Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
intel_mid_dma.c
Go to the documentation of this file.
1 /*
2  * intel_mid_dma.c - Intel Langwell DMA Drivers
3  *
4  * Copyright (C) 2008-10 Intel Corp
5  * Author: Vinod Koul <[email protected]>
6  * The driver design is based on dw_dmac driver
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, write to the Free Software Foundation, Inc.,
20  * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  *
25  */
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/intel_mid_dma.h>
30 #include <linux/module.h>
31 
32 #include "dmaengine.h"
33 
34 #define MAX_CHAN 4 /*max ch across controllers*/
35 #include "intel_mid_dma_regs.h"
36 
37 #define INTEL_MID_DMAC1_ID 0x0814
38 #define INTEL_MID_DMAC2_ID 0x0813
39 #define INTEL_MID_GP_DMAC2_ID 0x0827
40 #define INTEL_MFLD_DMAC1_ID 0x0830
41 #define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
42 #define LNW_PERIPHRAL_MASK_SIZE 0x10
43 #define LNW_PERIPHRAL_STATUS 0x0
44 #define LNW_PERIPHRAL_MASK 0x8
45 
51 };
52 
53 #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
54  ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
55  .max_chan = (_max_chan), \
56  .ch_base = (_ch_base), \
57  .block_size = (_block_size), \
58  .pimr_mask = (_pimr_mask), \
59  })
60 
61 /*****************************************************************************
62 Utility Functions*/
71 static int get_ch_index(int *status, unsigned int base)
72 {
73  int i;
74  for (i = 0; i < MAX_CHAN; i++) {
75  if (*status & (1 << (i + base))) {
76  *status = *status & ~(1 << (i + base));
77  pr_debug("MDMA: index %d New status %x\n", i, *status);
78  return i;
79  }
80  }
81  return -1;
82 }
83 
93 static int get_block_ts(int len, int tx_width, int block_size)
94 {
95  int byte_width = 0, block_ts = 0;
96 
97  switch (tx_width) {
99  byte_width = 1;
100  break;
102  byte_width = 2;
103  break;
105  default:
106  byte_width = 4;
107  break;
108  }
109 
110  block_ts = len/byte_width;
111  if (block_ts > block_size)
112  block_ts = 0xFFFF;
113  return block_ts;
114 }
115 
116 /*****************************************************************************
117 DMAC1 interrupt Functions*/
118 
127 static void dmac1_mask_periphral_intr(struct middma_device *mid)
128 {
129  u32 pimr;
130 
131  if (mid->pimr_mask) {
132  pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
133  pimr |= mid->pimr_mask;
134  writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
135  }
136  return;
137 }
138 
147 static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
148 {
149  u32 pimr;
150  struct middma_device *mid = to_middma_device(midc->chan.device);
151 
152  if (mid->pimr_mask) {
153  pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
154  pimr &= ~mid->pimr_mask;
155  writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
156  }
157  return;
158 }
159 
168 static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
169 {
170  dmac1_unmask_periphral_intr(midc);
171 
172  /*en ch interrupts*/
175  return;
176 }
177 
186 static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
187 {
188  /*Check LPE PISR, make sure fwd is disabled*/
190  iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
191  iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
192  return;
193 }
194 
195 /*****************************************************************************
196 DMA channel helper Functions*/
205 static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206 {
207  struct intel_mid_dma_desc *desc, *_desc;
208  struct intel_mid_dma_desc *ret = NULL;
209 
210  spin_lock_bh(&midc->lock);
211  list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
212  if (async_tx_test_ack(&desc->txd)) {
213  list_del(&desc->desc_node);
214  ret = desc;
215  break;
216  }
217  }
218  spin_unlock_bh(&midc->lock);
219  return ret;
220 }
221 
229 static void midc_desc_put(struct intel_mid_dma_chan *midc,
230  struct intel_mid_dma_desc *desc)
231 {
232  if (desc) {
233  spin_lock_bh(&midc->lock);
234  list_add_tail(&desc->desc_node, &midc->free_list);
235  spin_unlock_bh(&midc->lock);
236  }
237 }
246 static void midc_dostart(struct intel_mid_dma_chan *midc,
247  struct intel_mid_dma_desc *first)
248 {
249  struct middma_device *mid = to_middma_device(midc->chan.device);
250 
251  /* channel is idle */
252  if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
253  /*error*/
254  pr_err("ERR_MDMA: channel is busy in start\n");
255  /* The tasklet will hopefully advance the queue... */
256  return;
257  }
258  midc->busy = true;
259  /*write registers and en*/
260  iowrite32(first->sar, midc->ch_regs + SAR);
261  iowrite32(first->dar, midc->ch_regs + DAR);
262  iowrite32(first->lli_phys, midc->ch_regs + LLP);
263  iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
264  iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
265  iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
266  iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
267  pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
268  (int)first->sar, (int)first->dar, first->cfg_hi,
269  first->cfg_lo, first->ctl_hi, first->ctl_lo);
270  first->status = DMA_IN_PROGRESS;
271 
273 }
274 
284 static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
285  struct intel_mid_dma_desc *desc)
286  __releases(&midc->lock) __acquires(&midc->lock)
287 {
288  struct dma_async_tx_descriptor *txd = &desc->txd;
289  dma_async_tx_callback callback_txd = NULL;
290  struct intel_mid_dma_lli *llitem;
291  void *param_txd = NULL;
292 
293  dma_cookie_complete(txd);
294  callback_txd = txd->callback;
295  param_txd = txd->callback_param;
296 
297  if (desc->lli != NULL) {
298  /*clear the DONE bit of completed LLI in memory*/
299  llitem = desc->lli + desc->current_lli;
300  llitem->ctl_hi &= CLEAR_DONE;
301  if (desc->current_lli < desc->lli_length-1)
302  (desc->current_lli)++;
303  else
304  desc->current_lli = 0;
305  }
306  spin_unlock_bh(&midc->lock);
307  if (callback_txd) {
308  pr_debug("MDMA: TXD callback set ... calling\n");
309  callback_txd(param_txd);
310  }
311  if (midc->raw_tfr) {
312  desc->status = DMA_SUCCESS;
313  if (desc->lli != NULL) {
314  pci_pool_free(desc->lli_pool, desc->lli,
315  desc->lli_phys);
316  pci_pool_destroy(desc->lli_pool);
317  desc->lli = NULL;
318  }
319  list_move(&desc->desc_node, &midc->free_list);
320  midc->busy = false;
321  }
322  spin_lock_bh(&midc->lock);
323 
324 }
334 static void midc_scan_descriptors(struct middma_device *mid,
335  struct intel_mid_dma_chan *midc)
336 {
337  struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
338 
339  /*tx is complete*/
340  list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
341  if (desc->status == DMA_IN_PROGRESS)
342  midc_descriptor_complete(midc, desc);
343  }
344  return;
345  }
358 static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
359  struct intel_mid_dma_desc *desc,
360  struct scatterlist *sglist,
361  unsigned int sglen,
362  unsigned int flags)
363 {
364  struct intel_mid_dma_slave *mids;
365  struct scatterlist *sg;
366  dma_addr_t lli_next, sg_phy_addr;
367  struct intel_mid_dma_lli *lli_bloc_desc;
370  int i;
371 
372  pr_debug("MDMA: Entered midc_lli_fill_sg\n");
373  mids = midc->mid_slave;
374 
375  lli_bloc_desc = desc->lli;
376  lli_next = desc->lli_phys;
377 
378  ctl_lo.ctl_lo = desc->ctl_lo;
379  ctl_hi.ctl_hi = desc->ctl_hi;
380  for_each_sg(sglist, sg, sglen, i) {
381  /*Populate CTL_LOW and LLI values*/
382  if (i != sglen - 1) {
383  lli_next = lli_next +
384  sizeof(struct intel_mid_dma_lli);
385  } else {
386  /*Check for circular list, otherwise terminate LLI to ZERO*/
387  if (flags & DMA_PREP_CIRCULAR_LIST) {
388  pr_debug("MDMA: LLI is configured in circular mode\n");
389  lli_next = desc->lli_phys;
390  } else {
391  lli_next = 0;
392  ctl_lo.ctlx.llp_dst_en = 0;
393  ctl_lo.ctlx.llp_src_en = 0;
394  }
395  }
396  /*Populate CTL_HI values*/
397  ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg),
398  desc->width,
399  midc->dma->block_size);
400  /*Populate SAR and DAR values*/
401  sg_phy_addr = sg_dma_address(sg);
402  if (desc->dirn == DMA_MEM_TO_DEV) {
403  lli_bloc_desc->sar = sg_phy_addr;
404  lli_bloc_desc->dar = mids->dma_slave.dst_addr;
405  } else if (desc->dirn == DMA_DEV_TO_MEM) {
406  lli_bloc_desc->sar = mids->dma_slave.src_addr;
407  lli_bloc_desc->dar = sg_phy_addr;
408  }
409  /*Copy values into block descriptor in system memroy*/
410  lli_bloc_desc->llp = lli_next;
411  lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
412  lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
413 
414  lli_bloc_desc++;
415  }
416  /*Copy very first LLI values to descriptor*/
417  desc->ctl_lo = desc->lli->ctl_lo;
418  desc->ctl_hi = desc->lli->ctl_hi;
419  desc->sar = desc->lli->sar;
420  desc->dar = desc->lli->dar;
421 
422  return 0;
423 }
424 /*****************************************************************************
425 DMA engine callback Functions*/
432 static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
433 {
434  struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
435  struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
437 
438  spin_lock_bh(&midc->lock);
439  cookie = dma_cookie_assign(tx);
440 
441  if (list_empty(&midc->active_list))
442  list_add_tail(&desc->desc_node, &midc->active_list);
443  else
444  list_add_tail(&desc->desc_node, &midc->queue);
445 
446  midc_dostart(midc, desc);
447  spin_unlock_bh(&midc->lock);
448 
449  return cookie;
450 }
451 
458 static void intel_mid_dma_issue_pending(struct dma_chan *chan)
459 {
460  struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
461 
462  spin_lock_bh(&midc->lock);
463  if (!list_empty(&midc->queue))
464  midc_scan_descriptors(to_middma_device(chan->device), midc);
465  spin_unlock_bh(&midc->lock);
466 }
467 
476 static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
477  dma_cookie_t cookie,
478  struct dma_tx_state *txstate)
479 {
480  struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
481  enum dma_status ret;
482 
483  ret = dma_cookie_status(chan, cookie, txstate);
484  if (ret != DMA_SUCCESS) {
485  spin_lock_bh(&midc->lock);
486  midc_scan_descriptors(to_middma_device(chan->device), midc);
487  spin_unlock_bh(&midc->lock);
488 
489  ret = dma_cookie_status(chan, cookie, txstate);
490  }
491 
492  return ret;
493 }
494 
495 static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
496 {
497  struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
498  struct dma_slave_config *slave = (struct dma_slave_config *)arg;
499  struct intel_mid_dma_slave *mid_slave;
500 
501  BUG_ON(!midc);
502  BUG_ON(!slave);
503  pr_debug("MDMA: slave control called\n");
504 
505  mid_slave = to_intel_mid_dma_slave(slave);
506 
507  BUG_ON(!mid_slave);
508 
509  midc->mid_slave = mid_slave;
510  return 0;
511 }
520 static int intel_mid_dma_device_control(struct dma_chan *chan,
521  enum dma_ctrl_cmd cmd, unsigned long arg)
522 {
523  struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
524  struct middma_device *mid = to_middma_device(chan->device);
525  struct intel_mid_dma_desc *desc, *_desc;
527 
528  if (cmd == DMA_SLAVE_CONFIG)
529  return dma_slave_control(chan, arg);
530 
531  if (cmd != DMA_TERMINATE_ALL)
532  return -ENXIO;
533 
534  spin_lock_bh(&midc->lock);
535  if (midc->busy == false) {
536  spin_unlock_bh(&midc->lock);
537  return 0;
538  }
539  /*Suspend and disable the channel*/
540  cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
541  cfg_lo.cfgx.ch_susp = 1;
542  iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
544  midc->busy = false;
545  /* Disable interrupts */
546  disable_dma_interrupt(midc);
547  midc->descs_allocated = 0;
548 
549  spin_unlock_bh(&midc->lock);
550  list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
551  if (desc->lli != NULL) {
552  pci_pool_free(desc->lli_pool, desc->lli,
553  desc->lli_phys);
554  pci_pool_destroy(desc->lli_pool);
555  desc->lli = NULL;
556  }
557  list_move(&desc->desc_node, &midc->free_list);
558  }
559  return 0;
560 }
561 
562 
575 static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
576  struct dma_chan *chan, dma_addr_t dest,
577  dma_addr_t src, size_t len, unsigned long flags)
578 {
579  struct intel_mid_dma_chan *midc;
580  struct intel_mid_dma_desc *desc = NULL;
581  struct intel_mid_dma_slave *mids;
587 
588  pr_debug("MDMA: Prep for memcpy\n");
589  BUG_ON(!chan);
590  if (!len)
591  return NULL;
592 
593  midc = to_intel_mid_dma_chan(chan);
594  BUG_ON(!midc);
595 
596  mids = midc->mid_slave;
597  BUG_ON(!mids);
598 
599  pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
600  midc->dma->pci_id, midc->ch_id, len);
601  pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
602  mids->cfg_mode, mids->dma_slave.direction,
603  mids->hs_mode, mids->dma_slave.src_addr_width);
604 
605  /*calculate CFG_LO*/
606  if (mids->hs_mode == LNW_DMA_SW_HS) {
607  cfg_lo.cfg_lo = 0;
608  cfg_lo.cfgx.hs_sel_dst = 1;
609  cfg_lo.cfgx.hs_sel_src = 1;
610  } else if (mids->hs_mode == LNW_DMA_HW_HS)
611  cfg_lo.cfg_lo = 0x00000;
612 
613  /*calculate CFG_HI*/
614  if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
615  /*SW HS only*/
616  cfg_hi.cfg_hi = 0;
617  } else {
618  cfg_hi.cfg_hi = 0;
619  if (midc->dma->pimr_mask) {
620  cfg_hi.cfgx.protctl = 0x0; /*default value*/
621  cfg_hi.cfgx.fifo_mode = 1;
622  if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
623  cfg_hi.cfgx.src_per = 0;
624  if (mids->device_instance == 0)
625  cfg_hi.cfgx.dst_per = 3;
626  if (mids->device_instance == 1)
627  cfg_hi.cfgx.dst_per = 1;
628  } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
629  if (mids->device_instance == 0)
630  cfg_hi.cfgx.src_per = 2;
631  if (mids->device_instance == 1)
632  cfg_hi.cfgx.src_per = 0;
633  cfg_hi.cfgx.dst_per = 0;
634  }
635  } else {
636  cfg_hi.cfgx.protctl = 0x1; /*default value*/
637  cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
638  midc->ch_id - midc->dma->chan_base;
639  }
640  }
641 
642  /*calculate CTL_HI*/
643  ctl_hi.ctlx.reser = 0;
644  ctl_hi.ctlx.done = 0;
645  width = mids->dma_slave.src_addr_width;
646 
647  ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
648  pr_debug("MDMA:calc len %d for block size %d\n",
649  ctl_hi.ctlx.block_ts, midc->dma->block_size);
650  /*calculate CTL_LO*/
651  ctl_lo.ctl_lo = 0;
652  ctl_lo.ctlx.int_en = 1;
653  ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
654  ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
655 
656  /*
657  * Here we need some translation from "enum dma_slave_buswidth"
658  * to the format for our dma controller
659  * standard intel_mid_dmac's format
660  * 1 Byte 0b000
661  * 2 Bytes 0b001
662  * 4 Bytes 0b010
663  */
664  ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
665  ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
666 
667  if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
668  ctl_lo.ctlx.tt_fc = 0;
669  ctl_lo.ctlx.sinc = 0;
670  ctl_lo.ctlx.dinc = 0;
671  } else {
672  if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
673  ctl_lo.ctlx.sinc = 0;
674  ctl_lo.ctlx.dinc = 2;
675  ctl_lo.ctlx.tt_fc = 1;
676  } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
677  ctl_lo.ctlx.sinc = 2;
678  ctl_lo.ctlx.dinc = 0;
679  ctl_lo.ctlx.tt_fc = 2;
680  }
681  }
682 
683  pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
684  ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
685 
686  enable_dma_interrupt(midc);
687 
688  desc = midc_desc_get(midc);
689  if (desc == NULL)
690  goto err_desc_get;
691  desc->sar = src;
692  desc->dar = dest ;
693  desc->len = len;
694  desc->cfg_hi = cfg_hi.cfg_hi;
695  desc->cfg_lo = cfg_lo.cfg_lo;
696  desc->ctl_lo = ctl_lo.ctl_lo;
697  desc->ctl_hi = ctl_hi.ctl_hi;
698  desc->width = width;
699  desc->dirn = mids->dma_slave.direction;
700  desc->lli_phys = 0;
701  desc->lli = NULL;
702  desc->lli_pool = NULL;
703  return &desc->txd;
704 
705 err_desc_get:
706  pr_err("ERR_MDMA: Failed to get desc\n");
707  midc_desc_put(midc, desc);
708  return NULL;
709 }
721 static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
722  struct dma_chan *chan, struct scatterlist *sgl,
723  unsigned int sg_len, enum dma_transfer_direction direction,
724  unsigned long flags, void *context)
725 {
726  struct intel_mid_dma_chan *midc = NULL;
727  struct intel_mid_dma_slave *mids = NULL;
728  struct intel_mid_dma_desc *desc = NULL;
729  struct dma_async_tx_descriptor *txd = NULL;
731 
732  pr_debug("MDMA: Prep for slave SG\n");
733 
734  if (!sg_len) {
735  pr_err("MDMA: Invalid SG length\n");
736  return NULL;
737  }
738  midc = to_intel_mid_dma_chan(chan);
739  BUG_ON(!midc);
740 
741  mids = midc->mid_slave;
742  BUG_ON(!mids);
743 
744  if (!midc->dma->pimr_mask) {
745  /* We can still handle sg list with only one item */
746  if (sg_len == 1) {
747  txd = intel_mid_dma_prep_memcpy(chan,
748  mids->dma_slave.dst_addr,
749  mids->dma_slave.src_addr,
750  sg_dma_len(sgl),
751  flags);
752  return txd;
753  } else {
754  pr_warn("MDMA: SG list is not supported by this controller\n");
755  return NULL;
756  }
757  }
758 
759  pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
760  sg_len, direction, flags);
761 
762  txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags);
763  if (NULL == txd) {
764  pr_err("MDMA: Prep memcpy failed\n");
765  return NULL;
766  }
767 
768  desc = to_intel_mid_dma_desc(txd);
769  desc->dirn = direction;
770  ctl_lo.ctl_lo = desc->ctl_lo;
771  ctl_lo.ctlx.llp_dst_en = 1;
772  ctl_lo.ctlx.llp_src_en = 1;
773  desc->ctl_lo = ctl_lo.ctl_lo;
774  desc->lli_length = sg_len;
775  desc->current_lli = 0;
776  /* DMA coherent memory pool for LLI descriptors*/
777  desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
778  midc->dma->pdev,
779  (sizeof(struct intel_mid_dma_lli)*sg_len),
780  32, 0);
781  if (NULL == desc->lli_pool) {
782  pr_err("MID_DMA:LLI pool create failed\n");
783  return NULL;
784  }
785 
786  desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
787  if (!desc->lli) {
788  pr_err("MID_DMA: LLI alloc failed\n");
789  pci_pool_destroy(desc->lli_pool);
790  return NULL;
791  }
792 
793  midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
794  if (flags & DMA_PREP_INTERRUPT) {
796  midc->dma_base + MASK_BLOCK);
797  pr_debug("MDMA:Enabled Block interrupt\n");
798  }
799  return &desc->txd;
800 }
801 
808 static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
809 {
810  struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
811  struct middma_device *mid = to_middma_device(chan->device);
812  struct intel_mid_dma_desc *desc, *_desc;
813 
814  if (true == midc->busy) {
815  /*trying to free ch in use!!!!!*/
816  pr_err("ERR_MDMA: trying to free ch in use\n");
817  }
818  spin_lock_bh(&midc->lock);
819  midc->descs_allocated = 0;
820  list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
821  list_del(&desc->desc_node);
822  pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
823  }
824  list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
825  list_del(&desc->desc_node);
826  pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
827  }
828  list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
829  list_del(&desc->desc_node);
830  pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
831  }
832  spin_unlock_bh(&midc->lock);
833  midc->in_use = false;
834  midc->busy = false;
835  /* Disable CH interrupts */
838  pm_runtime_put(&mid->pdev->dev);
839 }
840 
848 static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
849 {
850  struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
851  struct middma_device *mid = to_middma_device(chan->device);
852  struct intel_mid_dma_desc *desc;
854  int i = 0;
855 
856  pm_runtime_get_sync(&mid->pdev->dev);
857 
858  if (mid->state == SUSPENDED) {
859  if (dma_resume(&mid->pdev->dev)) {
860  pr_err("ERR_MDMA: resume failed");
861  return -EFAULT;
862  }
863  }
864 
865  /* ASSERT: channel is idle */
866  if (test_ch_en(mid->dma_base, midc->ch_id)) {
867  /*ch is not idle*/
868  pr_err("ERR_MDMA: ch not idle\n");
869  pm_runtime_put(&mid->pdev->dev);
870  return -EIO;
871  }
872  dma_cookie_init(chan);
873 
874  spin_lock_bh(&midc->lock);
875  while (midc->descs_allocated < DESCS_PER_CHANNEL) {
876  spin_unlock_bh(&midc->lock);
877  desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
878  if (!desc) {
879  pr_err("ERR_MDMA: desc failed\n");
880  pm_runtime_put(&mid->pdev->dev);
881  return -ENOMEM;
882  /*check*/
883  }
884  dma_async_tx_descriptor_init(&desc->txd, chan);
885  desc->txd.tx_submit = intel_mid_dma_tx_submit;
886  desc->txd.flags = DMA_CTRL_ACK;
887  desc->txd.phys = phys;
888  spin_lock_bh(&midc->lock);
889  i = ++midc->descs_allocated;
890  list_add_tail(&desc->desc_node, &midc->free_list);
891  }
892  spin_unlock_bh(&midc->lock);
893  midc->in_use = true;
894  midc->busy = false;
895  pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
896  return i;
897 }
898 
906 static void midc_handle_error(struct middma_device *mid,
907  struct intel_mid_dma_chan *midc)
908 {
909  midc_scan_descriptors(mid, midc);
910 }
911 
919 static void dma_tasklet(unsigned long data)
920 {
921  struct middma_device *mid = NULL;
922  struct intel_mid_dma_chan *midc = NULL;
924  int i;
925 
926  mid = (struct middma_device *)data;
927  if (mid == NULL) {
928  pr_err("ERR_MDMA: tasklet Null param\n");
929  return;
930  }
931  pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
932  raw_tfr = ioread32(mid->dma_base + RAW_TFR);
933  raw_block = ioread32(mid->dma_base + RAW_BLOCK);
934  status = raw_tfr | raw_block;
935  status &= mid->intr_mask;
936  while (status) {
937  /*txn interrupt*/
938  i = get_ch_index(&status, mid->chan_base);
939  if (i < 0) {
940  pr_err("ERR_MDMA:Invalid ch index %x\n", i);
941  return;
942  }
943  midc = &mid->ch[i];
944  if (midc == NULL) {
945  pr_err("ERR_MDMA:Null param midc\n");
946  return;
947  }
948  pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
949  status, midc->ch_id, i);
950  midc->raw_tfr = raw_tfr;
951  midc->raw_block = raw_block;
952  spin_lock_bh(&midc->lock);
953  /*clearing this interrupts first*/
954  iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
955  if (raw_block) {
956  iowrite32((1 << midc->ch_id),
957  mid->dma_base + CLEAR_BLOCK);
958  }
959  midc_scan_descriptors(mid, midc);
960  pr_debug("MDMA:Scan of desc... complete, unmasking\n");
962  mid->dma_base + MASK_TFR);
963  if (raw_block) {
965  mid->dma_base + MASK_BLOCK);
966  }
967  spin_unlock_bh(&midc->lock);
968  }
969 
970  status = ioread32(mid->dma_base + RAW_ERR);
971  status &= mid->intr_mask;
972  while (status) {
973  /*err interrupt*/
974  i = get_ch_index(&status, mid->chan_base);
975  if (i < 0) {
976  pr_err("ERR_MDMA:Invalid ch index %x\n", i);
977  return;
978  }
979  midc = &mid->ch[i];
980  if (midc == NULL) {
981  pr_err("ERR_MDMA:Null param midc\n");
982  return;
983  }
984  pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
985  status, midc->ch_id, i);
986 
987  iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
988  spin_lock_bh(&midc->lock);
989  midc_handle_error(mid, midc);
991  mid->dma_base + MASK_ERR);
992  spin_unlock_bh(&midc->lock);
993  }
994  pr_debug("MDMA:Exiting takslet...\n");
995  return;
996 }
997 
998 static void dma_tasklet1(unsigned long data)
999 {
1000  pr_debug("MDMA:in takslet1...\n");
1001  return dma_tasklet(data);
1002 }
1003 
1004 static void dma_tasklet2(unsigned long data)
1005 {
1006  pr_debug("MDMA:in takslet2...\n");
1007  return dma_tasklet(data);
1008 }
1009 
1018 static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1019 {
1020  struct middma_device *mid = data;
1021  u32 tfr_status, err_status;
1022  int call_tasklet = 0;
1023 
1024  tfr_status = ioread32(mid->dma_base + RAW_TFR);
1025  err_status = ioread32(mid->dma_base + RAW_ERR);
1026  if (!tfr_status && !err_status)
1027  return IRQ_NONE;
1028 
1029  /*DMA Interrupt*/
1030  pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1031  pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1032  tfr_status &= mid->intr_mask;
1033  if (tfr_status) {
1034  /*need to disable intr*/
1035  iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1036  iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1037  pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1038  call_tasklet = 1;
1039  }
1040  err_status &= mid->intr_mask;
1041  if (err_status) {
1042  iowrite32((err_status << INT_MASK_WE),
1043  mid->dma_base + MASK_ERR);
1044  call_tasklet = 1;
1045  }
1046  if (call_tasklet)
1047  tasklet_schedule(&mid->tasklet);
1048 
1049  return IRQ_HANDLED;
1050 }
1051 
1052 static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1053 {
1054  return intel_mid_dma_interrupt(irq, data);
1055 }
1056 
1057 static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1058 {
1059  return intel_mid_dma_interrupt(irq, data);
1060 }
1061 
1069 static int mid_setup_dma(struct pci_dev *pdev)
1070 {
1071  struct middma_device *dma = pci_get_drvdata(pdev);
1072  int err, i;
1073 
1074  /* DMA coherent memory pool for DMA descriptor allocations */
1075  dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1076  sizeof(struct intel_mid_dma_desc),
1077  32, 0);
1078  if (NULL == dma->dma_pool) {
1079  pr_err("ERR_MDMA:pci_pool_create failed\n");
1080  err = -ENOMEM;
1081  goto err_dma_pool;
1082  }
1083 
1084  INIT_LIST_HEAD(&dma->common.channels);
1085  dma->pci_id = pdev->device;
1086  if (dma->pimr_mask) {
1089  if (dma->mask_reg == NULL) {
1090  pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1091  err = -ENOMEM;
1092  goto err_ioremap;
1093  }
1094  } else
1095  dma->mask_reg = NULL;
1096 
1097  pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1098  /*init CH structures*/
1099  dma->intr_mask = 0;
1100  dma->state = RUNNING;
1101  for (i = 0; i < dma->max_chan; i++) {
1102  struct intel_mid_dma_chan *midch = &dma->ch[i];
1103 
1104  midch->chan.device = &dma->common;
1105  dma_cookie_init(&midch->chan);
1106  midch->ch_id = dma->chan_base + i;
1107  pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1108 
1109  midch->dma_base = dma->dma_base;
1110  midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1111  midch->dma = dma;
1112  dma->intr_mask |= 1 << (dma->chan_base + i);
1113  spin_lock_init(&midch->lock);
1114 
1115  INIT_LIST_HEAD(&midch->active_list);
1116  INIT_LIST_HEAD(&midch->queue);
1117  INIT_LIST_HEAD(&midch->free_list);
1118  /*mask interrupts*/
1119  iowrite32(MASK_INTR_REG(midch->ch_id),
1120  dma->dma_base + MASK_BLOCK);
1121  iowrite32(MASK_INTR_REG(midch->ch_id),
1122  dma->dma_base + MASK_SRC_TRAN);
1123  iowrite32(MASK_INTR_REG(midch->ch_id),
1124  dma->dma_base + MASK_DST_TRAN);
1125  iowrite32(MASK_INTR_REG(midch->ch_id),
1126  dma->dma_base + MASK_ERR);
1127  iowrite32(MASK_INTR_REG(midch->ch_id),
1128  dma->dma_base + MASK_TFR);
1129 
1130  disable_dma_interrupt(midch);
1131  list_add_tail(&midch->chan.device_node, &dma->common.channels);
1132  }
1133  pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1134 
1135  /*init dma structure*/
1136  dma_cap_zero(dma->common.cap_mask);
1137  dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1138  dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1139  dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1140  dma->common.dev = &pdev->dev;
1141 
1142  dma->common.device_alloc_chan_resources =
1143  intel_mid_dma_alloc_chan_resources;
1144  dma->common.device_free_chan_resources =
1145  intel_mid_dma_free_chan_resources;
1146 
1147  dma->common.device_tx_status = intel_mid_dma_tx_status;
1148  dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1149  dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1150  dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1151  dma->common.device_control = intel_mid_dma_device_control;
1152 
1153  /*enable dma cntrl*/
1155 
1156  /*register irq */
1157  if (dma->pimr_mask) {
1158  pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1159  err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1160  IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1161  if (0 != err)
1162  goto err_irq;
1163  } else {
1164  dma->intr_mask = 0x03;
1165  pr_debug("MDMA:Requesting irq for DMAC2\n");
1166  err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1167  IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1168  if (0 != err)
1169  goto err_irq;
1170  }
1171  /*register device w/ engine*/
1172  err = dma_async_device_register(&dma->common);
1173  if (0 != err) {
1174  pr_err("ERR_MDMA:device_register failed: %d\n", err);
1175  goto err_engine;
1176  }
1177  if (dma->pimr_mask) {
1178  pr_debug("setting up tasklet1 for DMAC1\n");
1179  tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1180  } else {
1181  pr_debug("setting up tasklet2 for DMAC2\n");
1182  tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1183  }
1184  return 0;
1185 
1186 err_engine:
1187  free_irq(pdev->irq, dma);
1188 err_irq:
1189  if (dma->mask_reg)
1190  iounmap(dma->mask_reg);
1191 err_ioremap:
1192  pci_pool_destroy(dma->dma_pool);
1193 err_dma_pool:
1194  pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1195  return err;
1196 
1197 }
1198 
1206 static void middma_shutdown(struct pci_dev *pdev)
1207 {
1208  struct middma_device *device = pci_get_drvdata(pdev);
1209 
1211  pci_pool_destroy(device->dma_pool);
1212  if (device->mask_reg)
1213  iounmap(device->mask_reg);
1214  if (device->dma_base)
1215  iounmap(device->dma_base);
1216  free_irq(pdev->irq, device);
1217  return;
1218 }
1219 
1228 static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1229  const struct pci_device_id *id)
1230 {
1231  struct middma_device *device;
1232  u32 base_addr, bar_size;
1234  int err;
1235 
1236  pr_debug("MDMA: probe for %x\n", pdev->device);
1237  info = (void *)id->driver_data;
1238  pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1239  info->max_chan, info->ch_base,
1240  info->block_size, info->pimr_mask);
1241 
1242  err = pci_enable_device(pdev);
1243  if (err)
1244  goto err_enable_device;
1245 
1246  err = pci_request_regions(pdev, "intel_mid_dmac");
1247  if (err)
1248  goto err_request_regions;
1249 
1250  err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1251  if (err)
1252  goto err_set_dma_mask;
1253 
1254  err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1255  if (err)
1256  goto err_set_dma_mask;
1257 
1258  device = kzalloc(sizeof(*device), GFP_KERNEL);
1259  if (!device) {
1260  pr_err("ERR_MDMA:kzalloc failed probe\n");
1261  err = -ENOMEM;
1262  goto err_kzalloc;
1263  }
1264  device->pdev = pci_dev_get(pdev);
1265 
1266  base_addr = pci_resource_start(pdev, 0);
1267  bar_size = pci_resource_len(pdev, 0);
1268  device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1269  if (!device->dma_base) {
1270  pr_err("ERR_MDMA:ioremap failed\n");
1271  err = -ENOMEM;
1272  goto err_ioremap;
1273  }
1274  pci_set_drvdata(pdev, device);
1275  pci_set_master(pdev);
1276  device->max_chan = info->max_chan;
1277  device->chan_base = info->ch_base;
1278  device->block_size = info->block_size;
1279  device->pimr_mask = info->pimr_mask;
1280 
1281  err = mid_setup_dma(pdev);
1282  if (err)
1283  goto err_dma;
1284 
1285  pm_runtime_put_noidle(&pdev->dev);
1286  pm_runtime_allow(&pdev->dev);
1287  return 0;
1288 
1289 err_dma:
1290  iounmap(device->dma_base);
1291 err_ioremap:
1292  pci_dev_put(pdev);
1293  kfree(device);
1294 err_kzalloc:
1295 err_set_dma_mask:
1296  pci_release_regions(pdev);
1297  pci_disable_device(pdev);
1298 err_request_regions:
1299 err_enable_device:
1300  pr_err("ERR_MDMA:Probe failed %d\n", err);
1301  return err;
1302 }
1303 
1311 static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1312 {
1313  struct middma_device *device = pci_get_drvdata(pdev);
1314 
1315  pm_runtime_get_noresume(&pdev->dev);
1316  pm_runtime_forbid(&pdev->dev);
1317  middma_shutdown(pdev);
1318  pci_dev_put(pdev);
1319  kfree(device);
1320  pci_release_regions(pdev);
1321  pci_disable_device(pdev);
1322 }
1323 
1324 /* Power Management */
1325 /*
1326 * dma_suspend - PCI suspend function
1327 *
1328 * @pci: PCI device structure
1329 * @state: PM message
1330 *
1331 * This function is called by OS when a power event occurs
1332 */
1333 static int dma_suspend(struct device *dev)
1334 {
1335  struct pci_dev *pci = to_pci_dev(dev);
1336  int i;
1337  struct middma_device *device = pci_get_drvdata(pci);
1338  pr_debug("MDMA: dma_suspend called\n");
1339 
1340  for (i = 0; i < device->max_chan; i++) {
1341  if (device->ch[i].in_use)
1342  return -EAGAIN;
1343  }
1344  dmac1_mask_periphral_intr(device);
1345  device->state = SUSPENDED;
1346  pci_save_state(pci);
1347  pci_disable_device(pci);
1349  return 0;
1350 }
1351 
1359 int dma_resume(struct device *dev)
1360 {
1361  struct pci_dev *pci = to_pci_dev(dev);
1362  int ret;
1363  struct middma_device *device = pci_get_drvdata(pci);
1364 
1365  pr_debug("MDMA: dma_resume called\n");
1367  pci_restore_state(pci);
1368  ret = pci_enable_device(pci);
1369  if (ret) {
1370  pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1371  return ret;
1372  }
1373  device->state = RUNNING;
1374  iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1375  return 0;
1376 }
1377 
1378 static int dma_runtime_suspend(struct device *dev)
1379 {
1380  struct pci_dev *pci_dev = to_pci_dev(dev);
1381  struct middma_device *device = pci_get_drvdata(pci_dev);
1382 
1383  device->state = SUSPENDED;
1384  return 0;
1385 }
1386 
1387 static int dma_runtime_resume(struct device *dev)
1388 {
1389  struct pci_dev *pci_dev = to_pci_dev(dev);
1390  struct middma_device *device = pci_get_drvdata(pci_dev);
1391 
1392  device->state = RUNNING;
1393  iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1394  return 0;
1395 }
1396 
1397 static int dma_runtime_idle(struct device *dev)
1398 {
1399  struct pci_dev *pdev = to_pci_dev(dev);
1400  struct middma_device *device = pci_get_drvdata(pdev);
1401  int i;
1402 
1403  for (i = 0; i < device->max_chan; i++) {
1404  if (device->ch[i].in_use)
1405  return -EAGAIN;
1406  }
1407 
1408  return pm_schedule_suspend(dev, 0);
1409 }
1410 
1411 /******************************************************************************
1412 * PCI stuff
1413 */
1414 static struct pci_device_id intel_mid_dma_ids[] = {
1415  { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
1416  { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
1417  { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
1418  { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
1419  { 0, }
1420 };
1421 MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1422 
1423 static const struct dev_pm_ops intel_mid_dma_pm = {
1424  .runtime_suspend = dma_runtime_suspend,
1425  .runtime_resume = dma_runtime_resume,
1426  .runtime_idle = dma_runtime_idle,
1427  .suspend = dma_suspend,
1428  .resume = dma_resume,
1429 };
1430 
1431 static struct pci_driver intel_mid_dma_pci_driver = {
1432  .name = "Intel MID DMA",
1433  .id_table = intel_mid_dma_ids,
1434  .probe = intel_mid_dma_probe,
1435  .remove = __devexit_p(intel_mid_dma_remove),
1436 #ifdef CONFIG_PM
1437  .driver = {
1438  .pm = &intel_mid_dma_pm,
1439  },
1440 #endif
1441 };
1442 
1443 static int __init intel_mid_dma_init(void)
1444 {
1445  pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1447  return pci_register_driver(&intel_mid_dma_pci_driver);
1448 }
1449 fs_initcall(intel_mid_dma_init);
1450 
1451 static void __exit intel_mid_dma_exit(void)
1452 {
1453  pci_unregister_driver(&intel_mid_dma_pci_driver);
1454 }
1455 module_exit(intel_mid_dma_exit);
1456 
1457 MODULE_AUTHOR("Vinod Koul <[email protected]>");
1458 MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1459 MODULE_LICENSE("GPL v2");