Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
imx-sdma.c
Go to the documentation of this file.
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <[email protected]>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 
40 #include <asm/irq.h>
43 #include <mach/hardware.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE 0x01
82 #define BD_WRAP 0x02
83 #define BD_CONT 0x04
84 #define BD_INTR 0x08
85 #define BD_RROR 0x10
86 #define BD_LAST 0x20
87 #define BD_EXTD 0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
94 #define DND_DONE 0x20
95 #define DND_UNUSED 0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME 0x40
101 
102 #define IPCV2_MAX_NODES 50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR 0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR 0x01
113 #define C0_LOAD 0x02
114 #define C0_DUMP 0x03
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS 0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
130  u32 count : 16; /* size of the buffer pointed by this BD */
131  u32 status : 8; /* E,R,I,C,W,D status bits stored here */
132  u32 command : 8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
140  u32 buffer_addr; /* address of the buffer described */
141  u32 ext_buffer_addr; /* extended buffer address */
142 } __attribute__ ((packed));
156 } __attribute__ ((packed));
171  u32 pc :14;
173  u32 t : 1;
174  u32 rpc :14;
176  u32 sf : 1;
177  u32 spc :14;
179  u32 df : 1;
180  u32 epc :14;
181  u32 lm : 2;
182 } __attribute__ ((packed));
206  u32 gReg[8];
229 } __attribute__ ((packed));
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
233 struct sdma_engine;
249 struct sdma_channel {
250  struct sdma_engine *sdma;
251  unsigned int channel;
254  unsigned int event_id0;
255  unsigned int event_id1;
257  unsigned int buf_tail;
258  struct completion done;
259  unsigned int num_bd;
263  unsigned long flags;
265  unsigned long event_mask[2];
266  unsigned long watermark_level;
268  struct dma_chan chan;
272  unsigned int chn_count;
273  unsigned int chn_real_count;
275 };
276 
277 #define IMX_DMA_SG_LOOP BIT(0)
278 
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283 
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285 
308 };
309 
311  IMX31_SDMA, /* runs on i.mx31 */
312  IMX35_SDMA, /* runs on i.mx35 and later */
313 };
314 
315 struct sdma_engine {
316  struct device *dev;
320  void __iomem *regs;
322  unsigned int num_events;
326  struct clk *clk_ipg;
327  struct clk *clk_ahb;
330 };
331 
332 static struct platform_device_id sdma_devtypes[] = {
333  {
334  .name = "imx31-sdma",
335  .driver_data = IMX31_SDMA,
336  }, {
337  .name = "imx35-sdma",
338  .driver_data = IMX35_SDMA,
339  }, {
340  /* sentinel */
341  }
342 };
343 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
344 
345 static const struct of_device_id sdma_dt_ids[] = {
346  { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
347  { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
348  { /* sentinel */ }
349 };
350 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
351 
352 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
353 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
354 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
355 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
356 
357 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
358 {
359  u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
361  return chnenbl0 + event * 4;
362 }
363 
364 static int sdma_config_ownership(struct sdma_channel *sdmac,
365  bool event_override, bool mcu_override, bool dsp_override)
366 {
367  struct sdma_engine *sdma = sdmac->sdma;
368  int channel = sdmac->channel;
369  unsigned long evt, mcu, dsp;
370 
371  if (event_override && mcu_override && dsp_override)
372  return -EINVAL;
373 
374  evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
375  mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
376  dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
377 
378  if (dsp_override)
379  __clear_bit(channel, &dsp);
380  else
381  __set_bit(channel, &dsp);
382 
383  if (event_override)
384  __clear_bit(channel, &evt);
385  else
386  __set_bit(channel, &evt);
387 
388  if (mcu_override)
389  __clear_bit(channel, &mcu);
390  else
391  __set_bit(channel, &mcu);
392 
393  writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
394  writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
395  writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
396 
397  return 0;
398 }
399 
400 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
401 {
402  writel(BIT(channel), sdma->regs + SDMA_H_START);
403 }
404 
405 /*
406  * sdma_run_channel0 - run a channel and wait till it's done
407  */
408 static int sdma_run_channel0(struct sdma_engine *sdma)
409 {
410  int ret;
411  unsigned long timeout = 500;
412 
413  sdma_enable_channel(sdma, 0);
414 
415  while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
416  if (timeout-- <= 0)
417  break;
418  udelay(1);
419  }
420 
421  if (ret) {
422  /* Clear the interrupt status */
423  writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
424  } else {
425  dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
426  }
427 
428  return ret ? 0 : -ETIMEDOUT;
429 }
430 
431 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
432  u32 address)
433 {
434  struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
435  void *buf_virt;
436  dma_addr_t buf_phys;
437  int ret;
438  unsigned long flags;
439 
440  buf_virt = dma_alloc_coherent(NULL,
441  size,
442  &buf_phys, GFP_KERNEL);
443  if (!buf_virt) {
444  return -ENOMEM;
445  }
446 
447  spin_lock_irqsave(&sdma->channel_0_lock, flags);
448 
449  bd0->mode.command = C0_SETPM;
450  bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
451  bd0->mode.count = size / 2;
452  bd0->buffer_addr = buf_phys;
453  bd0->ext_buffer_addr = address;
454 
455  memcpy(buf_virt, buf, size);
456 
457  ret = sdma_run_channel0(sdma);
458 
459  spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
460 
461  dma_free_coherent(NULL, size, buf_virt, buf_phys);
462 
463  return ret;
464 }
465 
466 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
467 {
468  struct sdma_engine *sdma = sdmac->sdma;
469  int channel = sdmac->channel;
470  unsigned long val;
471  u32 chnenbl = chnenbl_ofs(sdma, event);
472 
473  val = readl_relaxed(sdma->regs + chnenbl);
474  __set_bit(channel, &val);
475  writel_relaxed(val, sdma->regs + chnenbl);
476 }
477 
478 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
479 {
480  struct sdma_engine *sdma = sdmac->sdma;
481  int channel = sdmac->channel;
482  u32 chnenbl = chnenbl_ofs(sdma, event);
483  unsigned long val;
484 
485  val = readl_relaxed(sdma->regs + chnenbl);
486  __clear_bit(channel, &val);
487  writel_relaxed(val, sdma->regs + chnenbl);
488 }
489 
490 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
491 {
492  struct sdma_buffer_descriptor *bd;
493 
494  /*
495  * loop mode. Iterate over descriptors, re-setup them and
496  * call callback function.
497  */
498  while (1) {
499  bd = &sdmac->bd[sdmac->buf_tail];
500 
501  if (bd->mode.status & BD_DONE)
502  break;
503 
504  if (bd->mode.status & BD_RROR)
505  sdmac->status = DMA_ERROR;
506  else
507  sdmac->status = DMA_IN_PROGRESS;
508 
509  bd->mode.status |= BD_DONE;
510  sdmac->buf_tail++;
511  sdmac->buf_tail %= sdmac->num_bd;
512 
513  if (sdmac->desc.callback)
514  sdmac->desc.callback(sdmac->desc.callback_param);
515  }
516 }
517 
518 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
519 {
520  struct sdma_buffer_descriptor *bd;
521  int i, error = 0;
522 
523  sdmac->chn_real_count = 0;
524  /*
525  * non loop mode. Iterate over all descriptors, collect
526  * errors and call callback function
527  */
528  for (i = 0; i < sdmac->num_bd; i++) {
529  bd = &sdmac->bd[i];
530 
531  if (bd->mode.status & (BD_DONE | BD_RROR))
532  error = -EIO;
533  sdmac->chn_real_count += bd->mode.count;
534  }
535 
536  if (error)
537  sdmac->status = DMA_ERROR;
538  else
539  sdmac->status = DMA_SUCCESS;
540 
541  dma_cookie_complete(&sdmac->desc);
542  if (sdmac->desc.callback)
543  sdmac->desc.callback(sdmac->desc.callback_param);
544 }
545 
546 static void sdma_tasklet(unsigned long data)
547 {
548  struct sdma_channel *sdmac = (struct sdma_channel *) data;
549 
550  complete(&sdmac->done);
551 
552  if (sdmac->flags & IMX_DMA_SG_LOOP)
553  sdma_handle_channel_loop(sdmac);
554  else
555  mxc_sdma_handle_channel_normal(sdmac);
556 }
557 
558 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
559 {
560  struct sdma_engine *sdma = dev_id;
561  unsigned long stat;
562 
563  stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
564  /* not interested in channel 0 interrupts */
565  stat &= ~1;
566  writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
567 
568  while (stat) {
569  int channel = fls(stat) - 1;
570  struct sdma_channel *sdmac = &sdma->channel[channel];
571 
572  tasklet_schedule(&sdmac->tasklet);
573 
574  __clear_bit(channel, &stat);
575  }
576 
577  return IRQ_HANDLED;
578 }
579 
580 /*
581  * sets the pc of SDMA script according to the peripheral type
582  */
583 static void sdma_get_pc(struct sdma_channel *sdmac,
585 {
586  struct sdma_engine *sdma = sdmac->sdma;
587  int per_2_emi = 0, emi_2_per = 0;
588  /*
589  * These are needed once we start to support transfers between
590  * two peripherals or memory-to-memory transfers
591  */
592  int per_2_per = 0, emi_2_emi = 0;
593 
594  sdmac->pc_from_device = 0;
595  sdmac->pc_to_device = 0;
596 
597  switch (peripheral_type) {
598  case IMX_DMATYPE_MEMORY:
599  emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
600  break;
601  case IMX_DMATYPE_DSP:
602  emi_2_per = sdma->script_addrs->bp_2_ap_addr;
603  per_2_emi = sdma->script_addrs->ap_2_bp_addr;
604  break;
605  case IMX_DMATYPE_FIRI:
606  per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
607  emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
608  break;
609  case IMX_DMATYPE_UART:
610  per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
611  emi_2_per = sdma->script_addrs->mcu_2_app_addr;
612  break;
613  case IMX_DMATYPE_UART_SP:
614  per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
615  emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
616  break;
617  case IMX_DMATYPE_ATA:
618  per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
619  emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
620  break;
621  case IMX_DMATYPE_CSPI:
622  case IMX_DMATYPE_EXT:
623  case IMX_DMATYPE_SSI:
624  per_2_emi = sdma->script_addrs->app_2_mcu_addr;
625  emi_2_per = sdma->script_addrs->mcu_2_app_addr;
626  break;
627  case IMX_DMATYPE_SSI_SP:
628  case IMX_DMATYPE_MMC:
629  case IMX_DMATYPE_SDHC:
630  case IMX_DMATYPE_CSPI_SP:
631  case IMX_DMATYPE_ESAI:
632  case IMX_DMATYPE_MSHC_SP:
633  per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
634  emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
635  break;
636  case IMX_DMATYPE_ASRC:
637  per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
638  emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
639  per_2_per = sdma->script_addrs->per_2_per_addr;
640  break;
641  case IMX_DMATYPE_MSHC:
642  per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
643  emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
644  break;
645  case IMX_DMATYPE_CCM:
646  per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
647  break;
648  case IMX_DMATYPE_SPDIF:
649  per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
650  emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
651  break;
653  emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
654  break;
655  default:
656  break;
657  }
658 
659  sdmac->pc_from_device = per_2_emi;
660  sdmac->pc_to_device = emi_2_per;
661 }
662 
663 static int sdma_load_context(struct sdma_channel *sdmac)
664 {
665  struct sdma_engine *sdma = sdmac->sdma;
666  int channel = sdmac->channel;
667  int load_address;
668  struct sdma_context_data *context = sdma->context;
669  struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
670  int ret;
671  unsigned long flags;
672 
673  if (sdmac->direction == DMA_DEV_TO_MEM) {
674  load_address = sdmac->pc_from_device;
675  } else {
676  load_address = sdmac->pc_to_device;
677  }
678 
679  if (load_address < 0)
680  return load_address;
681 
682  dev_dbg(sdma->dev, "load_address = %d\n", load_address);
683  dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
684  dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
685  dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
686  dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
687  dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
688 
689  spin_lock_irqsave(&sdma->channel_0_lock, flags);
690 
691  memset(context, 0, sizeof(*context));
692  context->channel_state.pc = load_address;
693 
694  /* Send by context the event mask,base address for peripheral
695  * and watermark level
696  */
697  context->gReg[0] = sdmac->event_mask[1];
698  context->gReg[1] = sdmac->event_mask[0];
699  context->gReg[2] = sdmac->per_addr;
700  context->gReg[6] = sdmac->shp_addr;
701  context->gReg[7] = sdmac->watermark_level;
702 
703  bd0->mode.command = C0_SETDM;
704  bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
705  bd0->mode.count = sizeof(*context) / 4;
706  bd0->buffer_addr = sdma->context_phys;
707  bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
708  ret = sdma_run_channel0(sdma);
709 
710  spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
711 
712  return ret;
713 }
714 
715 static void sdma_disable_channel(struct sdma_channel *sdmac)
716 {
717  struct sdma_engine *sdma = sdmac->sdma;
718  int channel = sdmac->channel;
719 
720  writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
721  sdmac->status = DMA_ERROR;
722 }
723 
724 static int sdma_config_channel(struct sdma_channel *sdmac)
725 {
726  int ret;
727 
728  sdma_disable_channel(sdmac);
729 
730  sdmac->event_mask[0] = 0;
731  sdmac->event_mask[1] = 0;
732  sdmac->shp_addr = 0;
733  sdmac->per_addr = 0;
734 
735  if (sdmac->event_id0) {
736  if (sdmac->event_id0 >= sdmac->sdma->num_events)
737  return -EINVAL;
738  sdma_event_enable(sdmac, sdmac->event_id0);
739  }
740 
741  switch (sdmac->peripheral_type) {
742  case IMX_DMATYPE_DSP:
743  sdma_config_ownership(sdmac, false, true, true);
744  break;
745  case IMX_DMATYPE_MEMORY:
746  sdma_config_ownership(sdmac, false, true, false);
747  break;
748  default:
749  sdma_config_ownership(sdmac, true, true, false);
750  break;
751  }
752 
753  sdma_get_pc(sdmac, sdmac->peripheral_type);
754 
755  if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
756  (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
757  /* Handle multiple event channels differently */
758  if (sdmac->event_id1) {
759  sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
760  if (sdmac->event_id1 > 31)
761  __set_bit(31, &sdmac->watermark_level);
762  sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
763  if (sdmac->event_id0 > 31)
764  __set_bit(30, &sdmac->watermark_level);
765  } else {
766  __set_bit(sdmac->event_id0, sdmac->event_mask);
767  }
768  /* Watermark Level */
769  sdmac->watermark_level |= sdmac->watermark_level;
770  /* Address */
771  sdmac->shp_addr = sdmac->per_address;
772  } else {
773  sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
774  }
775 
776  ret = sdma_load_context(sdmac);
777 
778  return ret;
779 }
780 
781 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
782  unsigned int priority)
783 {
784  struct sdma_engine *sdma = sdmac->sdma;
785  int channel = sdmac->channel;
786 
787  if (priority < MXC_SDMA_MIN_PRIORITY
788  || priority > MXC_SDMA_MAX_PRIORITY) {
789  return -EINVAL;
790  }
791 
792  writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
793 
794  return 0;
795 }
796 
797 static int sdma_request_channel(struct sdma_channel *sdmac)
798 {
799  struct sdma_engine *sdma = sdmac->sdma;
800  int channel = sdmac->channel;
801  int ret = -EBUSY;
802 
803  sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
804  if (!sdmac->bd) {
805  ret = -ENOMEM;
806  goto out;
807  }
808 
809  memset(sdmac->bd, 0, PAGE_SIZE);
810 
811  sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
812  sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
813 
814  sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
815 
816  init_completion(&sdmac->done);
817 
818  return 0;
819 out:
820 
821  return ret;
822 }
823 
824 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
825 {
826  return container_of(chan, struct sdma_channel, chan);
827 }
828 
829 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
830 {
831  unsigned long flags;
832  struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
834 
835  spin_lock_irqsave(&sdmac->lock, flags);
836 
837  cookie = dma_cookie_assign(tx);
838 
839  spin_unlock_irqrestore(&sdmac->lock, flags);
840 
841  return cookie;
842 }
843 
844 static int sdma_alloc_chan_resources(struct dma_chan *chan)
845 {
846  struct sdma_channel *sdmac = to_sdma_chan(chan);
847  struct imx_dma_data *data = chan->private;
848  int prio, ret;
849 
850  if (!data)
851  return -EINVAL;
852 
853  switch (data->priority) {
854  case DMA_PRIO_HIGH:
855  prio = 3;
856  break;
857  case DMA_PRIO_MEDIUM:
858  prio = 2;
859  break;
860  case DMA_PRIO_LOW:
861  default:
862  prio = 1;
863  break;
864  }
865 
866  sdmac->peripheral_type = data->peripheral_type;
867  sdmac->event_id0 = data->dma_request;
868 
869  clk_enable(sdmac->sdma->clk_ipg);
870  clk_enable(sdmac->sdma->clk_ahb);
871 
872  ret = sdma_request_channel(sdmac);
873  if (ret)
874  return ret;
875 
876  ret = sdma_set_channel_priority(sdmac, prio);
877  if (ret)
878  return ret;
879 
880  dma_async_tx_descriptor_init(&sdmac->desc, chan);
881  sdmac->desc.tx_submit = sdma_tx_submit;
882  /* txd.flags will be overwritten in prep funcs */
883  sdmac->desc.flags = DMA_CTRL_ACK;
884 
885  return 0;
886 }
887 
888 static void sdma_free_chan_resources(struct dma_chan *chan)
889 {
890  struct sdma_channel *sdmac = to_sdma_chan(chan);
891  struct sdma_engine *sdma = sdmac->sdma;
892 
893  sdma_disable_channel(sdmac);
894 
895  if (sdmac->event_id0)
896  sdma_event_disable(sdmac, sdmac->event_id0);
897  if (sdmac->event_id1)
898  sdma_event_disable(sdmac, sdmac->event_id1);
899 
900  sdmac->event_id0 = 0;
901  sdmac->event_id1 = 0;
902 
903  sdma_set_channel_priority(sdmac, 0);
904 
905  dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
906 
907  clk_disable(sdma->clk_ipg);
908  clk_disable(sdma->clk_ahb);
909 }
910 
911 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
912  struct dma_chan *chan, struct scatterlist *sgl,
913  unsigned int sg_len, enum dma_transfer_direction direction,
914  unsigned long flags, void *context)
915 {
916  struct sdma_channel *sdmac = to_sdma_chan(chan);
917  struct sdma_engine *sdma = sdmac->sdma;
918  int ret, i, count;
919  int channel = sdmac->channel;
920  struct scatterlist *sg;
921 
922  if (sdmac->status == DMA_IN_PROGRESS)
923  return NULL;
924  sdmac->status = DMA_IN_PROGRESS;
925 
926  sdmac->flags = 0;
927 
928  sdmac->buf_tail = 0;
929 
930  dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
931  sg_len, channel);
932 
933  sdmac->direction = direction;
934  ret = sdma_load_context(sdmac);
935  if (ret)
936  goto err_out;
937 
938  if (sg_len > NUM_BD) {
939  dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
940  channel, sg_len, NUM_BD);
941  ret = -EINVAL;
942  goto err_out;
943  }
944 
945  sdmac->chn_count = 0;
946  for_each_sg(sgl, sg, sg_len, i) {
947  struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
948  int param;
949 
950  bd->buffer_addr = sg->dma_address;
951 
952  count = sg_dma_len(sg);
953 
954  if (count > 0xffff) {
955  dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
956  channel, count, 0xffff);
957  ret = -EINVAL;
958  goto err_out;
959  }
960 
961  bd->mode.count = count;
962  sdmac->chn_count += count;
963 
964  if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
965  ret = -EINVAL;
966  goto err_out;
967  }
968 
969  switch (sdmac->word_size) {
971  bd->mode.command = 0;
972  if (count & 3 || sg->dma_address & 3)
973  return NULL;
974  break;
976  bd->mode.command = 2;
977  if (count & 1 || sg->dma_address & 1)
978  return NULL;
979  break;
981  bd->mode.command = 1;
982  break;
983  default:
984  return NULL;
985  }
986 
987  param = BD_DONE | BD_EXTD | BD_CONT;
988 
989  if (i + 1 == sg_len) {
990  param |= BD_INTR;
991  param |= BD_LAST;
992  param &= ~BD_CONT;
993  }
994 
995  dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
996  i, count, sg->dma_address,
997  param & BD_WRAP ? "wrap" : "",
998  param & BD_INTR ? " intr" : "");
999 
1000  bd->mode.status = param;
1001  }
1002 
1003  sdmac->num_bd = sg_len;
1004  sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1005 
1006  return &sdmac->desc;
1007 err_out:
1008  sdmac->status = DMA_ERROR;
1009  return NULL;
1010 }
1011 
1012 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1013  struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1014  size_t period_len, enum dma_transfer_direction direction,
1015  unsigned long flags, void *context)
1016 {
1017  struct sdma_channel *sdmac = to_sdma_chan(chan);
1018  struct sdma_engine *sdma = sdmac->sdma;
1019  int num_periods = buf_len / period_len;
1020  int channel = sdmac->channel;
1021  int ret, i = 0, buf = 0;
1022 
1023  dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1024 
1025  if (sdmac->status == DMA_IN_PROGRESS)
1026  return NULL;
1027 
1028  sdmac->status = DMA_IN_PROGRESS;
1029 
1030  sdmac->buf_tail = 0;
1031 
1032  sdmac->flags |= IMX_DMA_SG_LOOP;
1033  sdmac->direction = direction;
1034  ret = sdma_load_context(sdmac);
1035  if (ret)
1036  goto err_out;
1037 
1038  if (num_periods > NUM_BD) {
1039  dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1040  channel, num_periods, NUM_BD);
1041  goto err_out;
1042  }
1043 
1044  if (period_len > 0xffff) {
1045  dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1046  channel, period_len, 0xffff);
1047  goto err_out;
1048  }
1049 
1050  while (buf < buf_len) {
1051  struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1052  int param;
1053 
1054  bd->buffer_addr = dma_addr;
1055 
1056  bd->mode.count = period_len;
1057 
1059  goto err_out;
1060  if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1061  bd->mode.command = 0;
1062  else
1063  bd->mode.command = sdmac->word_size;
1064 
1065  param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1066  if (i + 1 == num_periods)
1067  param |= BD_WRAP;
1068 
1069  dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1070  i, period_len, dma_addr,
1071  param & BD_WRAP ? "wrap" : "",
1072  param & BD_INTR ? " intr" : "");
1073 
1074  bd->mode.status = param;
1075 
1076  dma_addr += period_len;
1077  buf += period_len;
1078 
1079  i++;
1080  }
1081 
1082  sdmac->num_bd = num_periods;
1083  sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1084 
1085  return &sdmac->desc;
1086 err_out:
1087  sdmac->status = DMA_ERROR;
1088  return NULL;
1089 }
1090 
1091 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1092  unsigned long arg)
1093 {
1094  struct sdma_channel *sdmac = to_sdma_chan(chan);
1095  struct dma_slave_config *dmaengine_cfg = (void *)arg;
1096 
1097  switch (cmd) {
1098  case DMA_TERMINATE_ALL:
1099  sdma_disable_channel(sdmac);
1100  return 0;
1101  case DMA_SLAVE_CONFIG:
1102  if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1103  sdmac->per_address = dmaengine_cfg->src_addr;
1104  sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1105  dmaengine_cfg->src_addr_width;
1106  sdmac->word_size = dmaengine_cfg->src_addr_width;
1107  } else {
1108  sdmac->per_address = dmaengine_cfg->dst_addr;
1109  sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1110  dmaengine_cfg->dst_addr_width;
1111  sdmac->word_size = dmaengine_cfg->dst_addr_width;
1112  }
1113  sdmac->direction = dmaengine_cfg->direction;
1114  return sdma_config_channel(sdmac);
1115  default:
1116  return -ENOSYS;
1117  }
1118 
1119  return -EINVAL;
1120 }
1121 
1122 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1124  struct dma_tx_state *txstate)
1125 {
1126  struct sdma_channel *sdmac = to_sdma_chan(chan);
1127  dma_cookie_t last_used;
1128 
1129  last_used = chan->cookie;
1130 
1131  dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1132  sdmac->chn_count - sdmac->chn_real_count);
1133 
1134  return sdmac->status;
1135 }
1136 
1137 static void sdma_issue_pending(struct dma_chan *chan)
1138 {
1139  struct sdma_channel *sdmac = to_sdma_chan(chan);
1140  struct sdma_engine *sdma = sdmac->sdma;
1141 
1142  if (sdmac->status == DMA_IN_PROGRESS)
1143  sdma_enable_channel(sdma, sdmac->channel);
1144 }
1145 
1146 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1147 
1148 static void sdma_add_scripts(struct sdma_engine *sdma,
1149  const struct sdma_script_start_addrs *addr)
1150 {
1151  s32 *addr_arr = (u32 *)addr;
1152  s32 *saddr_arr = (u32 *)sdma->script_addrs;
1153  int i;
1154 
1155  for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1156  if (addr_arr[i] > 0)
1157  saddr_arr[i] = addr_arr[i];
1158 }
1159 
1160 static void sdma_load_firmware(const struct firmware *fw, void *context)
1161 {
1162  struct sdma_engine *sdma = context;
1163  const struct sdma_firmware_header *header;
1164  const struct sdma_script_start_addrs *addr;
1165  unsigned short *ram_code;
1166 
1167  if (!fw) {
1168  dev_err(sdma->dev, "firmware not found\n");
1169  return;
1170  }
1171 
1172  if (fw->size < sizeof(*header))
1173  goto err_firmware;
1174 
1175  header = (struct sdma_firmware_header *)fw->data;
1176 
1177  if (header->magic != SDMA_FIRMWARE_MAGIC)
1178  goto err_firmware;
1179  if (header->ram_code_start + header->ram_code_size > fw->size)
1180  goto err_firmware;
1181 
1182  addr = (void *)header + header->script_addrs_start;
1183  ram_code = (void *)header + header->ram_code_start;
1184 
1185  clk_enable(sdma->clk_ipg);
1186  clk_enable(sdma->clk_ahb);
1187  /* download the RAM image for SDMA */
1188  sdma_load_script(sdma, ram_code,
1189  header->ram_code_size,
1190  addr->ram_code_start_addr);
1191  clk_disable(sdma->clk_ipg);
1192  clk_disable(sdma->clk_ahb);
1193 
1194  sdma_add_scripts(sdma, addr);
1195 
1196  dev_info(sdma->dev, "loaded firmware %d.%d\n",
1197  header->version_major,
1198  header->version_minor);
1199 
1200 err_firmware:
1201  release_firmware(fw);
1202 }
1203 
1204 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1205  const char *fw_name)
1206 {
1207  int ret;
1208 
1210  FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1211  GFP_KERNEL, sdma, sdma_load_firmware);
1212 
1213  return ret;
1214 }
1215 
1216 static int __init sdma_init(struct sdma_engine *sdma)
1217 {
1218  int i, ret;
1219  dma_addr_t ccb_phys;
1220 
1221  switch (sdma->devtype) {
1222  case IMX31_SDMA:
1223  sdma->num_events = 32;
1224  break;
1225  case IMX35_SDMA:
1226  sdma->num_events = 48;
1227  break;
1228  default:
1229  dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1230  sdma->devtype);
1231  return -ENODEV;
1232  }
1233 
1234  clk_enable(sdma->clk_ipg);
1235  clk_enable(sdma->clk_ahb);
1236 
1237  /* Be sure SDMA has not started yet */
1238  writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1239 
1241  MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1242  sizeof(struct sdma_context_data),
1243  &ccb_phys, GFP_KERNEL);
1244 
1245  if (!sdma->channel_control) {
1246  ret = -ENOMEM;
1247  goto err_dma_alloc;
1248  }
1249 
1250  sdma->context = (void *)sdma->channel_control +
1252  sdma->context_phys = ccb_phys +
1253  MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1254 
1255  /* Zero-out the CCB structures array just allocated */
1256  memset(sdma->channel_control, 0,
1258 
1259  /* disable all channels */
1260  for (i = 0; i < sdma->num_events; i++)
1261  writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1262 
1263  /* All channels have priority 0 */
1264  for (i = 0; i < MAX_DMA_CHANNELS; i++)
1265  writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1266 
1267  ret = sdma_request_channel(&sdma->channel[0]);
1268  if (ret)
1269  goto err_dma_alloc;
1270 
1271  sdma_config_ownership(&sdma->channel[0], false, true, false);
1272 
1273  /* Set Command Channel (Channel Zero) */
1274  writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1275 
1276  /* Set bits of CONFIG register but with static context switching */
1277  /* FIXME: Check whether to set ACR bit depending on clock ratios */
1278  writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1279 
1280  writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1281 
1282  /* Set bits of CONFIG register with given context switching mode */
1283  writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1284 
1285  /* Initializes channel's priorities */
1286  sdma_set_channel_priority(&sdma->channel[0], 7);
1287 
1288  clk_disable(sdma->clk_ipg);
1289  clk_disable(sdma->clk_ahb);
1290 
1291  return 0;
1292 
1293 err_dma_alloc:
1294  clk_disable(sdma->clk_ipg);
1295  clk_disable(sdma->clk_ahb);
1296  dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1297  return ret;
1298 }
1299 
1300 static int __init sdma_probe(struct platform_device *pdev)
1301 {
1302  const struct of_device_id *of_id =
1303  of_match_device(sdma_dt_ids, &pdev->dev);
1304  struct device_node *np = pdev->dev.of_node;
1305  const char *fw_name;
1306  int ret;
1307  int irq;
1308  struct resource *iores;
1309  struct sdma_platform_data *pdata = pdev->dev.platform_data;
1310  int i;
1311  struct sdma_engine *sdma;
1312  s32 *saddr_arr;
1313 
1314  sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1315  if (!sdma)
1316  return -ENOMEM;
1317 
1319 
1320  sdma->dev = &pdev->dev;
1321 
1322  iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1323  irq = platform_get_irq(pdev, 0);
1324  if (!iores || irq < 0) {
1325  ret = -EINVAL;
1326  goto err_irq;
1327  }
1328 
1329  if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1330  ret = -EBUSY;
1331  goto err_request_region;
1332  }
1333 
1334  sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1335  if (IS_ERR(sdma->clk_ipg)) {
1336  ret = PTR_ERR(sdma->clk_ipg);
1337  goto err_clk;
1338  }
1339 
1340  sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1341  if (IS_ERR(sdma->clk_ahb)) {
1342  ret = PTR_ERR(sdma->clk_ahb);
1343  goto err_clk;
1344  }
1345 
1346  clk_prepare(sdma->clk_ipg);
1347  clk_prepare(sdma->clk_ahb);
1348 
1349  sdma->regs = ioremap(iores->start, resource_size(iores));
1350  if (!sdma->regs) {
1351  ret = -ENOMEM;
1352  goto err_ioremap;
1353  }
1354 
1355  ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1356  if (ret)
1357  goto err_request_irq;
1358 
1359  sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1360  if (!sdma->script_addrs) {
1361  ret = -ENOMEM;
1362  goto err_alloc;
1363  }
1364 
1365  /* initially no scripts available */
1366  saddr_arr = (s32 *)sdma->script_addrs;
1367  for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1368  saddr_arr[i] = -EINVAL;
1369 
1370  if (of_id)
1371  pdev->id_entry = of_id->data;
1372  sdma->devtype = pdev->id_entry->driver_data;
1373 
1374  dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1375  dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1376 
1377  INIT_LIST_HEAD(&sdma->dma_device.channels);
1378  /* Initialize channel parameters */
1379  for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1380  struct sdma_channel *sdmac = &sdma->channel[i];
1381 
1382  sdmac->sdma = sdma;
1383  spin_lock_init(&sdmac->lock);
1384 
1385  sdmac->chan.device = &sdma->dma_device;
1386  dma_cookie_init(&sdmac->chan);
1387  sdmac->channel = i;
1388 
1389  tasklet_init(&sdmac->tasklet, sdma_tasklet,
1390  (unsigned long) sdmac);
1391  /*
1392  * Add the channel to the DMAC list. Do not add channel 0 though
1393  * because we need it internally in the SDMA driver. This also means
1394  * that channel 0 in dmaengine counting matches sdma channel 1.
1395  */
1396  if (i)
1397  list_add_tail(&sdmac->chan.device_node,
1398  &sdma->dma_device.channels);
1399  }
1400 
1401  ret = sdma_init(sdma);
1402  if (ret)
1403  goto err_init;
1404 
1405  if (pdata && pdata->script_addrs)
1406  sdma_add_scripts(sdma, pdata->script_addrs);
1407 
1408  if (pdata) {
1409  ret = sdma_get_firmware(sdma, pdata->fw_name);
1410  if (ret)
1411  dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1412  } else {
1413  /*
1414  * Because that device tree does not encode ROM script address,
1415  * the RAM script in firmware is mandatory for device tree
1416  * probe, otherwise it fails.
1417  */
1418  ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1419  &fw_name);
1420  if (ret)
1421  dev_warn(&pdev->dev, "failed to get firmware name\n");
1422  else {
1423  ret = sdma_get_firmware(sdma, fw_name);
1424  if (ret)
1425  dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1426  }
1427  }
1428 
1429  sdma->dma_device.dev = &pdev->dev;
1430 
1431  sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1432  sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1433  sdma->dma_device.device_tx_status = sdma_tx_status;
1434  sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1435  sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1436  sdma->dma_device.device_control = sdma_control;
1437  sdma->dma_device.device_issue_pending = sdma_issue_pending;
1438  sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1439  dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1440 
1441  ret = dma_async_device_register(&sdma->dma_device);
1442  if (ret) {
1443  dev_err(&pdev->dev, "unable to register\n");
1444  goto err_init;
1445  }
1446 
1447  dev_info(sdma->dev, "initialized\n");
1448 
1449  return 0;
1450 
1451 err_init:
1452  kfree(sdma->script_addrs);
1453 err_alloc:
1454  free_irq(irq, sdma);
1455 err_request_irq:
1456  iounmap(sdma->regs);
1457 err_ioremap:
1458 err_clk:
1459  release_mem_region(iores->start, resource_size(iores));
1460 err_request_region:
1461 err_irq:
1462  kfree(sdma);
1463  return ret;
1464 }
1465 
1466 static int __exit sdma_remove(struct platform_device *pdev)
1467 {
1468  return -EBUSY;
1469 }
1470 
1471 static struct platform_driver sdma_driver = {
1472  .driver = {
1473  .name = "imx-sdma",
1474  .of_match_table = sdma_dt_ids,
1475  },
1476  .id_table = sdma_devtypes,
1477  .remove = __exit_p(sdma_remove),
1478 };
1479 
1480 static int __init sdma_module_init(void)
1481 {
1482  return platform_driver_probe(&sdma_driver, sdma_probe);
1483 }
1484 module_init(sdma_module_init);
1485 
1486 MODULE_AUTHOR("Sascha Hauer, Pengutronix <[email protected]>");
1487 MODULE_DESCRIPTION("i.MX SDMA driver");
1488 MODULE_LICENSE("GPL");