Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ipmi_si_intf.c
Go to the documentation of this file.
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  * Corey Minyard <[email protected]>
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <[email protected]>
13  *
14  * This program is free software; you can redistribute it and/or modify it
15  * under the terms of the GNU General Public License as published by the
16  * Free Software Foundation; either version 2 of the License, or (at your
17  * option) any later version.
18  *
19  *
20  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  * You should have received a copy of the GNU General Public License along
32  * with this program; if not, write to the Free Software Foundation, Inc.,
33  * 675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine. It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84  short timeout */
85 
97  /* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105 enum si_type {
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111  "ACPI", "SMBIOS", "PCI",
112  "device-tree", "default" };
114 #define DEVICE_NAME "ipmi_si"
115 
116 static struct platform_driver ipmi_driver;
117 
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122  /*
123  * Number of times the driver requested a timer while an operation
124  * was in progress.
125  */
127 
128  /*
129  * Number of times the driver requested a timer while nothing was in
130  * progress.
131  */
133 
134  /* Number of times the interface was idle while being polled. */
136 
137  /* Number of interrupts the driver handled. */
139 
140  /* Number of time the driver got an ATTN from the hardware. */
142 
143  /* Number of times the driver requested flags from the hardware. */
145 
146  /* Number of times the hardware didn't follow the state machine. */
148 
149  /* Number of completed messages. */
151 
152  /* Number of IPMI events received from the hardware. */
154 
155  /* Number of watchdog pretimeouts. */
157 
158  /* Number of asyncronous messages received. */
160 
161 
162  /* This *must* remain last, add new values above this. */
164 };
166 struct smi_info {
167  int intf_num;
169  struct si_sm_data *si_sm;
176  enum si_intf_state si_state;
177 
178  /*
179  * Used to handle the various types of I/O that can occur with
180  * IPMI
181  */
182  struct si_sm_io io;
183  int (*io_setup)(struct smi_info *info);
185  int (*irq_setup)(struct smi_info *info);
187  unsigned int io_size;
188  enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
190  void *addr_source_data;
191 
192  /*
193  * Per-OEM handler, called from handle_flags(). Returns 1
194  * when handle_flags() needs to be re-run or 0 indicating it
195  * set si_state itself.
196  */
198 
199  /*
200  * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201  * is set to hold the flags until we are done handling everything
202  * from the flags.
203  */
204 #define RECEIVE_MSG_AVAIL 0x01
205 #define EVENT_MSG_BUFFER_FULL 0x02
206 #define WDT_PRE_TIMEOUT_INT 0x08
207 #define OEM0_DATA_AVAIL 0x20
208 #define OEM1_DATA_AVAIL 0x40
209 #define OEM2_DATA_AVAIL 0x80
210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
211  OEM1_DATA_AVAIL | \
212  OEM2_DATA_AVAIL)
213  unsigned char msg_flags;
214 
215  /* Does the BMC have an event buffer? */
216  char has_event_buffer;
217 
218  /*
219  * If set to true, this will request events the next time the
220  * state machine is idle.
221  */
223 
224  /*
225  * If true, run the state machine to completion on every send
226  * call. Generally used after a panic to make sure stuff goes
227  * out.
228  */
229  int run_to_completion;
230 
231  /* The I/O port of an SI interface. */
232  int port;
233 
234  /*
235  * The space between start addresses of the two ports. For
236  * instance, if the first port is 0xca2 and the spacing is 4, then
237  * the second port is 0xca6.
238  */
239  unsigned int spacing;
240 
241  /* zero if no irq; */
242  int irq;
243 
244  /* The timer for this si. */
245  struct timer_list si_timer;
246 
247  /* The time (in jiffies) the last timeout occurred at. */
248  unsigned long last_timeout_jiffies;
249 
250  /* Used to gracefully stop the timer without race conditions. */
252 
253  /*
254  * The driver will disable interrupts when it gets into a
255  * situation where it cannot handle messages due to lack of
256  * memory. Once that situation clears up, it will re-enable
257  * interrupts.
258  */
259  int interrupt_disabled;
260 
261  /* From the get device id response... */
262  struct ipmi_device_id device_id;
263 
264  /* Driver model stuff. */
265  struct device *dev;
266  struct platform_device *pdev;
267 
268  /*
269  * True if we allocated the device, false if it came from
270  * someplace else (like PCI).
271  */
272  int dev_registered;
273 
274  /* Slave address, could be reported from DMI. */
275  unsigned char slave_addr;
276 
277  /* Counters and things for the proc filesystem. */
280  struct task_struct *thread;
282  struct list_head link;
284 };
286 #define smi_inc_stat(smi, stat) \
287  atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289  ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291 #define SI_MAX_PARMS 4
292 
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301 
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304 
305 static int unload_when_empty = 1;
306 
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311 
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315  return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317 
318 static void deliver_recv_msg(struct smi_info *smi_info,
319  struct ipmi_smi_msg *msg)
320 {
321  /* Deliver the message to the upper layer. */
322  ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324 
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327  struct ipmi_smi_msg *msg = smi_info->curr_msg;
328 
329  if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330  cCode = IPMI_ERR_UNSPECIFIED;
331  /* else use it as is */
332 
333  /* Make it a response */
334  msg->rsp[0] = msg->data[0] | 4;
335  msg->rsp[1] = msg->data[1];
336  msg->rsp[2] = cCode;
337  msg->rsp_size = 3;
338 
339  smi_info->curr_msg = NULL;
340  deliver_recv_msg(smi_info, msg);
341 }
342 
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345  int rv;
346  struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348  struct timeval t;
349 #endif
350 
351  /* Pick the high priority queue first. */
352  if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353  entry = smi_info->hp_xmit_msgs.next;
354  } else if (!list_empty(&(smi_info->xmit_msgs))) {
355  entry = smi_info->xmit_msgs.next;
356  }
357 
358  if (!entry) {
359  smi_info->curr_msg = NULL;
360  rv = SI_SM_IDLE;
361  } else {
362  int err;
363 
364  list_del(entry);
365  smi_info->curr_msg = list_entry(entry,
366  struct ipmi_smi_msg,
367  link);
368 #ifdef DEBUG_TIMING
369  do_gettimeofday(&t);
370  printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372  err = atomic_notifier_call_chain(&xaction_notifier_list,
373  0, smi_info);
374  if (err & NOTIFY_STOP_MASK) {
376  goto out;
377  }
378  err = smi_info->handlers->start_transaction(
379  smi_info->si_sm,
380  smi_info->curr_msg->data,
381  smi_info->curr_msg->data_size);
382  if (err)
383  return_hosed_msg(smi_info, err);
384 
386  }
387  out:
388  return rv;
389 }
390 
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393  unsigned char msg[2];
394 
395  /*
396  * If we are enabling interrupts, we have to tell the
397  * BMC to use them.
398  */
399  msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
401 
402  smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403  smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405 
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408  unsigned char msg[2];
409 
410  msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
412 
413  smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414  smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416 
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419  unsigned char msg[3];
420 
421  /* Make sure the watchdog pre-timeout flag is not set at startup. */
422  msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423  msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424  msg[2] = WDT_PRE_TIMEOUT_INT;
425 
426  smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427  smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429 
430 /*
431  * When we have a situtaion where we run out of memory and cannot
432  * allocate messages, we just leave them in the BMC and run the system
433  * polled until we can allocate some memory. Once we have some
434  * memory, we will re-enable the interrupt.
435  */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438  if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439  start_disable_irq(smi_info);
440  smi_info->interrupt_disabled = 1;
441  if (!atomic_read(&smi_info->stop_operation))
442  mod_timer(&smi_info->si_timer,
443  jiffies + SI_TIMEOUT_JIFFIES);
444  }
445 }
446 
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449  if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450  start_enable_irq(smi_info);
451  smi_info->interrupt_disabled = 0;
452  }
453 }
454 
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458  if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459  /* Watchdog pre-timeout */
460  smi_inc_stat(smi_info, watchdog_pretimeouts);
461 
462  start_clear_flags(smi_info);
463  smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
465  } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466  /* Messages available. */
467  smi_info->curr_msg = ipmi_alloc_smi_msg();
468  if (!smi_info->curr_msg) {
469  disable_si_irq(smi_info);
470  smi_info->si_state = SI_NORMAL;
471  return;
472  }
473  enable_si_irq(smi_info);
474 
475  smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476  smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477  smi_info->curr_msg->data_size = 2;
478 
479  smi_info->handlers->start_transaction(
480  smi_info->si_sm,
481  smi_info->curr_msg->data,
482  smi_info->curr_msg->data_size);
483  smi_info->si_state = SI_GETTING_MESSAGES;
484  } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485  /* Events available. */
486  smi_info->curr_msg = ipmi_alloc_smi_msg();
487  if (!smi_info->curr_msg) {
488  disable_si_irq(smi_info);
489  smi_info->si_state = SI_NORMAL;
490  return;
491  }
492  enable_si_irq(smi_info);
493 
494  smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495  smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496  smi_info->curr_msg->data_size = 2;
497 
498  smi_info->handlers->start_transaction(
499  smi_info->si_sm,
500  smi_info->curr_msg->data,
501  smi_info->curr_msg->data_size);
502  smi_info->si_state = SI_GETTING_EVENTS;
503  } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504  smi_info->oem_data_avail_handler) {
505  if (smi_info->oem_data_avail_handler(smi_info))
506  goto retry;
507  } else
508  smi_info->si_state = SI_NORMAL;
509 }
510 
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513  struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515  struct timeval t;
516 
517  do_gettimeofday(&t);
518  printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520  switch (smi_info->si_state) {
521  case SI_NORMAL:
522  if (!smi_info->curr_msg)
523  break;
524 
525  smi_info->curr_msg->rsp_size
526  = smi_info->handlers->get_result(
527  smi_info->si_sm,
528  smi_info->curr_msg->rsp,
530 
531  /*
532  * Do this here becase deliver_recv_msg() releases the
533  * lock, and a new message can be put in during the
534  * time the lock is released.
535  */
536  msg = smi_info->curr_msg;
537  smi_info->curr_msg = NULL;
538  deliver_recv_msg(smi_info, msg);
539  break;
540 
541  case SI_GETTING_FLAGS:
542  {
543  unsigned char msg[4];
544  unsigned int len;
545 
546  /* We got the flags from the SMI, now handle them. */
547  len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548  if (msg[2] != 0) {
549  /* Error fetching flags, just give up for now. */
550  smi_info->si_state = SI_NORMAL;
551  } else if (len < 4) {
552  /*
553  * Hmm, no flags. That's technically illegal, but
554  * don't use uninitialized data.
555  */
556  smi_info->si_state = SI_NORMAL;
557  } else {
558  smi_info->msg_flags = msg[3];
559  handle_flags(smi_info);
560  }
561  break;
562  }
563 
564  case SI_CLEARING_FLAGS:
566  {
567  unsigned char msg[3];
568 
569  /* We cleared the flags. */
570  smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571  if (msg[2] != 0) {
572  /* Error clearing flags */
573  dev_warn(smi_info->dev,
574  "Error clearing flags: %2.2x\n", msg[2]);
575  }
576  if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577  start_enable_irq(smi_info);
578  else
579  smi_info->si_state = SI_NORMAL;
580  break;
581  }
582 
583  case SI_GETTING_EVENTS:
584  {
585  smi_info->curr_msg->rsp_size
586  = smi_info->handlers->get_result(
587  smi_info->si_sm,
588  smi_info->curr_msg->rsp,
590 
591  /*
592  * Do this here becase deliver_recv_msg() releases the
593  * lock, and a new message can be put in during the
594  * time the lock is released.
595  */
596  msg = smi_info->curr_msg;
597  smi_info->curr_msg = NULL;
598  if (msg->rsp[2] != 0) {
599  /* Error getting event, probably done. */
600  msg->done(msg);
601 
602  /* Take off the event flag. */
603  smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604  handle_flags(smi_info);
605  } else {
606  smi_inc_stat(smi_info, events);
607 
608  /*
609  * Do this before we deliver the message
610  * because delivering the message releases the
611  * lock and something else can mess with the
612  * state.
613  */
614  handle_flags(smi_info);
615 
616  deliver_recv_msg(smi_info, msg);
617  }
618  break;
619  }
620 
621  case SI_GETTING_MESSAGES:
622  {
623  smi_info->curr_msg->rsp_size
624  = smi_info->handlers->get_result(
625  smi_info->si_sm,
626  smi_info->curr_msg->rsp,
628 
629  /*
630  * Do this here becase deliver_recv_msg() releases the
631  * lock, and a new message can be put in during the
632  * time the lock is released.
633  */
634  msg = smi_info->curr_msg;
635  smi_info->curr_msg = NULL;
636  if (msg->rsp[2] != 0) {
637  /* Error getting event, probably done. */
638  msg->done(msg);
639 
640  /* Take off the msg flag. */
641  smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642  handle_flags(smi_info);
643  } else {
644  smi_inc_stat(smi_info, incoming_messages);
645 
646  /*
647  * Do this before we deliver the message
648  * because delivering the message releases the
649  * lock and something else can mess with the
650  * state.
651  */
652  handle_flags(smi_info);
653 
654  deliver_recv_msg(smi_info, msg);
655  }
656  break;
657  }
658 
660  {
661  unsigned char msg[4];
662 
663  /* We got the flags from the SMI, now handle them. */
664  smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665  if (msg[2] != 0) {
666  dev_warn(smi_info->dev, "Could not enable interrupts"
667  ", failed get, using polled mode.\n");
668  smi_info->si_state = SI_NORMAL;
669  } else {
670  msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
672  msg[2] = (msg[3] |
675  smi_info->handlers->start_transaction(
676  smi_info->si_sm, msg, 3);
677  smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678  }
679  break;
680  }
681 
683  {
684  unsigned char msg[4];
685 
686  /* We got the flags from the SMI, now handle them. */
687  smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688  if (msg[2] != 0)
689  dev_warn(smi_info->dev, "Could not enable interrupts"
690  ", failed set, using polled mode.\n");
691  else
692  smi_info->interrupt_disabled = 0;
693  smi_info->si_state = SI_NORMAL;
694  break;
695  }
696 
698  {
699  unsigned char msg[4];
700 
701  /* We got the flags from the SMI, now handle them. */
702  smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703  if (msg[2] != 0) {
704  dev_warn(smi_info->dev, "Could not disable interrupts"
705  ", failed get.\n");
706  smi_info->si_state = SI_NORMAL;
707  } else {
708  msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
710  msg[2] = (msg[3] &
713  smi_info->handlers->start_transaction(
714  smi_info->si_sm, msg, 3);
715  smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716  }
717  break;
718  }
719 
721  {
722  unsigned char msg[4];
723 
724  /* We got the flags from the SMI, now handle them. */
725  smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726  if (msg[2] != 0) {
727  dev_warn(smi_info->dev, "Could not disable interrupts"
728  ", failed set.\n");
729  }
730  smi_info->si_state = SI_NORMAL;
731  break;
732  }
733  }
734 }
735 
736 /*
737  * Called on timeouts and events. Timeouts should pass the elapsed
738  * time, interrupts should pass in zero. Must be called with
739  * si_lock held and interrupts disabled.
740  */
741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742  int time)
743 {
745 
746  restart:
747  /*
748  * There used to be a loop here that waited a little while
749  * (around 25us) before giving up. That turned out to be
750  * pointless, the minimum delays I was seeing were in the 300us
751  * range, which is far too long to wait in an interrupt. So
752  * we just run until the state machine tells us something
753  * happened or it needs a delay.
754  */
755  si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756  time = 0;
757  while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
758  si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
759 
760  if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
761  smi_inc_stat(smi_info, complete_transactions);
762 
763  handle_transaction_done(smi_info);
764  si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765  } else if (si_sm_result == SI_SM_HOSED) {
766  smi_inc_stat(smi_info, hosed_count);
767 
768  /*
769  * Do the before return_hosed_msg, because that
770  * releases the lock.
771  */
772  smi_info->si_state = SI_NORMAL;
773  if (smi_info->curr_msg != NULL) {
774  /*
775  * If we were handling a user message, format
776  * a response to send to the upper layer to
777  * tell it about the error.
778  */
779  return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
780  }
781  si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782  }
783 
784  /*
785  * We prefer handling attn over new messages. But don't do
786  * this if there is not yet an upper layer to handle anything.
787  */
788  if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
789  unsigned char msg[2];
790 
791  smi_inc_stat(smi_info, attentions);
792 
793  /*
794  * Got a attn, send down a get message flags to see
795  * what's causing it. It would be better to handle
796  * this in the upper layer, but due to the way
797  * interrupts work with the SMI, that's not really
798  * possible.
799  */
800  msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801  msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802 
803  smi_info->handlers->start_transaction(
804  smi_info->si_sm, msg, 2);
805  smi_info->si_state = SI_GETTING_FLAGS;
806  goto restart;
807  }
808 
809  /* If we are currently idle, try to start the next message. */
810  if (si_sm_result == SI_SM_IDLE) {
811  smi_inc_stat(smi_info, idles);
812 
813  si_sm_result = start_next_msg(smi_info);
814  if (si_sm_result != SI_SM_IDLE)
815  goto restart;
816  }
817 
818  if ((si_sm_result == SI_SM_IDLE)
819  && (atomic_read(&smi_info->req_events))) {
820  /*
821  * We are idle and the upper layer requested that I fetch
822  * events, so do so.
823  */
824  atomic_set(&smi_info->req_events, 0);
825 
826  smi_info->curr_msg = ipmi_alloc_smi_msg();
827  if (!smi_info->curr_msg)
828  goto out;
829 
830  smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831  smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832  smi_info->curr_msg->data_size = 2;
833 
834  smi_info->handlers->start_transaction(
835  smi_info->si_sm,
836  smi_info->curr_msg->data,
837  smi_info->curr_msg->data_size);
838  smi_info->si_state = SI_GETTING_EVENTS;
839  goto restart;
840  }
841  out:
842  return si_sm_result;
843 }
844 
845 static void sender(void *send_info,
846  struct ipmi_smi_msg *msg,
847  int priority)
848 {
849  struct smi_info *smi_info = send_info;
850  enum si_sm_result result;
851  unsigned long flags;
852 #ifdef DEBUG_TIMING
853  struct timeval t;
854 #endif
855 
856  if (atomic_read(&smi_info->stop_operation)) {
857  msg->rsp[0] = msg->data[0] | 4;
858  msg->rsp[1] = msg->data[1];
859  msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860  msg->rsp_size = 3;
861  deliver_recv_msg(smi_info, msg);
862  return;
863  }
864 
865 #ifdef DEBUG_TIMING
866  do_gettimeofday(&t);
867  printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868 #endif
869 
870  if (smi_info->run_to_completion) {
871  /*
872  * If we are running to completion, then throw it in
873  * the list and run transactions until everything is
874  * clear. Priority doesn't matter here.
875  */
876 
877  /*
878  * Run to completion means we are single-threaded, no
879  * need for locks.
880  */
881  list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882 
883  result = smi_event_handler(smi_info, 0);
884  while (result != SI_SM_IDLE) {
886  result = smi_event_handler(smi_info,
888  }
889  return;
890  }
891 
892  spin_lock_irqsave(&smi_info->si_lock, flags);
893  if (priority > 0)
894  list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895  else
896  list_add_tail(&msg->link, &smi_info->xmit_msgs);
897 
898  if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
899  /*
900  * last_timeout_jiffies is updated here to avoid
901  * smi_timeout() handler passing very large time_diff
902  * value to smi_event_handler() that causes
903  * the send command to abort.
904  */
905  smi_info->last_timeout_jiffies = jiffies;
906 
907  mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908 
909  if (smi_info->thread)
910  wake_up_process(smi_info->thread);
911 
912  start_next_msg(smi_info);
913  smi_event_handler(smi_info, 0);
914  }
915  spin_unlock_irqrestore(&smi_info->si_lock, flags);
916 }
917 
918 static void set_run_to_completion(void *send_info, int i_run_to_completion)
919 {
920  struct smi_info *smi_info = send_info;
921  enum si_sm_result result;
922 
923  smi_info->run_to_completion = i_run_to_completion;
924  if (i_run_to_completion) {
925  result = smi_event_handler(smi_info, 0);
926  while (result != SI_SM_IDLE) {
928  result = smi_event_handler(smi_info,
930  }
931  }
932 }
933 
934 /*
935  * Use -1 in the nsec value of the busy waiting timespec to tell that
936  * we are spinning in kipmid looking for something and not delaying
937  * between checks
938  */
939 static inline void ipmi_si_set_not_busy(struct timespec *ts)
940 {
941  ts->tv_nsec = -1;
942 }
943 static inline int ipmi_si_is_busy(struct timespec *ts)
944 {
945  return ts->tv_nsec != -1;
946 }
947 
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949  const struct smi_info *smi_info,
950  struct timespec *busy_until)
951 {
952  unsigned int max_busy_us = 0;
953 
954  if (smi_info->intf_num < num_max_busy_us)
955  max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956  if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957  ipmi_si_set_not_busy(busy_until);
958  else if (!ipmi_si_is_busy(busy_until)) {
959  getnstimeofday(busy_until);
960  timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961  } else {
962  struct timespec now;
963  getnstimeofday(&now);
964  if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965  ipmi_si_set_not_busy(busy_until);
966  return 0;
967  }
968  }
969  return 1;
970 }
971 
972 
973 /*
974  * A busy-waiting loop for speeding up IPMI operation.
975  *
976  * Lousy hardware makes this hard. This is only enabled for systems
977  * that are not BT and do not have interrupts. It starts spinning
978  * when an operation is complete or until max_busy tells it to stop
979  * (if that is enabled). See the paragraph on kimid_max_busy_us in
980  * Documentation/IPMI.txt for details.
981  */
982 static int ipmi_thread(void *data)
983 {
984  struct smi_info *smi_info = data;
985  unsigned long flags;
986  enum si_sm_result smi_result;
987  struct timespec busy_until;
988 
989  ipmi_si_set_not_busy(&busy_until);
990  set_user_nice(current, 19);
991  while (!kthread_should_stop()) {
992  int busy_wait;
993 
994  spin_lock_irqsave(&(smi_info->si_lock), flags);
995  smi_result = smi_event_handler(smi_info, 0);
996  spin_unlock_irqrestore(&(smi_info->si_lock), flags);
997  busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998  &busy_until);
999  if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000  ; /* do nothing */
1001  else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1002  schedule();
1003  else if (smi_result == SI_SM_IDLE)
1005  else
1007  }
1008  return 0;
1009 }
1010 
1011 
1012 static void poll(void *send_info)
1013 {
1014  struct smi_info *smi_info = send_info;
1015  unsigned long flags = 0;
1016  int run_to_completion = smi_info->run_to_completion;
1017 
1018  /*
1019  * Make sure there is some delay in the poll loop so we can
1020  * drive time forward and timeout things.
1021  */
1022  udelay(10);
1023  if (!run_to_completion)
1024  spin_lock_irqsave(&smi_info->si_lock, flags);
1025  smi_event_handler(smi_info, 10);
1026  if (!run_to_completion)
1027  spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029 
1030 static void request_events(void *send_info)
1031 {
1032  struct smi_info *smi_info = send_info;
1033 
1034  if (atomic_read(&smi_info->stop_operation) ||
1035  !smi_info->has_event_buffer)
1036  return;
1037 
1038  atomic_set(&smi_info->req_events, 1);
1039 }
1040 
1041 static int initialized;
1042 
1043 static void smi_timeout(unsigned long data)
1044 {
1045  struct smi_info *smi_info = (struct smi_info *) data;
1046  enum si_sm_result smi_result;
1047  unsigned long flags;
1048  unsigned long jiffies_now;
1049  long time_diff;
1050  long timeout;
1051 #ifdef DEBUG_TIMING
1052  struct timeval t;
1053 #endif
1054 
1055  spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057  do_gettimeofday(&t);
1058  printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060  jiffies_now = jiffies;
1061  time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062  * SI_USEC_PER_JIFFY);
1063  smi_result = smi_event_handler(smi_info, time_diff);
1064 
1065  spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066 
1067  smi_info->last_timeout_jiffies = jiffies_now;
1068 
1069  if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070  /* Running with interrupts, only do long timeouts. */
1071  timeout = jiffies + SI_TIMEOUT_JIFFIES;
1072  smi_inc_stat(smi_info, long_timeouts);
1073  goto do_mod_timer;
1074  }
1075 
1076  /*
1077  * If the state machine asks for a short delay, then shorten
1078  * the timer timeout.
1079  */
1080  if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081  smi_inc_stat(smi_info, short_timeouts);
1082  timeout = jiffies + 1;
1083  } else {
1084  smi_inc_stat(smi_info, long_timeouts);
1085  timeout = jiffies + SI_TIMEOUT_JIFFIES;
1086  }
1087 
1088  do_mod_timer:
1089  if (smi_result != SI_SM_IDLE)
1090  mod_timer(&(smi_info->si_timer), timeout);
1091 }
1092 
1093 static irqreturn_t si_irq_handler(int irq, void *data)
1094 {
1095  struct smi_info *smi_info = data;
1096  unsigned long flags;
1097 #ifdef DEBUG_TIMING
1098  struct timeval t;
1099 #endif
1100 
1101  spin_lock_irqsave(&(smi_info->si_lock), flags);
1102 
1103  smi_inc_stat(smi_info, interrupts);
1104 
1105 #ifdef DEBUG_TIMING
1106  do_gettimeofday(&t);
1107  printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1108 #endif
1109  smi_event_handler(smi_info, 0);
1110  spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111  return IRQ_HANDLED;
1112 }
1113 
1114 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1115 {
1116  struct smi_info *smi_info = data;
1117  /* We need to clear the IRQ flag for the BT interface. */
1118  smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1121  return si_irq_handler(irq, data);
1122 }
1123 
1124 static int smi_start_processing(void *send_info,
1125  ipmi_smi_t intf)
1126 {
1127  struct smi_info *new_smi = send_info;
1128  int enable = 0;
1129 
1130  new_smi->intf = intf;
1131 
1132  /* Try to claim any interrupts. */
1133  if (new_smi->irq_setup)
1134  new_smi->irq_setup(new_smi);
1135 
1136  /* Set up the timer that drives the interface. */
1137  setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138  new_smi->last_timeout_jiffies = jiffies;
1139  mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140 
1141  /*
1142  * Check if the user forcefully enabled the daemon.
1143  */
1144  if (new_smi->intf_num < num_force_kipmid)
1145  enable = force_kipmid[new_smi->intf_num];
1146  /*
1147  * The BT interface is efficient enough to not need a thread,
1148  * and there is no need for a thread if we have interrupts.
1149  */
1150  else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1151  enable = 1;
1152 
1153  if (enable) {
1154  new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155  "kipmi%d", new_smi->intf_num);
1156  if (IS_ERR(new_smi->thread)) {
1157  dev_notice(new_smi->dev, "Could not start"
1158  " kernel thread due to error %ld, only using"
1159  " timers to drive the interface\n",
1160  PTR_ERR(new_smi->thread));
1161  new_smi->thread = NULL;
1162  }
1163  }
1164 
1165  return 0;
1166 }
1167 
1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169 {
1170  struct smi_info *smi = send_info;
1171 
1172  data->addr_src = smi->addr_source;
1173  data->dev = smi->dev;
1174  data->addr_info = smi->addr_info;
1175  get_device(smi->dev);
1176 
1177  return 0;
1178 }
1179 
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182  struct smi_info *smi_info = send_info;
1183 
1184  if (!enable)
1185  atomic_set(&smi_info->req_events, 0);
1186 }
1187 
1188 static struct ipmi_smi_handlers handlers = {
1189  .owner = THIS_MODULE,
1190  .start_processing = smi_start_processing,
1191  .get_smi_info = get_smi_info,
1192  .sender = sender,
1193  .request_events = request_events,
1194  .set_maintenance_mode = set_maintenance_mode,
1195  .set_run_to_completion = set_run_to_completion,
1196  .poll = poll,
1197 };
1198 
1199 /*
1200  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201  * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1202  */
1203 
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1208 #define DEFAULT_REGSPACING 1
1209 #define DEFAULT_REGSIZE 1
1210 
1211 static bool si_trydefaults = 1;
1212 static char *si_type[SI_MAX_PARMS];
1213 #define MAX_SI_TYPE_STR 30
1214 static char si_type_str[MAX_SI_TYPE_STR];
1215 static unsigned long addrs[SI_MAX_PARMS];
1216 static unsigned int num_addrs;
1217 static unsigned int ports[SI_MAX_PARMS];
1218 static unsigned int num_ports;
1219 static int irqs[SI_MAX_PARMS];
1220 static unsigned int num_irqs;
1221 static int regspacings[SI_MAX_PARMS];
1222 static unsigned int num_regspacings;
1223 static int regsizes[SI_MAX_PARMS];
1224 static unsigned int num_regsizes;
1225 static int regshifts[SI_MAX_PARMS];
1226 static unsigned int num_regshifts;
1227 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1228 static unsigned int num_slave_addrs;
1230 #define IPMI_IO_ADDR_SPACE 0
1231 #define IPMI_MEM_ADDR_SPACE 1
1232 static char *addr_space_to_str[] = { "i/o", "mem" };
1233 
1234 static int hotmod_handler(const char *val, struct kernel_param *kp);
1235 
1236 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1237 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1238  " Documentation/IPMI.txt in the kernel sources for the"
1239  " gory details.");
1240 
1241 module_param_named(trydefaults, si_trydefaults, bool, 0);
1242 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1243  " default scan of the KCS and SMIC interface at the standard"
1244  " address");
1245 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1246 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1247  " interface separated by commas. The types are 'kcs',"
1248  " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1249  " the first interface to kcs and the second to bt");
1250 module_param_array(addrs, ulong, &num_addrs, 0);
1251 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1252  " addresses separated by commas. Only use if an interface"
1253  " is in memory. Otherwise, set it to zero or leave"
1254  " it blank.");
1255 module_param_array(ports, uint, &num_ports, 0);
1256 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1257  " addresses separated by commas. Only use if an interface"
1258  " is a port. Otherwise, set it to zero or leave"
1259  " it blank.");
1260 module_param_array(irqs, int, &num_irqs, 0);
1261 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1262  " addresses separated by commas. Only use if an interface"
1263  " has an interrupt. Otherwise, set it to zero or leave"
1264  " it blank.");
1265 module_param_array(regspacings, int, &num_regspacings, 0);
1266 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1267  " and each successive register used by the interface. For"
1268  " instance, if the start address is 0xca2 and the spacing"
1269  " is 2, then the second address is at 0xca4. Defaults"
1270  " to 1.");
1271 module_param_array(regsizes, int, &num_regsizes, 0);
1272 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1273  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1274  " 16-bit, 32-bit, or 64-bit register. Use this if you"
1275  " the 8-bit IPMI register has to be read from a larger"
1276  " register.");
1277 module_param_array(regshifts, int, &num_regshifts, 0);
1278 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1279  " IPMI register, in bits. For instance, if the data"
1280  " is read from a 32-bit word and the IPMI data is in"
1281  " bit 8-15, then the shift would be 8");
1282 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1283 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1284  " the controller. Normally this is 0x20, but can be"
1285  " overridden by this parm. This is an array indexed"
1286  " by interface number.");
1287 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1288 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1289  " disabled(0). Normally the IPMI driver auto-detects"
1290  " this, but the value may be overridden by this parm.");
1291 module_param(unload_when_empty, int, 0);
1292 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1293  " specified or found, default is 1. Setting to 0"
1294  " is useful for hot add of devices using hotmod.");
1295 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1296 MODULE_PARM_DESC(kipmid_max_busy_us,
1297  "Max time (in microseconds) to busy-wait for IPMI data before"
1298  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1299  " if kipmid is using up a lot of CPU time.");
1300 
1301 
1302 static void std_irq_cleanup(struct smi_info *info)
1303 {
1304  if (info->si_type == SI_BT)
1305  /* Disable the interrupt in the BT interface. */
1306  info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1307  free_irq(info->irq, info);
1308 }
1309 
1310 static int std_irq_setup(struct smi_info *info)
1311 {
1312  int rv;
1313 
1314  if (!info->irq)
1315  return 0;
1316 
1317  if (info->si_type == SI_BT) {
1318  rv = request_irq(info->irq,
1319  si_bt_irq_handler,
1321  DEVICE_NAME,
1322  info);
1323  if (!rv)
1324  /* Enable the interrupt in the BT interface. */
1325  info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1327  } else
1328  rv = request_irq(info->irq,
1329  si_irq_handler,
1331  DEVICE_NAME,
1332  info);
1333  if (rv) {
1334  dev_warn(info->dev, "%s unable to claim interrupt %d,"
1335  " running polled\n",
1336  DEVICE_NAME, info->irq);
1337  info->irq = 0;
1338  } else {
1339  info->irq_cleanup = std_irq_cleanup;
1340  dev_info(info->dev, "Using irq %d\n", info->irq);
1341  }
1342 
1343  return rv;
1344 }
1345 
1346 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1347 {
1348  unsigned int addr = io->addr_data;
1349 
1350  return inb(addr + (offset * io->regspacing));
1351 }
1352 
1353 static void port_outb(struct si_sm_io *io, unsigned int offset,
1354  unsigned char b)
1355 {
1356  unsigned int addr = io->addr_data;
1357 
1358  outb(b, addr + (offset * io->regspacing));
1359 }
1360 
1361 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1362 {
1363  unsigned int addr = io->addr_data;
1364 
1365  return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1366 }
1367 
1368 static void port_outw(struct si_sm_io *io, unsigned int offset,
1369  unsigned char b)
1370 {
1371  unsigned int addr = io->addr_data;
1372 
1373  outw(b << io->regshift, addr + (offset * io->regspacing));
1374 }
1375 
1376 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1377 {
1378  unsigned int addr = io->addr_data;
1379 
1380  return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1381 }
1382 
1383 static void port_outl(struct si_sm_io *io, unsigned int offset,
1384  unsigned char b)
1385 {
1386  unsigned int addr = io->addr_data;
1387 
1388  outl(b << io->regshift, addr+(offset * io->regspacing));
1389 }
1390 
1391 static void port_cleanup(struct smi_info *info)
1392 {
1393  unsigned int addr = info->io.addr_data;
1394  int idx;
1395 
1396  if (addr) {
1397  for (idx = 0; idx < info->io_size; idx++)
1398  release_region(addr + idx * info->io.regspacing,
1399  info->io.regsize);
1400  }
1401 }
1402 
1403 static int port_setup(struct smi_info *info)
1404 {
1405  unsigned int addr = info->io.addr_data;
1406  int idx;
1407 
1408  if (!addr)
1409  return -ENODEV;
1410 
1411  info->io_cleanup = port_cleanup;
1412 
1413  /*
1414  * Figure out the actual inb/inw/inl/etc routine to use based
1415  * upon the register size.
1416  */
1417  switch (info->io.regsize) {
1418  case 1:
1419  info->io.inputb = port_inb;
1420  info->io.outputb = port_outb;
1421  break;
1422  case 2:
1423  info->io.inputb = port_inw;
1424  info->io.outputb = port_outw;
1425  break;
1426  case 4:
1427  info->io.inputb = port_inl;
1428  info->io.outputb = port_outl;
1429  break;
1430  default:
1431  dev_warn(info->dev, "Invalid register size: %d\n",
1432  info->io.regsize);
1433  return -EINVAL;
1434  }
1435 
1436  /*
1437  * Some BIOSes reserve disjoint I/O regions in their ACPI
1438  * tables. This causes problems when trying to register the
1439  * entire I/O region. Therefore we must register each I/O
1440  * port separately.
1441  */
1442  for (idx = 0; idx < info->io_size; idx++) {
1443  if (request_region(addr + idx * info->io.regspacing,
1444  info->io.regsize, DEVICE_NAME) == NULL) {
1445  /* Undo allocations */
1446  while (idx--) {
1447  release_region(addr + idx * info->io.regspacing,
1448  info->io.regsize);
1449  }
1450  return -EIO;
1451  }
1452  }
1453  return 0;
1454 }
1455 
1456 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1457 {
1458  return readb((io->addr)+(offset * io->regspacing));
1459 }
1460 
1461 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1462  unsigned char b)
1463 {
1464  writeb(b, (io->addr)+(offset * io->regspacing));
1465 }
1466 
1467 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1468 {
1469  return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1470  & 0xff;
1471 }
1472 
1473 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1474  unsigned char b)
1475 {
1476  writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1477 }
1478 
1479 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1480 {
1481  return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1482  & 0xff;
1483 }
1484 
1485 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1486  unsigned char b)
1487 {
1488  writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1489 }
1490 
1491 #ifdef readq
1492 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1493 {
1494  return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1495  & 0xff;
1496 }
1497 
1498 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1499  unsigned char b)
1500 {
1501  writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1502 }
1503 #endif
1504 
1505 static void mem_cleanup(struct smi_info *info)
1506 {
1507  unsigned long addr = info->io.addr_data;
1508  int mapsize;
1509 
1510  if (info->io.addr) {
1511  iounmap(info->io.addr);
1512 
1513  mapsize = ((info->io_size * info->io.regspacing)
1514  - (info->io.regspacing - info->io.regsize));
1515 
1516  release_mem_region(addr, mapsize);
1517  }
1518 }
1519 
1520 static int mem_setup(struct smi_info *info)
1521 {
1522  unsigned long addr = info->io.addr_data;
1523  int mapsize;
1524 
1525  if (!addr)
1526  return -ENODEV;
1527 
1528  info->io_cleanup = mem_cleanup;
1529 
1530  /*
1531  * Figure out the actual readb/readw/readl/etc routine to use based
1532  * upon the register size.
1533  */
1534  switch (info->io.regsize) {
1535  case 1:
1536  info->io.inputb = intf_mem_inb;
1537  info->io.outputb = intf_mem_outb;
1538  break;
1539  case 2:
1540  info->io.inputb = intf_mem_inw;
1541  info->io.outputb = intf_mem_outw;
1542  break;
1543  case 4:
1544  info->io.inputb = intf_mem_inl;
1545  info->io.outputb = intf_mem_outl;
1546  break;
1547 #ifdef readq
1548  case 8:
1549  info->io.inputb = mem_inq;
1550  info->io.outputb = mem_outq;
1551  break;
1552 #endif
1553  default:
1554  dev_warn(info->dev, "Invalid register size: %d\n",
1555  info->io.regsize);
1556  return -EINVAL;
1557  }
1558 
1559  /*
1560  * Calculate the total amount of memory to claim. This is an
1561  * unusual looking calculation, but it avoids claiming any
1562  * more memory than it has to. It will claim everything
1563  * between the first address to the end of the last full
1564  * register.
1565  */
1566  mapsize = ((info->io_size * info->io.regspacing)
1567  - (info->io.regspacing - info->io.regsize));
1568 
1569  if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1570  return -EIO;
1571 
1572  info->io.addr = ioremap(addr, mapsize);
1573  if (info->io.addr == NULL) {
1574  release_mem_region(addr, mapsize);
1575  return -EIO;
1576  }
1577  return 0;
1578 }
1579 
1580 /*
1581  * Parms come in as <op1>[:op2[:op3...]]. ops are:
1582  * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1583  * Options are:
1584  * rsp=<regspacing>
1585  * rsi=<regsize>
1586  * rsh=<regshift>
1587  * irq=<irq>
1588  * ipmb=<ipmb addr>
1589  */
1591 struct hotmod_vals {
1592  char *name;
1593  int val;
1594 };
1595 static struct hotmod_vals hotmod_ops[] = {
1596  { "add", HM_ADD },
1597  { "remove", HM_REMOVE },
1598  { NULL }
1599 };
1600 static struct hotmod_vals hotmod_si[] = {
1601  { "kcs", SI_KCS },
1602  { "smic", SI_SMIC },
1603  { "bt", SI_BT },
1604  { NULL }
1605 };
1606 static struct hotmod_vals hotmod_as[] = {
1607  { "mem", IPMI_MEM_ADDR_SPACE },
1608  { "i/o", IPMI_IO_ADDR_SPACE },
1609  { NULL }
1610 };
1611 
1612 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1613 {
1614  char *s;
1615  int i;
1616 
1617  s = strchr(*curr, ',');
1618  if (!s) {
1619  printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1620  return -EINVAL;
1621  }
1622  *s = '\0';
1623  s++;
1624  for (i = 0; hotmod_ops[i].name; i++) {
1625  if (strcmp(*curr, v[i].name) == 0) {
1626  *val = v[i].val;
1627  *curr = s;
1628  return 0;
1629  }
1630  }
1631 
1632  printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1633  return -EINVAL;
1634 }
1635 
1636 static int check_hotmod_int_op(const char *curr, const char *option,
1637  const char *name, int *val)
1638 {
1639  char *n;
1640 
1641  if (strcmp(curr, name) == 0) {
1642  if (!option) {
1644  "No option given for '%s'\n",
1645  curr);
1646  return -EINVAL;
1647  }
1648  *val = simple_strtoul(option, &n, 0);
1649  if ((*n != '\0') || (*option == '\0')) {
1651  "Bad option given for '%s'\n",
1652  curr);
1653  return -EINVAL;
1654  }
1655  return 1;
1656  }
1657  return 0;
1658 }
1659 
1660 static struct smi_info *smi_info_alloc(void)
1661 {
1662  struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1663 
1664  if (info)
1665  spin_lock_init(&info->si_lock);
1666  return info;
1667 }
1668 
1669 static int hotmod_handler(const char *val, struct kernel_param *kp)
1670 {
1671  char *str = kstrdup(val, GFP_KERNEL);
1672  int rv;
1673  char *next, *curr, *s, *n, *o;
1674  enum hotmod_op op;
1675  enum si_type si_type;
1676  int addr_space;
1677  unsigned long addr;
1678  int regspacing;
1679  int regsize;
1680  int regshift;
1681  int irq;
1682  int ipmb;
1683  int ival;
1684  int len;
1685  struct smi_info *info;
1686 
1687  if (!str)
1688  return -ENOMEM;
1689 
1690  /* Kill any trailing spaces, as we can get a "\n" from echo. */
1691  len = strlen(str);
1692  ival = len - 1;
1693  while ((ival >= 0) && isspace(str[ival])) {
1694  str[ival] = '\0';
1695  ival--;
1696  }
1697 
1698  for (curr = str; curr; curr = next) {
1699  regspacing = 1;
1700  regsize = 1;
1701  regshift = 0;
1702  irq = 0;
1703  ipmb = 0; /* Choose the default if not specified */
1704 
1705  next = strchr(curr, ':');
1706  if (next) {
1707  *next = '\0';
1708  next++;
1709  }
1710 
1711  rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1712  if (rv)
1713  break;
1714  op = ival;
1715 
1716  rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1717  if (rv)
1718  break;
1719  si_type = ival;
1720 
1721  rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1722  if (rv)
1723  break;
1724 
1725  s = strchr(curr, ',');
1726  if (s) {
1727  *s = '\0';
1728  s++;
1729  }
1730  addr = simple_strtoul(curr, &n, 0);
1731  if ((*n != '\0') || (*curr == '\0')) {
1732  printk(KERN_WARNING PFX "Invalid hotmod address"
1733  " '%s'\n", curr);
1734  break;
1735  }
1736 
1737  while (s) {
1738  curr = s;
1739  s = strchr(curr, ',');
1740  if (s) {
1741  *s = '\0';
1742  s++;
1743  }
1744  o = strchr(curr, '=');
1745  if (o) {
1746  *o = '\0';
1747  o++;
1748  }
1749  rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1750  if (rv < 0)
1751  goto out;
1752  else if (rv)
1753  continue;
1754  rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1755  if (rv < 0)
1756  goto out;
1757  else if (rv)
1758  continue;
1759  rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1760  if (rv < 0)
1761  goto out;
1762  else if (rv)
1763  continue;
1764  rv = check_hotmod_int_op(curr, o, "irq", &irq);
1765  if (rv < 0)
1766  goto out;
1767  else if (rv)
1768  continue;
1769  rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1770  if (rv < 0)
1771  goto out;
1772  else if (rv)
1773  continue;
1774 
1775  rv = -EINVAL;
1777  "Invalid hotmod option '%s'\n",
1778  curr);
1779  goto out;
1780  }
1781 
1782  if (op == HM_ADD) {
1783  info = smi_info_alloc();
1784  if (!info) {
1785  rv = -ENOMEM;
1786  goto out;
1787  }
1788 
1789  info->addr_source = SI_HOTMOD;
1790  info->si_type = si_type;
1791  info->io.addr_data = addr;
1792  info->io.addr_type = addr_space;
1793  if (addr_space == IPMI_MEM_ADDR_SPACE)
1794  info->io_setup = mem_setup;
1795  else
1796  info->io_setup = port_setup;
1797 
1798  info->io.addr = NULL;
1799  info->io.regspacing = regspacing;
1800  if (!info->io.regspacing)
1801  info->io.regspacing = DEFAULT_REGSPACING;
1802  info->io.regsize = regsize;
1803  if (!info->io.regsize)
1804  info->io.regsize = DEFAULT_REGSPACING;
1805  info->io.regshift = regshift;
1806  info->irq = irq;
1807  if (info->irq)
1808  info->irq_setup = std_irq_setup;
1809  info->slave_addr = ipmb;
1810 
1811  if (!add_smi(info)) {
1812  if (try_smi_init(info))
1813  cleanup_one_si(info);
1814  } else {
1815  kfree(info);
1816  }
1817  } else {
1818  /* remove */
1819  struct smi_info *e, *tmp_e;
1820 
1821  mutex_lock(&smi_infos_lock);
1822  list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1823  if (e->io.addr_type != addr_space)
1824  continue;
1825  if (e->si_type != si_type)
1826  continue;
1827  if (e->io.addr_data == addr)
1828  cleanup_one_si(e);
1829  }
1830  mutex_unlock(&smi_infos_lock);
1831  }
1832  }
1833  rv = len;
1834  out:
1835  kfree(str);
1836  return rv;
1837 }
1838 
1839 static int __devinit hardcode_find_bmc(void)
1840 {
1841  int ret = -ENODEV;
1842  int i;
1843  struct smi_info *info;
1844 
1845  for (i = 0; i < SI_MAX_PARMS; i++) {
1846  if (!ports[i] && !addrs[i])
1847  continue;
1848 
1849  info = smi_info_alloc();
1850  if (!info)
1851  return -ENOMEM;
1852 
1853  info->addr_source = SI_HARDCODED;
1854  printk(KERN_INFO PFX "probing via hardcoded address\n");
1855 
1856  if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1857  info->si_type = SI_KCS;
1858  } else if (strcmp(si_type[i], "smic") == 0) {
1859  info->si_type = SI_SMIC;
1860  } else if (strcmp(si_type[i], "bt") == 0) {
1861  info->si_type = SI_BT;
1862  } else {
1863  printk(KERN_WARNING PFX "Interface type specified "
1864  "for interface %d, was invalid: %s\n",
1865  i, si_type[i]);
1866  kfree(info);
1867  continue;
1868  }
1869 
1870  if (ports[i]) {
1871  /* An I/O port */
1872  info->io_setup = port_setup;
1873  info->io.addr_data = ports[i];
1874  info->io.addr_type = IPMI_IO_ADDR_SPACE;
1875  } else if (addrs[i]) {
1876  /* A memory port */
1877  info->io_setup = mem_setup;
1878  info->io.addr_data = addrs[i];
1879  info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1880  } else {
1881  printk(KERN_WARNING PFX "Interface type specified "
1882  "for interface %d, but port and address were "
1883  "not set or set to zero.\n", i);
1884  kfree(info);
1885  continue;
1886  }
1887 
1888  info->io.addr = NULL;
1889  info->io.regspacing = regspacings[i];
1890  if (!info->io.regspacing)
1891  info->io.regspacing = DEFAULT_REGSPACING;
1892  info->io.regsize = regsizes[i];
1893  if (!info->io.regsize)
1894  info->io.regsize = DEFAULT_REGSPACING;
1895  info->io.regshift = regshifts[i];
1896  info->irq = irqs[i];
1897  if (info->irq)
1898  info->irq_setup = std_irq_setup;
1899  info->slave_addr = slave_addrs[i];
1900 
1901  if (!add_smi(info)) {
1902  if (try_smi_init(info))
1903  cleanup_one_si(info);
1904  ret = 0;
1905  } else {
1906  kfree(info);
1907  }
1908  }
1909  return ret;
1910 }
1911 
1912 #ifdef CONFIG_ACPI
1913 
1914 #include <linux/acpi.h>
1915 
1916 /*
1917  * Once we get an ACPI failure, we don't try any more, because we go
1918  * through the tables sequentially. Once we don't find a table, there
1919  * are no more.
1920  */
1921 static int acpi_failure;
1922 
1923 /* For GPE-type interrupts. */
1924 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1925  u32 gpe_number, void *context)
1926 {
1927  struct smi_info *smi_info = context;
1928  unsigned long flags;
1929 #ifdef DEBUG_TIMING
1930  struct timeval t;
1931 #endif
1932 
1933  spin_lock_irqsave(&(smi_info->si_lock), flags);
1934 
1935  smi_inc_stat(smi_info, interrupts);
1936 
1937 #ifdef DEBUG_TIMING
1938  do_gettimeofday(&t);
1939  printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1940 #endif
1941  smi_event_handler(smi_info, 0);
1942  spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1943 
1944  return ACPI_INTERRUPT_HANDLED;
1945 }
1946 
1947 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1948 {
1949  if (!info->irq)
1950  return;
1951 
1952  acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1953 }
1954 
1955 static int acpi_gpe_irq_setup(struct smi_info *info)
1956 {
1958 
1959  if (!info->irq)
1960  return 0;
1961 
1962  /* FIXME - is level triggered right? */
1963  status = acpi_install_gpe_handler(NULL,
1964  info->irq,
1966  &ipmi_acpi_gpe,
1967  info);
1968  if (status != AE_OK) {
1969  dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1970  " running polled\n", DEVICE_NAME, info->irq);
1971  info->irq = 0;
1972  return -EINVAL;
1973  } else {
1974  info->irq_cleanup = acpi_gpe_irq_cleanup;
1975  dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1976  return 0;
1977  }
1978 }
1979 
1980 /*
1981  * Defined at
1982  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1983  */
1984 struct SPMITable {
1985  s8 Signature[4];
1986  u32 Length;
1987  u8 Revision;
1988  u8 Checksum;
1989  s8 OEMID[6];
1990  s8 OEMTableID[8];
1991  s8 OEMRevision[4];
1992  s8 CreatorID[4];
1993  s8 CreatorRevision[4];
1994  u8 InterfaceType;
1995  u8 IPMIlegacy;
1996  s16 SpecificationRevision;
1997 
1998  /*
1999  * Bit 0 - SCI interrupt supported
2000  * Bit 1 - I/O APIC/SAPIC
2001  */
2002  u8 InterruptType;
2003 
2004  /*
2005  * If bit 0 of InterruptType is set, then this is the SCI
2006  * interrupt in the GPEx_STS register.
2007  */
2008  u8 GPE;
2009 
2010  s16 Reserved;
2011 
2012  /*
2013  * If bit 1 of InterruptType is set, then this is the I/O
2014  * APIC/SAPIC interrupt.
2015  */
2016  u32 GlobalSystemInterrupt;
2017 
2018  /* The actual register address. */
2019  struct acpi_generic_address addr;
2020 
2021  u8 UID[4];
2022 
2023  s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2024 };
2025 
2026 static int __devinit try_init_spmi(struct SPMITable *spmi)
2027 {
2028  struct smi_info *info;
2029 
2030  if (spmi->IPMIlegacy != 1) {
2031  printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2032  return -ENODEV;
2033  }
2034 
2035  info = smi_info_alloc();
2036  if (!info) {
2037  printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2038  return -ENOMEM;
2039  }
2040 
2041  info->addr_source = SI_SPMI;
2042  printk(KERN_INFO PFX "probing via SPMI\n");
2043 
2044  /* Figure out the interface type. */
2045  switch (spmi->InterfaceType) {
2046  case 1: /* KCS */
2047  info->si_type = SI_KCS;
2048  break;
2049  case 2: /* SMIC */
2050  info->si_type = SI_SMIC;
2051  break;
2052  case 3: /* BT */
2053  info->si_type = SI_BT;
2054  break;
2055  default:
2056  printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2057  spmi->InterfaceType);
2058  kfree(info);
2059  return -EIO;
2060  }
2061 
2062  if (spmi->InterruptType & 1) {
2063  /* We've got a GPE interrupt. */
2064  info->irq = spmi->GPE;
2065  info->irq_setup = acpi_gpe_irq_setup;
2066  } else if (spmi->InterruptType & 2) {
2067  /* We've got an APIC/SAPIC interrupt. */
2068  info->irq = spmi->GlobalSystemInterrupt;
2069  info->irq_setup = std_irq_setup;
2070  } else {
2071  /* Use the default interrupt setting. */
2072  info->irq = 0;
2073  info->irq_setup = NULL;
2074  }
2075 
2076  if (spmi->addr.bit_width) {
2077  /* A (hopefully) properly formed register bit width. */
2078  info->io.regspacing = spmi->addr.bit_width / 8;
2079  } else {
2080  info->io.regspacing = DEFAULT_REGSPACING;
2081  }
2082  info->io.regsize = info->io.regspacing;
2083  info->io.regshift = spmi->addr.bit_offset;
2084 
2085  if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2086  info->io_setup = mem_setup;
2087  info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2088  } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2089  info->io_setup = port_setup;
2090  info->io.addr_type = IPMI_IO_ADDR_SPACE;
2091  } else {
2092  kfree(info);
2093  printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2094  return -EIO;
2095  }
2096  info->io.addr_data = spmi->addr.address;
2097 
2098  pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2099  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2100  info->io.addr_data, info->io.regsize, info->io.regspacing,
2101  info->irq);
2102 
2103  if (add_smi(info))
2104  kfree(info);
2105 
2106  return 0;
2107 }
2108 
2109 static void __devinit spmi_find_bmc(void)
2110 {
2112  struct SPMITable *spmi;
2113  int i;
2114 
2115  if (acpi_disabled)
2116  return;
2117 
2118  if (acpi_failure)
2119  return;
2120 
2121  for (i = 0; ; i++) {
2122  status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2123  (struct acpi_table_header **)&spmi);
2124  if (status != AE_OK)
2125  return;
2126 
2127  try_init_spmi(spmi);
2128  }
2129 }
2130 
2131 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2132  const struct pnp_device_id *dev_id)
2133 {
2134  struct acpi_device *acpi_dev;
2135  struct smi_info *info;
2136  struct resource *res, *res_second;
2139  unsigned long long tmp;
2140 
2141  acpi_dev = pnp_acpi_device(dev);
2142  if (!acpi_dev)
2143  return -ENODEV;
2144 
2145  info = smi_info_alloc();
2146  if (!info)
2147  return -ENOMEM;
2148 
2149  info->addr_source = SI_ACPI;
2150  printk(KERN_INFO PFX "probing via ACPI\n");
2151 
2152  handle = acpi_dev->handle;
2153  info->addr_info.acpi_info.acpi_handle = handle;
2154 
2155  /* _IFT tells us the interface type: KCS, BT, etc */
2156  status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2157  if (ACPI_FAILURE(status))
2158  goto err_free;
2159 
2160  switch (tmp) {
2161  case 1:
2162  info->si_type = SI_KCS;
2163  break;
2164  case 2:
2165  info->si_type = SI_SMIC;
2166  break;
2167  case 3:
2168  info->si_type = SI_BT;
2169  break;
2170  default:
2171  dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2172  goto err_free;
2173  }
2174 
2175  res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2176  if (res) {
2177  info->io_setup = port_setup;
2178  info->io.addr_type = IPMI_IO_ADDR_SPACE;
2179  } else {
2180  res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2181  if (res) {
2182  info->io_setup = mem_setup;
2183  info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2184  }
2185  }
2186  if (!res) {
2187  dev_err(&dev->dev, "no I/O or memory address\n");
2188  goto err_free;
2189  }
2190  info->io.addr_data = res->start;
2191 
2192  info->io.regspacing = DEFAULT_REGSPACING;
2193  res_second = pnp_get_resource(dev,
2194  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2196  1);
2197  if (res_second) {
2198  if (res_second->start > info->io.addr_data)
2199  info->io.regspacing = res_second->start - info->io.addr_data;
2200  }
2201  info->io.regsize = DEFAULT_REGSPACING;
2202  info->io.regshift = 0;
2203 
2204  /* If _GPE exists, use it; otherwise use standard interrupts */
2205  status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2206  if (ACPI_SUCCESS(status)) {
2207  info->irq = tmp;
2208  info->irq_setup = acpi_gpe_irq_setup;
2209  } else if (pnp_irq_valid(dev, 0)) {
2210  info->irq = pnp_irq(dev, 0);
2211  info->irq_setup = std_irq_setup;
2212  }
2213 
2214  info->dev = &dev->dev;
2215  pnp_set_drvdata(dev, info);
2216 
2217  dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2218  res, info->io.regsize, info->io.regspacing,
2219  info->irq);
2220 
2221  if (add_smi(info))
2222  goto err_free;
2223 
2224  return 0;
2225 
2226 err_free:
2227  kfree(info);
2228  return -EINVAL;
2229 }
2230 
2231 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2232 {
2233  struct smi_info *info = pnp_get_drvdata(dev);
2234 
2235  cleanup_one_si(info);
2236 }
2237 
2238 static const struct pnp_device_id pnp_dev_table[] = {
2239  {"IPI0001", 0},
2240  {"", 0},
2241 };
2242 
2243 static struct pnp_driver ipmi_pnp_driver = {
2244  .name = DEVICE_NAME,
2245  .probe = ipmi_pnp_probe,
2246  .remove = __devexit_p(ipmi_pnp_remove),
2247  .id_table = pnp_dev_table,
2248 };
2249 #endif
2250 
2251 #ifdef CONFIG_DMI
2252 struct dmi_ipmi_data {
2253  u8 type;
2254  u8 addr_space;
2255  unsigned long base_addr;
2256  u8 irq;
2257  u8 offset;
2258  u8 slave_addr;
2259 };
2260 
2261 static int __devinit decode_dmi(const struct dmi_header *dm,
2262  struct dmi_ipmi_data *dmi)
2263 {
2264  const u8 *data = (const u8 *)dm;
2265  unsigned long base_addr;
2266  u8 reg_spacing;
2267  u8 len = dm->length;
2268 
2269  dmi->type = data[4];
2270 
2271  memcpy(&base_addr, data+8, sizeof(unsigned long));
2272  if (len >= 0x11) {
2273  if (base_addr & 1) {
2274  /* I/O */
2275  base_addr &= 0xFFFE;
2276  dmi->addr_space = IPMI_IO_ADDR_SPACE;
2277  } else
2278  /* Memory */
2279  dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2280 
2281  /* If bit 4 of byte 0x10 is set, then the lsb for the address
2282  is odd. */
2283  dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2284 
2285  dmi->irq = data[0x11];
2286 
2287  /* The top two bits of byte 0x10 hold the register spacing. */
2288  reg_spacing = (data[0x10] & 0xC0) >> 6;
2289  switch (reg_spacing) {
2290  case 0x00: /* Byte boundaries */
2291  dmi->offset = 1;
2292  break;
2293  case 0x01: /* 32-bit boundaries */
2294  dmi->offset = 4;
2295  break;
2296  case 0x02: /* 16-byte boundaries */
2297  dmi->offset = 16;
2298  break;
2299  default:
2300  /* Some other interface, just ignore it. */
2301  return -EIO;
2302  }
2303  } else {
2304  /* Old DMI spec. */
2305  /*
2306  * Note that technically, the lower bit of the base
2307  * address should be 1 if the address is I/O and 0 if
2308  * the address is in memory. So many systems get that
2309  * wrong (and all that I have seen are I/O) so we just
2310  * ignore that bit and assume I/O. Systems that use
2311  * memory should use the newer spec, anyway.
2312  */
2313  dmi->base_addr = base_addr & 0xfffe;
2314  dmi->addr_space = IPMI_IO_ADDR_SPACE;
2315  dmi->offset = 1;
2316  }
2317 
2318  dmi->slave_addr = data[6];
2319 
2320  return 0;
2321 }
2322 
2323 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2324 {
2325  struct smi_info *info;
2326 
2327  info = smi_info_alloc();
2328  if (!info) {
2329  printk(KERN_ERR PFX "Could not allocate SI data\n");
2330  return;
2331  }
2332 
2333  info->addr_source = SI_SMBIOS;
2334  printk(KERN_INFO PFX "probing via SMBIOS\n");
2335 
2336  switch (ipmi_data->type) {
2337  case 0x01: /* KCS */
2338  info->si_type = SI_KCS;
2339  break;
2340  case 0x02: /* SMIC */
2341  info->si_type = SI_SMIC;
2342  break;
2343  case 0x03: /* BT */
2344  info->si_type = SI_BT;
2345  break;
2346  default:
2347  kfree(info);
2348  return;
2349  }
2350 
2351  switch (ipmi_data->addr_space) {
2352  case IPMI_MEM_ADDR_SPACE:
2353  info->io_setup = mem_setup;
2354  info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2355  break;
2356 
2357  case IPMI_IO_ADDR_SPACE:
2358  info->io_setup = port_setup;
2359  info->io.addr_type = IPMI_IO_ADDR_SPACE;
2360  break;
2361 
2362  default:
2363  kfree(info);
2364  printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2365  ipmi_data->addr_space);
2366  return;
2367  }
2368  info->io.addr_data = ipmi_data->base_addr;
2369 
2370  info->io.regspacing = ipmi_data->offset;
2371  if (!info->io.regspacing)
2372  info->io.regspacing = DEFAULT_REGSPACING;
2373  info->io.regsize = DEFAULT_REGSPACING;
2374  info->io.regshift = 0;
2375 
2376  info->slave_addr = ipmi_data->slave_addr;
2377 
2378  info->irq = ipmi_data->irq;
2379  if (info->irq)
2380  info->irq_setup = std_irq_setup;
2381 
2382  pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2383  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2384  info->io.addr_data, info->io.regsize, info->io.regspacing,
2385  info->irq);
2386 
2387  if (add_smi(info))
2388  kfree(info);
2389 }
2390 
2391 static void __devinit dmi_find_bmc(void)
2392 {
2393  const struct dmi_device *dev = NULL;
2394  struct dmi_ipmi_data data;
2395  int rv;
2396 
2397  while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2398  memset(&data, 0, sizeof(data));
2399  rv = decode_dmi((const struct dmi_header *) dev->device_data,
2400  &data);
2401  if (!rv)
2402  try_init_dmi(&data);
2403  }
2404 }
2405 #endif /* CONFIG_DMI */
2406 
2407 #ifdef CONFIG_PCI
2408 
2409 #define PCI_ERMC_CLASSCODE 0x0C0700
2410 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2411 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2412 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2413 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2414 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2415 
2416 #define PCI_HP_VENDOR_ID 0x103C
2417 #define PCI_MMC_DEVICE_ID 0x121A
2418 #define PCI_MMC_ADDR_CW 0x10
2419 
2420 static void ipmi_pci_cleanup(struct smi_info *info)
2421 {
2422  struct pci_dev *pdev = info->addr_source_data;
2423 
2424  pci_disable_device(pdev);
2425 }
2426 
2427 static int __devinit ipmi_pci_probe_regspacing(struct smi_info *info)
2428 {
2429  if (info->si_type == SI_KCS) {
2430  unsigned char status;
2431  int regspacing;
2432 
2433  info->io.regsize = DEFAULT_REGSIZE;
2434  info->io.regshift = 0;
2435  info->io_size = 2;
2436  info->handlers = &kcs_smi_handlers;
2437 
2438  /* detect 1, 4, 16byte spacing */
2439  for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2440  info->io.regspacing = regspacing;
2441  if (info->io_setup(info)) {
2442  dev_err(info->dev,
2443  "Could not setup I/O space\n");
2444  return DEFAULT_REGSPACING;
2445  }
2446  /* write invalid cmd */
2447  info->io.outputb(&info->io, 1, 0x10);
2448  /* read status back */
2449  status = info->io.inputb(&info->io, 1);
2450  info->io_cleanup(info);
2451  if (status)
2452  return regspacing;
2453  regspacing *= 4;
2454  }
2455  }
2456  return DEFAULT_REGSPACING;
2457 }
2458 
2459 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2460  const struct pci_device_id *ent)
2461 {
2462  int rv;
2463  int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2464  struct smi_info *info;
2465 
2466  info = smi_info_alloc();
2467  if (!info)
2468  return -ENOMEM;
2469 
2470  info->addr_source = SI_PCI;
2471  dev_info(&pdev->dev, "probing via PCI");
2472 
2473  switch (class_type) {
2474  case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2475  info->si_type = SI_SMIC;
2476  break;
2477 
2478  case PCI_ERMC_CLASSCODE_TYPE_KCS:
2479  info->si_type = SI_KCS;
2480  break;
2481 
2482  case PCI_ERMC_CLASSCODE_TYPE_BT:
2483  info->si_type = SI_BT;
2484  break;
2485 
2486  default:
2487  kfree(info);
2488  dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2489  return -ENOMEM;
2490  }
2491 
2492  rv = pci_enable_device(pdev);
2493  if (rv) {
2494  dev_err(&pdev->dev, "couldn't enable PCI device\n");
2495  kfree(info);
2496  return rv;
2497  }
2498 
2499  info->addr_source_cleanup = ipmi_pci_cleanup;
2500  info->addr_source_data = pdev;
2501 
2502  if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2503  info->io_setup = port_setup;
2504  info->io.addr_type = IPMI_IO_ADDR_SPACE;
2505  } else {
2506  info->io_setup = mem_setup;
2507  info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2508  }
2509  info->io.addr_data = pci_resource_start(pdev, 0);
2510 
2511  info->io.regspacing = ipmi_pci_probe_regspacing(info);
2512  info->io.regsize = DEFAULT_REGSIZE;
2513  info->io.regshift = 0;
2514 
2515  info->irq = pdev->irq;
2516  if (info->irq)
2517  info->irq_setup = std_irq_setup;
2518 
2519  info->dev = &pdev->dev;
2520  pci_set_drvdata(pdev, info);
2521 
2522  dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2523  &pdev->resource[0], info->io.regsize, info->io.regspacing,
2524  info->irq);
2525 
2526  if (add_smi(info))
2527  kfree(info);
2528 
2529  return 0;
2530 }
2531 
2532 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2533 {
2534  struct smi_info *info = pci_get_drvdata(pdev);
2535  cleanup_one_si(info);
2536 }
2537 
2538 static struct pci_device_id ipmi_pci_devices[] = {
2539  { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540  { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541  { 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544 
2545 static struct pci_driver ipmi_pci_driver = {
2546  .name = DEVICE_NAME,
2547  .id_table = ipmi_pci_devices,
2548  .probe = ipmi_pci_probe,
2549  .remove = __devexit_p(ipmi_pci_remove),
2550 };
2551 #endif /* CONFIG_PCI */
2552 
2553 static struct of_device_id ipmi_match[];
2554 static int __devinit ipmi_probe(struct platform_device *dev)
2555 {
2556 #ifdef CONFIG_OF
2557  const struct of_device_id *match;
2558  struct smi_info *info;
2559  struct resource resource;
2560  const __be32 *regsize, *regspacing, *regshift;
2561  struct device_node *np = dev->dev.of_node;
2562  int ret;
2563  int proplen;
2564 
2565  dev_info(&dev->dev, "probing via device tree\n");
2566 
2567  match = of_match_device(ipmi_match, &dev->dev);
2568  if (!match)
2569  return -EINVAL;
2570 
2571  ret = of_address_to_resource(np, 0, &resource);
2572  if (ret) {
2573  dev_warn(&dev->dev, PFX "invalid address from OF\n");
2574  return ret;
2575  }
2576 
2577  regsize = of_get_property(np, "reg-size", &proplen);
2578  if (regsize && proplen != 4) {
2579  dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2580  return -EINVAL;
2581  }
2582 
2583  regspacing = of_get_property(np, "reg-spacing", &proplen);
2584  if (regspacing && proplen != 4) {
2585  dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2586  return -EINVAL;
2587  }
2588 
2589  regshift = of_get_property(np, "reg-shift", &proplen);
2590  if (regshift && proplen != 4) {
2591  dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2592  return -EINVAL;
2593  }
2594 
2595  info = smi_info_alloc();
2596 
2597  if (!info) {
2598  dev_err(&dev->dev,
2599  "could not allocate memory for OF probe\n");
2600  return -ENOMEM;
2601  }
2602 
2603  info->si_type = (enum si_type) match->data;
2604  info->addr_source = SI_DEVICETREE;
2605  info->irq_setup = std_irq_setup;
2606 
2608  info->io_setup = port_setup;
2609  info->io.addr_type = IPMI_IO_ADDR_SPACE;
2610  } else {
2611  info->io_setup = mem_setup;
2612  info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2613  }
2614 
2615  info->io.addr_data = resource.start;
2616 
2617  info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2618  info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2619  info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2620 
2621  info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2622  info->dev = &dev->dev;
2623 
2624  dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2625  info->io.addr_data, info->io.regsize, info->io.regspacing,
2626  info->irq);
2627 
2628  dev_set_drvdata(&dev->dev, info);
2629 
2630  if (add_smi(info)) {
2631  kfree(info);
2632  return -EBUSY;
2633  }
2634 #endif
2635  return 0;
2636 }
2637 
2638 static int __devexit ipmi_remove(struct platform_device *dev)
2639 {
2640 #ifdef CONFIG_OF
2641  cleanup_one_si(dev_get_drvdata(&dev->dev));
2642 #endif
2643  return 0;
2644 }
2645 
2646 static struct of_device_id ipmi_match[] =
2647 {
2648  { .type = "ipmi", .compatible = "ipmi-kcs",
2649  .data = (void *)(unsigned long) SI_KCS },
2650  { .type = "ipmi", .compatible = "ipmi-smic",
2651  .data = (void *)(unsigned long) SI_SMIC },
2652  { .type = "ipmi", .compatible = "ipmi-bt",
2653  .data = (void *)(unsigned long) SI_BT },
2654  {},
2655 };
2656 
2657 static struct platform_driver ipmi_driver = {
2658  .driver = {
2659  .name = DEVICE_NAME,
2660  .owner = THIS_MODULE,
2661  .of_match_table = ipmi_match,
2662  },
2663  .probe = ipmi_probe,
2664  .remove = __devexit_p(ipmi_remove),
2665 };
2666 
2667 static int wait_for_msg_done(struct smi_info *smi_info)
2668 {
2669  enum si_sm_result smi_result;
2670 
2671  smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2672  for (;;) {
2673  if (smi_result == SI_SM_CALL_WITH_DELAY ||
2674  smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2676  smi_result = smi_info->handlers->event(
2677  smi_info->si_sm, 100);
2678  } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2679  smi_result = smi_info->handlers->event(
2680  smi_info->si_sm, 0);
2681  } else
2682  break;
2683  }
2684  if (smi_result == SI_SM_HOSED)
2685  /*
2686  * We couldn't get the state machine to run, so whatever's at
2687  * the port is probably not an IPMI SMI interface.
2688  */
2689  return -ENODEV;
2690 
2691  return 0;
2692 }
2693 
2694 static int try_get_dev_id(struct smi_info *smi_info)
2695 {
2696  unsigned char msg[2];
2697  unsigned char *resp;
2698  unsigned long resp_len;
2699  int rv = 0;
2700 
2702  if (!resp)
2703  return -ENOMEM;
2704 
2705  /*
2706  * Do a Get Device ID command, since it comes back with some
2707  * useful info.
2708  */
2709  msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2710  msg[1] = IPMI_GET_DEVICE_ID_CMD;
2711  smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2712 
2713  rv = wait_for_msg_done(smi_info);
2714  if (rv)
2715  goto out;
2716 
2717  resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2718  resp, IPMI_MAX_MSG_LENGTH);
2719 
2720  /* Check and record info from the get device id, in case we need it. */
2721  rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2722 
2723  out:
2724  kfree(resp);
2725  return rv;
2726 }
2727 
2728 static int try_enable_event_buffer(struct smi_info *smi_info)
2729 {
2730  unsigned char msg[3];
2731  unsigned char *resp;
2732  unsigned long resp_len;
2733  int rv = 0;
2734 
2736  if (!resp)
2737  return -ENOMEM;
2738 
2739  msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2741  smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2742 
2743  rv = wait_for_msg_done(smi_info);
2744  if (rv) {
2745  printk(KERN_WARNING PFX "Error getting response from get"
2746  " global enables command, the event buffer is not"
2747  " enabled.\n");
2748  goto out;
2749  }
2750 
2751  resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2752  resp, IPMI_MAX_MSG_LENGTH);
2753 
2754  if (resp_len < 4 ||
2755  resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2756  resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2757  resp[2] != 0) {
2758  printk(KERN_WARNING PFX "Invalid return from get global"
2759  " enables command, cannot enable the event buffer.\n");
2760  rv = -EINVAL;
2761  goto out;
2762  }
2763 
2764  if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2765  /* buffer is already enabled, nothing to do. */
2766  goto out;
2767 
2768  msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2770  msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2771  smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2772 
2773  rv = wait_for_msg_done(smi_info);
2774  if (rv) {
2775  printk(KERN_WARNING PFX "Error getting response from set"
2776  " global, enables command, the event buffer is not"
2777  " enabled.\n");
2778  goto out;
2779  }
2780 
2781  resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2782  resp, IPMI_MAX_MSG_LENGTH);
2783 
2784  if (resp_len < 3 ||
2785  resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2786  resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2787  printk(KERN_WARNING PFX "Invalid return from get global,"
2788  "enables command, not enable the event buffer.\n");
2789  rv = -EINVAL;
2790  goto out;
2791  }
2792 
2793  if (resp[2] != 0)
2794  /*
2795  * An error when setting the event buffer bit means
2796  * that the event buffer is not supported.
2797  */
2798  rv = -ENOENT;
2799  out:
2800  kfree(resp);
2801  return rv;
2802 }
2803 
2804 static int smi_type_proc_show(struct seq_file *m, void *v)
2805 {
2806  struct smi_info *smi = m->private;
2807 
2808  return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2809 }
2810 
2811 static int smi_type_proc_open(struct inode *inode, struct file *file)
2812 {
2813  return single_open(file, smi_type_proc_show, PDE(inode)->data);
2814 }
2815 
2816 static const struct file_operations smi_type_proc_ops = {
2817  .open = smi_type_proc_open,
2818  .read = seq_read,
2819  .llseek = seq_lseek,
2820  .release = single_release,
2821 };
2822 
2823 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2824 {
2825  struct smi_info *smi = m->private;
2826 
2827  seq_printf(m, "interrupts_enabled: %d\n",
2828  smi->irq && !smi->interrupt_disabled);
2829  seq_printf(m, "short_timeouts: %u\n",
2830  smi_get_stat(smi, short_timeouts));
2831  seq_printf(m, "long_timeouts: %u\n",
2832  smi_get_stat(smi, long_timeouts));
2833  seq_printf(m, "idles: %u\n",
2834  smi_get_stat(smi, idles));
2835  seq_printf(m, "interrupts: %u\n",
2836  smi_get_stat(smi, interrupts));
2837  seq_printf(m, "attentions: %u\n",
2838  smi_get_stat(smi, attentions));
2839  seq_printf(m, "flag_fetches: %u\n",
2840  smi_get_stat(smi, flag_fetches));
2841  seq_printf(m, "hosed_count: %u\n",
2842  smi_get_stat(smi, hosed_count));
2843  seq_printf(m, "complete_transactions: %u\n",
2844  smi_get_stat(smi, complete_transactions));
2845  seq_printf(m, "events: %u\n",
2846  smi_get_stat(smi, events));
2847  seq_printf(m, "watchdog_pretimeouts: %u\n",
2848  smi_get_stat(smi, watchdog_pretimeouts));
2849  seq_printf(m, "incoming_messages: %u\n",
2850  smi_get_stat(smi, incoming_messages));
2851  return 0;
2852 }
2853 
2854 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2855 {
2856  return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2857 }
2858 
2859 static const struct file_operations smi_si_stats_proc_ops = {
2860  .open = smi_si_stats_proc_open,
2861  .read = seq_read,
2862  .llseek = seq_lseek,
2863  .release = single_release,
2864 };
2865 
2866 static int smi_params_proc_show(struct seq_file *m, void *v)
2867 {
2868  struct smi_info *smi = m->private;
2869 
2870  return seq_printf(m,
2871  "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2872  si_to_str[smi->si_type],
2873  addr_space_to_str[smi->io.addr_type],
2874  smi->io.addr_data,
2875  smi->io.regspacing,
2876  smi->io.regsize,
2877  smi->io.regshift,
2878  smi->irq,
2879  smi->slave_addr);
2880 }
2881 
2882 static int smi_params_proc_open(struct inode *inode, struct file *file)
2883 {
2884  return single_open(file, smi_params_proc_show, PDE(inode)->data);
2885 }
2886 
2887 static const struct file_operations smi_params_proc_ops = {
2888  .open = smi_params_proc_open,
2889  .read = seq_read,
2890  .llseek = seq_lseek,
2891  .release = single_release,
2892 };
2893 
2894 /*
2895  * oem_data_avail_to_receive_msg_avail
2896  * @info - smi_info structure with msg_flags set
2897  *
2898  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2899  * Returns 1 indicating need to re-run handle_flags().
2900  */
2901 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2902 {
2903  smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2905  return 1;
2906 }
2907 
2908 /*
2909  * setup_dell_poweredge_oem_data_handler
2910  * @info - smi_info.device_id must be populated
2911  *
2912  * Systems that match, but have firmware version < 1.40 may assert
2913  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2914  * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2915  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2916  * as RECEIVE_MSG_AVAIL instead.
2917  *
2918  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2919  * assert the OEM[012] bits, and if it did, the driver would have to
2920  * change to handle that properly, we don't actually check for the
2921  * firmware version.
2922  * Device ID = 0x20 BMC on PowerEdge 8G servers
2923  * Device Revision = 0x80
2924  * Firmware Revision1 = 0x01 BMC version 1.40
2925  * Firmware Revision2 = 0x40 BCD encoded
2926  * IPMI Version = 0x51 IPMI 1.5
2927  * Manufacturer ID = A2 02 00 Dell IANA
2928  *
2929  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2930  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2931  *
2932  */
2933 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2934 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2935 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2936 #define DELL_IANA_MFR_ID 0x0002a2
2937 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2938 {
2939  struct ipmi_device_id *id = &smi_info->device_id;
2940  if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2944  smi_info->oem_data_avail_handler =
2945  oem_data_avail_to_receive_msg_avail;
2946  } else if (ipmi_version_major(id) < 1 ||
2947  (ipmi_version_major(id) == 1 &&
2948  ipmi_version_minor(id) < 5)) {
2949  smi_info->oem_data_avail_handler =
2950  oem_data_avail_to_receive_msg_avail;
2951  }
2952  }
2953 }
2955 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2956 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2957 {
2958  struct ipmi_smi_msg *msg = smi_info->curr_msg;
2959 
2960  /* Make it a response */
2961  msg->rsp[0] = msg->data[0] | 4;
2962  msg->rsp[1] = msg->data[1];
2964  msg->rsp_size = 3;
2965  smi_info->curr_msg = NULL;
2966  deliver_recv_msg(smi_info, msg);
2967 }
2968 
2969 /*
2970  * dell_poweredge_bt_xaction_handler
2971  * @info - smi_info.device_id must be populated
2972  *
2973  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2974  * not respond to a Get SDR command if the length of the data
2975  * requested is exactly 0x3A, which leads to command timeouts and no
2976  * data returned. This intercepts such commands, and causes userspace
2977  * callers to try again with a different-sized buffer, which succeeds.
2978  */
2980 #define STORAGE_NETFN 0x0A
2981 #define STORAGE_CMD_GET_SDR 0x23
2982 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2983  unsigned long unused,
2984  void *in)
2985 {
2986  struct smi_info *smi_info = in;
2987  unsigned char *data = smi_info->curr_msg->data;
2988  unsigned int size = smi_info->curr_msg->data_size;
2989  if (size >= 8 &&
2990  (data[0]>>2) == STORAGE_NETFN &&
2991  data[1] == STORAGE_CMD_GET_SDR &&
2992  data[7] == 0x3A) {
2993  return_hosed_msg_badsize(smi_info);
2994  return NOTIFY_STOP;
2995  }
2996  return NOTIFY_DONE;
2997 }
2998 
2999 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3000  .notifier_call = dell_poweredge_bt_xaction_handler,
3001 };
3002 
3003 /*
3004  * setup_dell_poweredge_bt_xaction_handler
3005  * @info - smi_info.device_id must be filled in already
3006  *
3007  * Fills in smi_info.device_id.start_transaction_pre_hook
3008  * when we know what function to use there.
3009  */
3010 static void
3011 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3012 {
3013  struct ipmi_device_id *id = &smi_info->device_id;
3014  if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3015  smi_info->si_type == SI_BT)
3016  register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3017 }
3018 
3019 /*
3020  * setup_oem_data_handler
3021  * @info - smi_info.device_id must be filled in already
3022  *
3023  * Fills in smi_info.device_id.oem_data_available_handler
3024  * when we know what function to use there.
3025  */
3026 
3027 static void setup_oem_data_handler(struct smi_info *smi_info)
3028 {
3029  setup_dell_poweredge_oem_data_handler(smi_info);
3030 }
3031 
3032 static void setup_xaction_handlers(struct smi_info *smi_info)
3033 {
3034  setup_dell_poweredge_bt_xaction_handler(smi_info);
3035 }
3036 
3037 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3038 {
3039  if (smi_info->intf) {
3040  /*
3041  * The timer and thread are only running if the
3042  * interface has been started up and registered.
3043  */
3044  if (smi_info->thread != NULL)
3045  kthread_stop(smi_info->thread);
3046  del_timer_sync(&smi_info->si_timer);
3047  }
3048 }
3049 
3050 static __devinitdata struct ipmi_default_vals
3051 {
3052  int type;
3053  int port;
3054 } ipmi_defaults[] =
3055 {
3056  { .type = SI_KCS, .port = 0xca2 },
3057  { .type = SI_SMIC, .port = 0xca9 },
3058  { .type = SI_BT, .port = 0xe4 },
3059  { .port = 0 }
3060 };
3061 
3062 static void __devinit default_find_bmc(void)
3063 {
3064  struct smi_info *info;
3065  int i;
3066 
3067  for (i = 0; ; i++) {
3068  if (!ipmi_defaults[i].port)
3069  break;
3070 #ifdef CONFIG_PPC
3071  if (check_legacy_ioport(ipmi_defaults[i].port))
3072  continue;
3073 #endif
3074  info = smi_info_alloc();
3075  if (!info)
3076  return;
3077 
3078  info->addr_source = SI_DEFAULT;
3079 
3080  info->si_type = ipmi_defaults[i].type;
3081  info->io_setup = port_setup;
3082  info->io.addr_data = ipmi_defaults[i].port;
3083  info->io.addr_type = IPMI_IO_ADDR_SPACE;
3084 
3085  info->io.addr = NULL;
3086  info->io.regspacing = DEFAULT_REGSPACING;
3087  info->io.regsize = DEFAULT_REGSPACING;
3088  info->io.regshift = 0;
3089 
3090  if (add_smi(info) == 0) {
3091  if ((try_smi_init(info)) == 0) {
3092  /* Found one... */
3093  printk(KERN_INFO PFX "Found default %s"
3094  " state machine at %s address 0x%lx\n",
3095  si_to_str[info->si_type],
3096  addr_space_to_str[info->io.addr_type],
3097  info->io.addr_data);
3098  } else
3099  cleanup_one_si(info);
3100  } else {
3101  kfree(info);
3102  }
3103  }
3104 }
3105 
3106 static int is_new_interface(struct smi_info *info)
3107 {
3108  struct smi_info *e;
3109 
3110  list_for_each_entry(e, &smi_infos, link) {
3111  if (e->io.addr_type != info->io.addr_type)
3112  continue;
3113  if (e->io.addr_data == info->io.addr_data)
3114  return 0;
3115  }
3116 
3117  return 1;
3118 }
3119 
3120 static int add_smi(struct smi_info *new_smi)
3121 {
3122  int rv = 0;
3123 
3124  printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3125  ipmi_addr_src_to_str[new_smi->addr_source],
3126  si_to_str[new_smi->si_type]);
3127  mutex_lock(&smi_infos_lock);
3128  if (!is_new_interface(new_smi)) {
3129  printk(KERN_CONT " duplicate interface\n");
3130  rv = -EBUSY;
3131  goto out_err;
3132  }
3133 
3134  printk(KERN_CONT "\n");
3135 
3136  /* So we know not to free it unless we have allocated one. */
3137  new_smi->intf = NULL;
3138  new_smi->si_sm = NULL;
3139  new_smi->handlers = NULL;
3140 
3141  list_add_tail(&new_smi->link, &smi_infos);
3142 
3143 out_err:
3144  mutex_unlock(&smi_infos_lock);
3145  return rv;
3146 }
3147 
3148 static int try_smi_init(struct smi_info *new_smi)
3149 {
3150  int rv = 0;
3151  int i;
3152 
3153  printk(KERN_INFO PFX "Trying %s-specified %s state"
3154  " machine at %s address 0x%lx, slave address 0x%x,"
3155  " irq %d\n",
3156  ipmi_addr_src_to_str[new_smi->addr_source],
3157  si_to_str[new_smi->si_type],
3158  addr_space_to_str[new_smi->io.addr_type],
3159  new_smi->io.addr_data,
3160  new_smi->slave_addr, new_smi->irq);
3161 
3162  switch (new_smi->si_type) {
3163  case SI_KCS:
3164  new_smi->handlers = &kcs_smi_handlers;
3165  break;
3166 
3167  case SI_SMIC:
3168  new_smi->handlers = &smic_smi_handlers;
3169  break;
3170 
3171  case SI_BT:
3172  new_smi->handlers = &bt_smi_handlers;
3173  break;
3174 
3175  default:
3176  /* No support for anything else yet. */
3177  rv = -EIO;
3178  goto out_err;
3179  }
3180 
3181  /* Allocate the state machine's data and initialize it. */
3182  new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3183  if (!new_smi->si_sm) {
3185  "Could not allocate state machine memory\n");
3186  rv = -ENOMEM;
3187  goto out_err;
3188  }
3189  new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3190  &new_smi->io);
3191 
3192  /* Now that we know the I/O size, we can set up the I/O. */
3193  rv = new_smi->io_setup(new_smi);
3194  if (rv) {
3195  printk(KERN_ERR PFX "Could not set up I/O space\n");
3196  goto out_err;
3197  }
3198 
3199  /* Do low-level detection first. */
3200  if (new_smi->handlers->detect(new_smi->si_sm)) {
3201  if (new_smi->addr_source)
3202  printk(KERN_INFO PFX "Interface detection failed\n");
3203  rv = -ENODEV;
3204  goto out_err;
3205  }
3206 
3207  /*
3208  * Attempt a get device id command. If it fails, we probably
3209  * don't have a BMC here.
3210  */
3211  rv = try_get_dev_id(new_smi);
3212  if (rv) {
3213  if (new_smi->addr_source)
3214  printk(KERN_INFO PFX "There appears to be no BMC"
3215  " at this location\n");
3216  goto out_err;
3217  }
3218 
3219  setup_oem_data_handler(new_smi);
3220  setup_xaction_handlers(new_smi);
3221 
3222  INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3223  INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3224  new_smi->curr_msg = NULL;
3225  atomic_set(&new_smi->req_events, 0);
3226  new_smi->run_to_completion = 0;
3227  for (i = 0; i < SI_NUM_STATS; i++)
3228  atomic_set(&new_smi->stats[i], 0);
3229 
3230  new_smi->interrupt_disabled = 1;
3231  atomic_set(&new_smi->stop_operation, 0);
3232  new_smi->intf_num = smi_num;
3233  smi_num++;
3234 
3235  rv = try_enable_event_buffer(new_smi);
3236  if (rv == 0)
3237  new_smi->has_event_buffer = 1;
3238 
3239  /*
3240  * Start clearing the flags before we enable interrupts or the
3241  * timer to avoid racing with the timer.
3242  */
3243  start_clear_flags(new_smi);
3244  /* IRQ is defined to be set when non-zero. */
3245  if (new_smi->irq)
3247 
3248  if (!new_smi->dev) {
3249  /*
3250  * If we don't already have a device from something
3251  * else (like PCI), then register a new one.
3252  */
3253  new_smi->pdev = platform_device_alloc("ipmi_si",
3254  new_smi->intf_num);
3255  if (!new_smi->pdev) {
3257  "Unable to allocate platform device\n");
3258  goto out_err;
3259  }
3260  new_smi->dev = &new_smi->pdev->dev;
3261  new_smi->dev->driver = &ipmi_driver.driver;
3262 
3263  rv = platform_device_add(new_smi->pdev);
3264  if (rv) {
3266  "Unable to register system interface device:"
3267  " %d\n",
3268  rv);
3269  goto out_err;
3270  }
3271  new_smi->dev_registered = 1;
3272  }
3273 
3274  rv = ipmi_register_smi(&handlers,
3275  new_smi,
3276  &new_smi->device_id,
3277  new_smi->dev,
3278  "bmc",
3279  new_smi->slave_addr);
3280  if (rv) {
3281  dev_err(new_smi->dev, "Unable to register device: error %d\n",
3282  rv);
3283  goto out_err_stop_timer;
3284  }
3285 
3286  rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3287  &smi_type_proc_ops,
3288  new_smi);
3289  if (rv) {
3290  dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3291  goto out_err_stop_timer;
3292  }
3293 
3294  rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3295  &smi_si_stats_proc_ops,
3296  new_smi);
3297  if (rv) {
3298  dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3299  goto out_err_stop_timer;
3300  }
3301 
3302  rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3303  &smi_params_proc_ops,
3304  new_smi);
3305  if (rv) {
3306  dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3307  goto out_err_stop_timer;
3308  }
3309 
3310  dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3311  si_to_str[new_smi->si_type]);
3312 
3313  return 0;
3314 
3315  out_err_stop_timer:
3316  atomic_inc(&new_smi->stop_operation);
3317  wait_for_timer_and_thread(new_smi);
3318 
3319  out_err:
3320  new_smi->interrupt_disabled = 1;
3321 
3322  if (new_smi->intf) {
3323  ipmi_unregister_smi(new_smi->intf);
3324  new_smi->intf = NULL;
3325  }
3326 
3327  if (new_smi->irq_cleanup) {
3328  new_smi->irq_cleanup(new_smi);
3329  new_smi->irq_cleanup = NULL;
3330  }
3331 
3332  /*
3333  * Wait until we know that we are out of any interrupt
3334  * handlers might have been running before we freed the
3335  * interrupt.
3336  */
3338 
3339  if (new_smi->si_sm) {
3340  if (new_smi->handlers)
3341  new_smi->handlers->cleanup(new_smi->si_sm);
3342  kfree(new_smi->si_sm);
3343  new_smi->si_sm = NULL;
3344  }
3345  if (new_smi->addr_source_cleanup) {
3346  new_smi->addr_source_cleanup(new_smi);
3347  new_smi->addr_source_cleanup = NULL;
3348  }
3349  if (new_smi->io_cleanup) {
3350  new_smi->io_cleanup(new_smi);
3351  new_smi->io_cleanup = NULL;
3352  }
3353 
3354  if (new_smi->dev_registered) {
3355  platform_device_unregister(new_smi->pdev);
3356  new_smi->dev_registered = 0;
3357  }
3358 
3359  return rv;
3360 }
3361 
3362 static int __devinit init_ipmi_si(void)
3363 {
3364  int i;
3365  char *str;
3366  int rv;
3367  struct smi_info *e;
3368  enum ipmi_addr_src type = SI_INVALID;
3369 
3370  if (initialized)
3371  return 0;
3372  initialized = 1;
3373 
3374  rv = platform_driver_register(&ipmi_driver);
3375  if (rv) {
3376  printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3377  return rv;
3378  }
3379 
3380 
3381  /* Parse out the si_type string into its components. */
3382  str = si_type_str;
3383  if (*str != '\0') {
3384  for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3385  si_type[i] = str;
3386  str = strchr(str, ',');
3387  if (str) {
3388  *str = '\0';
3389  str++;
3390  } else {
3391  break;
3392  }
3393  }
3394  }
3395 
3396  printk(KERN_INFO "IPMI System Interface driver.\n");
3397 
3398  /* If the user gave us a device, they presumably want us to use it */
3399  if (!hardcode_find_bmc())
3400  return 0;
3401 
3402 #ifdef CONFIG_PCI
3403  rv = pci_register_driver(&ipmi_pci_driver);
3404  if (rv)
3405  printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3406  else
3407  pci_registered = 1;
3408 #endif
3409 
3410 #ifdef CONFIG_ACPI
3411  pnp_register_driver(&ipmi_pnp_driver);
3412  pnp_registered = 1;
3413 #endif
3414 
3415 #ifdef CONFIG_DMI
3416  dmi_find_bmc();
3417 #endif
3418 
3419 #ifdef CONFIG_ACPI
3420  spmi_find_bmc();
3421 #endif
3422 
3423  /* We prefer devices with interrupts, but in the case of a machine
3424  with multiple BMCs we assume that there will be several instances
3425  of a given type so if we succeed in registering a type then also
3426  try to register everything else of the same type */
3427 
3428  mutex_lock(&smi_infos_lock);
3429  list_for_each_entry(e, &smi_infos, link) {
3430  /* Try to register a device if it has an IRQ and we either
3431  haven't successfully registered a device yet or this
3432  device has the same type as one we successfully registered */
3433  if (e->irq && (!type || e->addr_source == type)) {
3434  if (!try_smi_init(e)) {
3435  type = e->addr_source;
3436  }
3437  }
3438  }
3439 
3440  /* type will only have been set if we successfully registered an si */
3441  if (type) {
3442  mutex_unlock(&smi_infos_lock);
3443  return 0;
3444  }
3445 
3446  /* Fall back to the preferred device */
3447 
3448  list_for_each_entry(e, &smi_infos, link) {
3449  if (!e->irq && (!type || e->addr_source == type)) {
3450  if (!try_smi_init(e)) {
3451  type = e->addr_source;
3452  }
3453  }
3454  }
3455  mutex_unlock(&smi_infos_lock);
3456 
3457  if (type)
3458  return 0;
3459 
3460  if (si_trydefaults) {
3461  mutex_lock(&smi_infos_lock);
3462  if (list_empty(&smi_infos)) {
3463  /* No BMC was found, try defaults. */
3464  mutex_unlock(&smi_infos_lock);
3465  default_find_bmc();
3466  } else
3467  mutex_unlock(&smi_infos_lock);
3468  }
3469 
3470  mutex_lock(&smi_infos_lock);
3471  if (unload_when_empty && list_empty(&smi_infos)) {
3472  mutex_unlock(&smi_infos_lock);
3473  cleanup_ipmi_si();
3475  "Unable to find any System Interface(s)\n");
3476  return -ENODEV;
3477  } else {
3478  mutex_unlock(&smi_infos_lock);
3479  return 0;
3480  }
3481 }
3482 module_init(init_ipmi_si);
3483 
3484 static void cleanup_one_si(struct smi_info *to_clean)
3485 {
3486  int rv = 0;
3487  unsigned long flags;
3488 
3489  if (!to_clean)
3490  return;
3491 
3492  list_del(&to_clean->link);
3493 
3494  /* Tell the driver that we are shutting down. */
3495  atomic_inc(&to_clean->stop_operation);
3496 
3497  /*
3498  * Make sure the timer and thread are stopped and will not run
3499  * again.
3500  */
3501  wait_for_timer_and_thread(to_clean);
3502 
3503  /*
3504  * Timeouts are stopped, now make sure the interrupts are off
3505  * for the device. A little tricky with locks to make sure
3506  * there are no races.
3507  */
3508  spin_lock_irqsave(&to_clean->si_lock, flags);
3509  while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3510  spin_unlock_irqrestore(&to_clean->si_lock, flags);
3511  poll(to_clean);
3513  spin_lock_irqsave(&to_clean->si_lock, flags);
3514  }
3515  disable_si_irq(to_clean);
3516  spin_unlock_irqrestore(&to_clean->si_lock, flags);
3517  while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3518  poll(to_clean);
3520  }
3521 
3522  /* Clean up interrupts and make sure that everything is done. */
3523  if (to_clean->irq_cleanup)
3524  to_clean->irq_cleanup(to_clean);
3525  while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3526  poll(to_clean);
3528  }
3529 
3530  if (to_clean->intf)
3531  rv = ipmi_unregister_smi(to_clean->intf);
3532 
3533  if (rv) {
3534  printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3535  rv);
3536  }
3537 
3538  if (to_clean->handlers)
3539  to_clean->handlers->cleanup(to_clean->si_sm);
3540 
3541  kfree(to_clean->si_sm);
3542 
3543  if (to_clean->addr_source_cleanup)
3544  to_clean->addr_source_cleanup(to_clean);
3545  if (to_clean->io_cleanup)
3546  to_clean->io_cleanup(to_clean);
3547 
3548  if (to_clean->dev_registered)
3549  platform_device_unregister(to_clean->pdev);
3550 
3551  kfree(to_clean);
3552 }
3553 
3554 static void cleanup_ipmi_si(void)
3555 {
3556  struct smi_info *e, *tmp_e;
3557 
3558  if (!initialized)
3559  return;
3560 
3561 #ifdef CONFIG_PCI
3562  if (pci_registered)
3563  pci_unregister_driver(&ipmi_pci_driver);
3564 #endif
3565 #ifdef CONFIG_ACPI
3566  if (pnp_registered)
3567  pnp_unregister_driver(&ipmi_pnp_driver);
3568 #endif
3569 
3570  platform_driver_unregister(&ipmi_driver);
3571 
3572  mutex_lock(&smi_infos_lock);
3573  list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3574  cleanup_one_si(e);
3575  mutex_unlock(&smi_infos_lock);
3576 }
3577 module_exit(cleanup_ipmi_si);
3578 
3579 MODULE_LICENSE("GPL");
3580 MODULE_AUTHOR("Corey Minyard <[email protected]>");
3581 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3582  " system interfaces.");