273  if (hdlc) {
1274  /* signal frame completion */
1275  context_iso_urb->
1276  buffer[tx_offset] = 1;
1277  /* add 2 byte flags and 16bit
1278  * CRC at end of ISDN frame */
1279  fifo->bit_line += 32;
1280  }
1281  frame_complete = 1;
1282  }
1283 
1284  /* copy tx data to iso-urb buffer */
1285  p = context_iso_urb->buffer + tx_offset + 1;
1286  if (fillempty) {
1287  memset(p, fifo->bch->fill[0],
1288  current_len);
1289  } else {
1290  memcpy(p, (tx_skb->data + *tx_idx),
1291  current_len);
1292  *tx_idx += current_len;
1293  }
1294  urb->iso_frame_desc[k].offset = tx_offset;
1295  urb->iso_frame_desc[k].length = current_len + 1;
1296 
1297  /* USB data log for every D ISO out */
1298  if ((fifon == HFCUSB_D_RX) && !fillempty &&
1299  (debug & DBG_HFC_USB_VERBOSE)) {
1301  "%s: %s (%d/%d) offs(%d) len(%d) ",
1302  hw->name, __func__,
1303  k, num_isoc_packets - 1,
1304  urb->iso_frame_desc[k].offset,
1305  urb->iso_frame_desc[k].length);
1306 
1307  for (i = urb->iso_frame_desc[k].offset;
1308  i < (urb->iso_frame_desc[k].offset
1309  + urb->iso_frame_desc[k].length);
1310  i++)
1311  printk("%x ",
1312  context_iso_urb->buffer[i]);
1313 
1314  printk(" skb->len(%i) tx-idx(%d)\n",
1315  tx_skb->len, *tx_idx);
1316  }
1317 
1318  tx_offset += (current_len + 1);
1319  } else {
1320  urb->iso_frame_desc[k].offset = tx_offset++;
1321  urb->iso_frame_desc[k].length = 1;
1322  /* we lower data margin every msec */
1323  fifo->bit_line -= sink;
1324  if (fifo->bit_line < BITLINE_INF)
1325  fifo->bit_line = BITLINE_INF;
1326  }
1327 
1328  if (frame_complete) {
1329  frame_complete = 0;
1330 
1331  if (debug & DBG_HFC_FIFO_VERBOSE) {
1332  printk(KERN_DEBUG "%s: %s: "
1333  "fifon(%i) new TX len(%i): ",
1334  hw->name, __func__,
1335  fifon, tx_skb->len);
1336  i = 0;
1337  while (i < tx_skb->len)
1338  printk("%02x ",
1339  tx_skb->data[i++]);
1340  printk("\n");
1341  }
1342 
1343  dev_kfree_skb(tx_skb);
1344  tx_skb = NULL;
1345  if (fifo->dch && get_next_dframe(fifo->dch))
1346  tx_skb = fifo->dch->tx_skb;
1347  else if (fifo->bch &&
1348  get_next_bframe(fifo->bch))
1349  tx_skb = fifo->bch->tx_skb;
1350  }
1351  }
1353  if (errcode < 0) {
1354  if (debug & DEBUG_HW)
1356  "%s: %s: error submitting ISO URB: %d \n",
1357  hw->name, __func__, errcode);
1358  }
1359 
1360  /*
1361  * abuse DChannel tx iso completion to trigger NT mode state
1362  * changes tx_iso_complete is assumed to be called every
1363  * fifo->intervall (ms)
1364  */
1365  if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1366  && (hw->timers & NT_ACTIVATION_TIMER)) {
1367  if ((--hw->nt_timer) < 0)
1369  }
1370 
1371  } else {
1372  if (status && (debug & DBG_HFC_URB_ERROR))
1373  printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1374  "fifonum=%d\n",
1375  hw->name, __func__,
1376  symbolic(urb_errlist, status), status, fifon);
1377  }
1378  spin_unlock(&hw->lock);
1379 }
1380 
1381 /*
1382  * allocs urbs and start isoc transfer with two pending urbs to avoid
1383  * gaps in the transfer chain
1384  */
1385 static int
1386 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1387  usb_complete_t complete, int packet_size)
1388 {
1389  struct hfcsusb *hw = fifo->hw;
1390  int i, k, errcode;
1391 
1392  if (debug)
1393  printk(KERN_DEBUG "%s: %s: fifo %i\n",
1394  hw->name, __func__, fifo->fifonum);
1395 
1396  /* allocate Memory for Iso out Urbs */
1397  for (i = 0; i < 2; i++) {
1398  if (!(fifo->iso[i].urb)) {
1399  fifo->iso[i].urb =
1400  usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1401  if (!(fifo->iso[i].urb)) {
1403  "%s: %s: alloc urb for fifo %i failed",
1404  hw->name, __func__, fifo->fifonum);
1405  }
1406  fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1407  fifo->iso[i].indx = i;
1408 
1409  /* Init the first iso */
1410  if (ISO_BUFFER_SIZE >=
1411  (fifo->usb_packet_maxlen *
1412  num_packets_per_urb)) {
1413  fill_isoc_urb(fifo->iso[i].urb,
1414  fifo->hw->dev, fifo->pipe,
1415  fifo->iso[i].buffer,
1416  num_packets_per_urb,
1417  fifo->usb_packet_maxlen,
1418  fifo->intervall, complete,
1419  &fifo->iso[i]);
1420  memset(fifo->iso[i].buffer, 0,
1421  sizeof(fifo->iso[i].buffer));
1422 
1423  for (k = 0; k < num_packets_per_urb; k++) {
1424  fifo->iso[i].urb->
1425  iso_frame_desc[k].offset =
1426  k * packet_size;
1427  fifo->iso[i].urb->
1428  iso_frame_desc[k].length =
1429  packet_size;
1430  }
1431  } else {
1433  "%s: %s: ISO Buffer size to small!\n",
1434  hw->name, __func__);
1435  }
1436  }
1437  fifo->bit_line = BITLINE_INF;
1438 
1439  errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1440  fifo->active = (errcode >= 0) ? 1 : 0;
1441  fifo->stop_gracefull = 0;
1442  if (errcode < 0) {
1443  printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1444  hw->name, __func__,
1445  symbolic(urb_errlist, errcode), i);
1446  }
1447  }
1448  return fifo->active;
1449 }
1450 
1451 static void
1452 stop_iso_gracefull(struct usb_fifo *fifo)
1453 {
1454  struct hfcsusb *hw = fifo->hw;
1455  int i, timeout;
1456  u_long flags;
1457 
1458  for (i = 0; i < 2; i++) {
1459  spin_lock_irqsave(&hw->lock, flags);
1460  if (debug)
1461  printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1462  hw->name, __func__, fifo->fifonum, i);
1463  fifo->stop_gracefull = 1;
1464  spin_unlock_irqrestore(&hw->lock, flags);
1465  }
1466 
1467  for (i = 0; i < 2; i++) {
1468  timeout = 3;
1469  while (fifo->stop_gracefull && timeout--)
1470  schedule_timeout_interruptible((HZ / 1000) * 16);
1471  if (debug && fifo->stop_gracefull)
1472  printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1473  hw->name, __func__, fifo->fifonum, i);
1474  }
1475 }
1476 
1477 static void
1478 stop_int_gracefull(struct usb_fifo *fifo)
1479 {
1480  struct hfcsusb *hw = fifo->hw;
1481  int timeout;
1482  u_long flags;
1483 
1484  spin_lock_irqsave(&hw->lock, flags);
1485  if (debug)
1486  printk(KERN_DEBUG "%s: %s for fifo %i\n",
1487  hw->name, __func__, fifo->fifonum);
1488  fifo->stop_gracefull = 1;
1489  spin_unlock_irqrestore(&hw->lock, flags);
1490 
1491  timeout = 3;
1492  while (fifo->stop_gracefull && timeout--)
1493  schedule_timeout_interruptible((HZ / 1000) * 3);
1494  if (debug && fifo->stop_gracefull)
1495  printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1496  hw->name, __func__, fifo->fifonum);
1497 }
1498 
1499 /* start the interrupt transfer for the given fifo */
1500 static void
1501 start_int_fifo(struct usb_fifo *fifo)
1502 {
1503  struct hfcsusb *hw = fifo->hw;
1504  int errcode;
1505 
1506  if (debug)
1507  printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1508  hw->name, __func__, fifo->fifonum);
1509 
1510  if (!fifo->urb) {
1511  fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1512  if (!fifo->urb)
1513  return;
1514  }
1515  usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1516  fifo->buffer, fifo->usb_packet_maxlen,
1517  (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1518  fifo->active = 1;
1519  fifo->stop_gracefull = 0;
1520  errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1521  if (errcode) {
1522  printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1523  hw->name, __func__, errcode);
1524  fifo->active = 0;
1525  }
1526 }
1527 
1528 static void
1529 setPortMode(struct hfcsusb *hw)
1530 {
1531  if (debug & DEBUG_HW)
1532  printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1533  (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1534 
1535  if (hw->protocol == ISDN_P_TE_S0) {
1536  write_reg(hw, HFCUSB_SCTRL, 0x40);
1537  write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1539  write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1540  write_reg(hw, HFCUSB_STATES, 3);
1541  } else {
1542  write_reg(hw, HFCUSB_SCTRL, 0x44);
1543  write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1545  write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1546  write_reg(hw, HFCUSB_STATES, 1);
1547  }
1548 }
1549 
1550 static void
1551 reset_hfcsusb(struct hfcsusb *hw)
1552 {
1553  struct usb_fifo *fifo;
1554  int i;
1555 
1556  if (debug & DEBUG_HW)
1557  printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1558 
1559  /* do Chip reset */
1560  write_reg(hw, HFCUSB_CIRM, 8);
1561 
1562  /* aux = output, reset off */
1563  write_reg(hw, HFCUSB_CIRM, 0x10);
1564 
1565  /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1566  write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1567  ((hw->packet_size / 8) << 4));
1568 
1569  /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1571 
1572  /* enable PCM/GCI master mode */
1573  write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1574  write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1575 
1576  /* init the fifos */
1578  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1579 
1580  fifo = hw->fifos;
1581  for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1582  write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1583  fifo[i].max_size =
1585  fifo[i].last_urblen = 0;
1586 
1587  /* set 2 bit for D- & E-channel */
1588  write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1589 
1590  /* enable all fifos */
1591  if (i == HFCUSB_D_TX)
1593  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1594  else
1595  write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1596  write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1597  }
1598 
1599  write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1600  handle_led(hw, LED_POWER_ON);
1601 }
1602 
1603 /* start USB data pipes dependand on device's endpoint configuration */
1604 static void
1605 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1606 {
1607  /* quick check if endpoint already running */
1608  if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1609  return;
1610  if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1611  return;
1612  if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1613  return;
1614  if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1615  return;
1616 
1617  /* start rx endpoints using USB INT IN method */
1618  if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1619  start_int_fifo(hw->fifos + channel * 2 + 1);
1620 
1621  /* start rx endpoints using USB ISO IN method */
1622  if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1623  switch (channel) {
1624  case HFC_CHAN_D:
1625  start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1627  (usb_complete_t)rx_iso_complete,
1628  16);
1629  break;
1630  case HFC_CHAN_E:
1631  start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1633  (usb_complete_t)rx_iso_complete,
1634  16);
1635  break;
1636  case HFC_CHAN_B1:
1637  start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1639  (usb_complete_t)rx_iso_complete,
1640  16);
1641  break;
1642  case HFC_CHAN_B2:
1643  start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1645  (usb_complete_t)rx_iso_complete,
1646  16);
1647  break;
1648  }
1649  }
1650 
1651  /* start tx endpoints using USB ISO OUT method */
1652  switch (channel) {
1653  case HFC_CHAN_D:
1654  start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1656  (usb_complete_t)tx_iso_complete, 1);
1657  break;
1658  case HFC_CHAN_B1:
1659  start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1661  (usb_complete_t)tx_iso_complete, 1);
1662  break;
1663  case HFC_CHAN_B2:
1664  start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1666  (usb_complete_t)tx_iso_complete, 1);
1667  break;
1668  }
1669 }
1670 
1671 /* stop USB data pipes dependand on device's endpoint configuration */
1672 static void
1673 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1674 {
1675  /* quick check if endpoint currently running */
1676  if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1677  return;
1678  if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1679  return;
1680  if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1681  return;
1682  if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1683  return;
1684 
1685  /* rx endpoints using USB INT IN method */
1686  if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1687  stop_int_gracefull(hw->fifos + channel * 2 + 1);
1688 
1689  /* rx endpoints using USB ISO IN method */
1690  if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1691  stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1692 
1693  /* tx endpoints using USB ISO OUT method */
1694  if (channel != HFC_CHAN_E)
1695  stop_iso_gracefull(hw->fifos + channel * 2);
1696 }
1697 
1698 
1699 /* Hardware Initialization */
1700 static int
1701 setup_hfcsusb(struct hfcsusb *hw)
1702 {
1703  u_char b;
1704 
1705  if (debug & DBG_HFC_CALL_TRACE)
1706  printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1707 
1708  /* check the chip id */
1709  if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1710  printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1711  hw->name, __func__);
1712  return 1;
1713  }
1714  if (b != HFCUSB_CHIPID) {
1715  printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1716  hw->name, __func__, b);
1717  return 1;
1718  }
1719 
1720  /* first set the needed config, interface and alternate */
1721  (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1722 
1723  hw->led_state = 0;
1724 
1725  /* init the background machinery for control requests */
1726  hw->ctrl_read.bRequestType = 0xc0;
1727  hw->ctrl_read.bRequest = 1;
1728  hw->ctrl_read.wLength = cpu_to_le16(1);
1729  hw->ctrl_write.bRequestType = 0x40;
1730  hw->ctrl_write.bRequest = 0;
1731  hw->ctrl_write.wLength = 0;
1732  usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1733  (u_char *)&hw->ctrl_write, NULL, 0,
1734  (usb_complete_t)ctrl_complete, hw);
1735 
1736  reset_hfcsusb(hw);
1737  return 0;
1738 }
1739 
1740 static void
1741 release_hw(struct hfcsusb *hw)
1742 {
1743  if (debug & DBG_HFC_CALL_TRACE)
1744  printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1745 
1746  /*
1747  * stop all endpoints gracefully
1748  * TODO: mISDN_core should generate CLOSE_CHANNEL
1749  * signals after calling mISDN_unregister_device()
1750  */
1751  hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1752  hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1753  hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1754  if (hw->fifos[HFCUSB_PCM_RX].pipe)
1755  hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1756  if (hw->protocol == ISDN_P_TE_S0)
1757  l1_event(hw->dch.l1, CLOSE_CHANNEL);
1758 
1759  mISDN_unregister_device(&hw->dch.dev);
1760  mISDN_freebchannel(&hw->bch[1]);
1761  mISDN_freebchannel(&hw->bch[0]);
1762  mISDN_freedchannel(&hw->dch);
1763 
1764  if (hw->ctrl_urb) {
1765  usb_kill_urb(hw->ctrl_urb);
1766  usb_free_urb(hw->ctrl_urb);
1767  hw->ctrl_urb = NULL;
1768  }
1769 
1770  if (hw->intf)
1771  usb_set_intfdata(hw->intf, NULL);
1772  list_del(&hw->list);
1773  kfree(hw);
1774  hw = NULL;
1775 }
1776 
1777 static void
1778 deactivate_bchannel(struct bchannel *bch)
1779 {
1780  struct hfcsusb *hw = bch->hw;
1781  u_long flags;
1782 
1783  if (bch->debug & DEBUG_HW)
1784  printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1785  hw->name, __func__, bch->nr);
1786 
1787  spin_lock_irqsave(&hw->lock, flags);
1788  mISDN_clear_bchannel(bch);
1789  spin_unlock_irqrestore(&hw->lock, flags);
1790  hfcsusb_setup_bch(bch, ISDN_P_NONE);
1791  hfcsusb_stop_endpoint(hw, bch->nr - 1);
1792 }
1793 
1794 /*
1795  * Layer 1 B-channel hardware access
1796  */
1797 static int
1798 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1799 {
1800  struct bchannel *bch = container_of(ch, struct bchannel, ch);
1801  int ret = -EINVAL;
1802 
1803  if (bch->debug & DEBUG_HW)
1804  printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1805 
1806  switch (cmd) {
1807  case HW_TESTRX_RAW:
1808  case HW_TESTRX_HDLC:
1809  case HW_TESTRX_OFF:
1810  ret = -EINVAL;
1811  break;
1812 
1813  case CLOSE_CHANNEL:
1815  deactivate_bchannel(bch);
1816  ch->protocol = ISDN_P_NONE;
1817  ch->peer = NULL;
1818  module_put(THIS_MODULE);
1819  ret = 0;
1820  break;
1821  case CONTROL_CHANNEL:
1822  ret = channel_bctrl(bch, arg);
1823  break;
1824  default:
1825  printk(KERN_WARNING "%s: unknown prim(%x)\n",
1826  __func__, cmd);
1827  }
1828  return ret;
1829 }
1830 
1831 static int
1832 setup_instance(struct hfcsusb *hw, struct device *parent)
1833 {
1834  u_long flags;
1835  int err, i;
1836 
1837  if (debug & DBG_HFC_CALL_TRACE)
1838  printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1839 
1840  spin_lock_init(&hw->ctrl_lock);
1841  spin_lock_init(&hw->lock);
1842 
1843  mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1844  hw->dch.debug = debug & 0xFFFF;
1845  hw->dch.hw = hw;
1846  hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1847  hw->dch.dev.D.send = hfcusb_l2l1D;
1848  hw->dch.dev.D.ctrl = hfc_dctrl;
1849 
1850  /* enable E-Channel logging */
1851  if (hw->fifos[HFCUSB_PCM_RX].pipe)
1853 
1854  hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1855  (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1856  hw->dch.dev.nrbchan = 2;
1857  for (i = 0; i < 2; i++) {
1858  hw->bch[i].nr = i + 1;
1859  set_channelmap(i + 1, hw->dch.dev.channelmap);
1860  hw->bch[i].debug = debug;
1861  mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1862  hw->bch[i].hw = hw;
1863  hw->bch[i].ch.send = hfcusb_l2l1B;
1864  hw->bch[i].ch.ctrl = hfc_bctrl;
1865  hw->bch[i].ch.nr = i + 1;
1866  list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1867  }
1868 
1869  hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1870  hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1871  hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1872  hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1873  hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1874  hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1875  hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1876  hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1877 
1878  err = setup_hfcsusb(hw);
1879  if (err)
1880  goto out;
1881 
1882  snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1883  hfcsusb_cnt + 1);
1884  printk(KERN_INFO "%s: registered as '%s'\n",
1885  DRIVER_NAME, hw->name);
1886 
1887  err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1888  if (err)
1889  goto out;
1890 
1891  hfcsusb_cnt++;
1892  write_lock_irqsave(&HFClock, flags);
1893  list_add_tail(&hw->list, &HFClist);
1894  write_unlock_irqrestore(&HFClock, flags);
1895  return 0;
1896 
1897 out:
1898  mISDN_freebchannel(&hw->bch[1]);
1899  mISDN_freebchannel(&hw->bch[0]);
1900  mISDN_freedchannel(&hw->dch);
1901  kfree(hw);
1902  return err;
1903 }
1904 
1905 static int
1906 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1907 {
1908  struct hfcsusb *hw;
1909  struct usb_device *dev = interface_to_usbdev(intf);
1910  struct usb_host_interface *iface = intf->cur_altsetting;
1911  struct usb_host_interface *iface_used = NULL;
1912  struct usb_host_endpoint *ep;
1913  struct hfcsusb_vdata *driver_info;
1914  int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1915  probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1916  ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1917  alt_used = 0;
1918 
1919  vend_idx = 0xffff;
1920  for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1921  if ((le16_to_cpu(dev->descriptor.idVendor)
1922  == hfcsusb_idtab[i].idVendor) &&
1923  (le16_to_cpu(dev->descriptor.idProduct)
1924  == hfcsusb_idtab[i].idProduct)) {
1925  vend_idx = i;
1926  continue;
1927  }
1928  }
1929 
1931  "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1932  __func__, ifnum, iface->desc.bAlternateSetting,
1933  intf->minor, vend_idx);
1934 
1935  if (vend_idx == 0xffff) {
1937  "%s: no valid vendor found in USB descriptor\n",
1938  __func__);
1939  return -EIO;
1940  }
1941  /* if vendor and product ID is OK, start probing alternate settings */
1942  alt_idx = 0;
1943  small_match = -1;
1944 
1945  /* default settings */
1946  iso_packet_size = 16;
1947  packet_size = 64;
1948 
1949  while (alt_idx < intf->num_altsetting) {
1950  iface = intf->altsetting + alt_idx;
1951  probe_alt_setting = iface->desc.bAlternateSetting;
1952  cfg_used = 0;
1953 
1954  while (validconf[cfg_used][0]) {
1955  cfg_found = 1;
1956  vcf = validconf[cfg_used];
1957  ep = iface->endpoint;
1958  memcpy(cmptbl, vcf, 16 * sizeof(int));
1959 
1960  /* check for all endpoints in this alternate setting */
1961  for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1962  ep_addr = ep->desc.bEndpointAddress;
1963 
1964  /* get endpoint base */
1965  idx = ((ep_addr & 0x7f) - 1) * 2;
1966  if (ep_addr & 0x80)
1967  idx++;
1968  attr = ep->desc.bmAttributes;
1969 
1970  if (cmptbl[idx] != EP_NOP) {
1971  if (cmptbl[idx] == EP_NUL)
1972  cfg_found = 0;
1973  if (attr == USB_ENDPOINT_XFER_INT
1974  && cmptbl[idx] == EP_INT)
1975  cmptbl[idx] = EP_NUL;
1976  if (attr == USB_ENDPOINT_XFER_BULK
1977  && cmptbl[idx] == EP_BLK)
1978  cmptbl[idx] = EP_NUL;
1979  if (attr == USB_ENDPOINT_XFER_ISOC
1980  && cmptbl[idx] == EP_ISO)
1981  cmptbl[idx] = EP_NUL;
1982 
1983  if (attr == USB_ENDPOINT_XFER_INT &&
1984  ep->desc.bInterval < vcf[17]) {
1985  cfg_found = 0;
1986  }
1987  }
1988  ep++;
1989  }
1990 
1991  for (i = 0; i < 16; i++)
1992  if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1993  cfg_found = 0;
1994 
1995  if (cfg_found) {
1996  if (small_match < cfg_used) {
1997  small_match = cfg_used;
1998  alt_used = probe_alt_setting;
1999  iface_used = iface;
2000  }
2001  }
2002  cfg_used++;
2003  }
2004  alt_idx++;
2005  } /* (alt_idx < intf->num_altsetting) */
2006 
2007  /* not found a valid USB Ta Endpoint config */
2008  if (small_match == -1)
2009  return -EIO;
2010 
2011  iface = iface_used;
2012  hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2013  if (!hw)
2014  return -ENOMEM; /* got no mem */
2015  snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2016 
2017  ep = iface->endpoint;
2018  vcf = validconf[small_match];
2019 
2020  for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2021  struct usb_fifo *f;
2022 
2023  ep_addr = ep->desc.bEndpointAddress;
2024  /* get endpoint base */
2025  idx = ((ep_addr & 0x7f) - 1) * 2;
2026  if (ep_addr & 0x80)
2027  idx++;
2028  f = &hw->fifos[idx & 7];
2029 
2030  /* init Endpoints */
2031  if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2032  ep++;
2033  continue;
2034  }
2035  switch (ep->desc.bmAttributes) {
2036  case USB_ENDPOINT_XFER_INT:
2037  f->pipe = usb_rcvintpipe(dev,
2038  ep->desc.bEndpointAddress);
2040  packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2041  break;
2043  if (ep_addr & 0x80)
2044  f->pipe = usb_rcvbulkpipe(dev,
2045  ep->desc.bEndpointAddress);
2046  else
2047  f->pipe = usb_sndbulkpipe(dev,
2048  ep->desc.bEndpointAddress);
2050  packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2051  break;
2053  if (ep_addr & 0x80)
2054  f->pipe = usb_rcvisocpipe(dev,
2055  ep->desc.bEndpointAddress);
2056  else
2057  f->pipe = usb_sndisocpipe(dev,
2058  ep->desc.bEndpointAddress);
2060  iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2061  break;
2062  default:
2063  f->pipe = 0;
2064  }
2065 
2066  if (f->pipe) {
2067  f->fifonum = idx & 7;
2068  f->hw = hw;
2069  f->usb_packet_maxlen =
2070  le16_to_cpu(ep->desc.wMaxPacketSize);
2071  f->intervall = ep->desc.bInterval;
2072  }
2073  ep++;
2074  }
2075  hw->dev = dev; /* save device */
2076  hw->if_used = ifnum; /* save used interface */
2077  hw->alt_used = alt_used; /* and alternate config */
2078  hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2079  hw->cfg_used = vcf[16]; /* store used config */
2080  hw->vend_idx = vend_idx; /* store found vendor */
2081  hw->packet_size = packet_size;
2082  hw->iso_packet_size = iso_packet_size;
2083 
2084  /* create the control pipes needed for register access */
2085  hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2086  hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2087 
2088  driver_info = (struct hfcsusb_vdata *)
2089  hfcsusb_idtab[vend_idx].driver_info;
2090 
2091  hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2092  if (!hw->ctrl_urb) {
2093  pr_warn("%s: No memory for control urb\n",
2094  driver_info->vend_name);
2095  kfree(hw);
2096  return -ENOMEM;
2097  }
2098 
2099  pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2100  hw->name, __func__, driver_info->vend_name,
2101  conf_str[small_match], ifnum, alt_used);
2102 
2103  if (setup_instance(hw, dev->dev.parent))
2104  return -EIO;
2105 
2106  hw->intf = intf;
2107  usb_set_intfdata(hw->intf, hw);
2108  return 0;
2109 }
2110 
2111 /* function called when an active device is removed */
2112 static void
2113 hfcsusb_disconnect(struct usb_interface *intf)
2114 {
2115  struct hfcsusb *hw = usb_get_intfdata(intf);
2116  struct hfcsusb *next;
2117  int cnt = 0;
2118 
2119  printk(KERN_INFO "%s: device disconnected\n", hw->name);
2120 
2121  handle_led(hw, LED_POWER_OFF);
2122  release_hw(hw);
2123 
2124  list_for_each_entry_safe(hw, next, &HFClist, list)
2125  cnt++;
2126  if (!cnt)
2127  hfcsusb_cnt = 0;
2128 
2129  usb_set_intfdata(intf, NULL);
2130 }
2131 
2132 static struct usb_driver hfcsusb_drv = {
2133  .name = DRIVER_NAME,
2134  .id_table = hfcsusb_idtab,
2135  .probe = hfcsusb_probe,
2136  .disconnect = hfcsusb_disconnect,
2137  .disable_hub_initiated_lpm = 1,
2138 };
2139 
2140 module_usb_driver(hfcsusb_drv);