Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mac-fec.c
Go to the documentation of this file.
1 /*
2  * Freescale Ethernet controllers
3  *
4  * Copyright (c) 2005 Intracom S.A.
5  * by Pantelis Antoniou <[email protected]>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <[email protected]>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/bitops.h>
32 #include <linux/fs.h>
33 #include <linux/platform_device.h>
34 #include <linux/of_device.h>
35 #include <linux/gfp.h>
36 
37 #include <asm/irq.h>
38 #include <asm/uaccess.h>
39 
40 #ifdef CONFIG_8xx
41 #include <asm/8xx_immap.h>
42 #include <asm/pgtable.h>
43 #include <asm/mpc8xx.h>
44 #include <asm/cpm1.h>
45 #endif
46 
47 #include "fs_enet.h"
48 #include "fec.h"
49 
50 /*************************************************/
51 
52 #if defined(CONFIG_CPM1)
53 /* for a CPM1 __raw_xxx's are sufficient */
54 #define __fs_out32(addr, x) __raw_writel(x, addr)
55 #define __fs_out16(addr, x) __raw_writew(x, addr)
56 #define __fs_in32(addr) __raw_readl(addr)
57 #define __fs_in16(addr) __raw_readw(addr)
58 #else
59 /* for others play it safe */
60 #define __fs_out32(addr, x) out_be32(addr, x)
61 #define __fs_out16(addr, x) out_be16(addr, x)
62 #define __fs_in32(addr) in_be32(addr)
63 #define __fs_in16(addr) in_be16(addr)
64 #endif
65 
66 /* write */
67 #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
68 
69 /* read */
70 #define FR(_fecp, _reg) __fs_in32(&(_fecp)->fec_ ## _reg)
71 
72 /* set bits */
73 #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
74 
75 /* clear bits */
76 #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
77 
78 /*
79  * Delay to wait for FEC reset command to complete (in us)
80  */
81 #define FEC_RESET_DELAY 50
82 
83 static int whack_reset(struct fec __iomem *fecp)
84 {
85  int i;
86 
87  FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
88  for (i = 0; i < FEC_RESET_DELAY; i++) {
89  if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
90  return 0; /* OK */
91  udelay(1);
92  }
93 
94  return -1;
95 }
96 
97 static int do_pd_setup(struct fs_enet_private *fep)
98 {
99  struct platform_device *ofdev = to_platform_device(fep->dev);
100 
101  fep->interrupt = of_irq_to_resource(ofdev->dev.of_node, 0, NULL);
102  if (fep->interrupt == NO_IRQ)
103  return -EINVAL;
104 
105  fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0);
106  if (!fep->fcc.fccp)
107  return -EINVAL;
108 
109  return 0;
110 }
111 
112 #define FEC_NAPI_RX_EVENT_MSK (FEC_ENET_RXF | FEC_ENET_RXB)
113 #define FEC_RX_EVENT (FEC_ENET_RXF)
114 #define FEC_TX_EVENT (FEC_ENET_TXF)
115 #define FEC_ERR_EVENT_MSK (FEC_ENET_HBERR | FEC_ENET_BABR | \
116  FEC_ENET_BABT | FEC_ENET_EBERR)
117 
118 static int setup_data(struct net_device *dev)
119 {
120  struct fs_enet_private *fep = netdev_priv(dev);
121 
122  if (do_pd_setup(fep) != 0)
123  return -EINVAL;
124 
125  fep->fec.hthi = 0;
126  fep->fec.htlo = 0;
127 
129  fep->ev_rx = FEC_RX_EVENT;
130  fep->ev_tx = FEC_TX_EVENT;
131  fep->ev_err = FEC_ERR_EVENT_MSK;
132 
133  return 0;
134 }
135 
136 static int allocate_bd(struct net_device *dev)
137 {
138  struct fs_enet_private *fep = netdev_priv(dev);
139  const struct fs_platform_info *fpi = fep->fpi;
140 
141  fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
142  (fpi->tx_ring + fpi->rx_ring) *
143  sizeof(cbd_t), &fep->ring_mem_addr,
144  GFP_KERNEL);
145  if (fep->ring_base == NULL)
146  return -ENOMEM;
147 
148  return 0;
149 }
150 
151 static void free_bd(struct net_device *dev)
152 {
153  struct fs_enet_private *fep = netdev_priv(dev);
154  const struct fs_platform_info *fpi = fep->fpi;
155 
156  if(fep->ring_base)
157  dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
158  * sizeof(cbd_t),
159  (void __force *)fep->ring_base,
160  fep->ring_mem_addr);
161 }
162 
163 static void cleanup_data(struct net_device *dev)
164 {
165  /* nothing */
166 }
167 
168 static void set_promiscuous_mode(struct net_device *dev)
169 {
170  struct fs_enet_private *fep = netdev_priv(dev);
171  struct fec __iomem *fecp = fep->fec.fecp;
172 
173  FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
174 }
175 
176 static void set_multicast_start(struct net_device *dev)
177 {
178  struct fs_enet_private *fep = netdev_priv(dev);
179 
180  fep->fec.hthi = 0;
181  fep->fec.htlo = 0;
182 }
183 
184 static void set_multicast_one(struct net_device *dev, const u8 *mac)
185 {
186  struct fs_enet_private *fep = netdev_priv(dev);
187  int temp, hash_index, i, j;
188  u32 crc, csrVal;
189  u8 byte, msb;
190 
191  crc = 0xffffffff;
192  for (i = 0; i < 6; i++) {
193  byte = mac[i];
194  for (j = 0; j < 8; j++) {
195  msb = crc >> 31;
196  crc <<= 1;
197  if (msb ^ (byte & 0x1))
198  crc ^= FEC_CRC_POLY;
199  byte >>= 1;
200  }
201  }
202 
203  temp = (crc & 0x3f) >> 1;
204  hash_index = ((temp & 0x01) << 4) |
205  ((temp & 0x02) << 2) |
206  ((temp & 0x04)) |
207  ((temp & 0x08) >> 2) |
208  ((temp & 0x10) >> 4);
209  csrVal = 1 << hash_index;
210  if (crc & 1)
211  fep->fec.hthi |= csrVal;
212  else
213  fep->fec.htlo |= csrVal;
214 }
215 
216 static void set_multicast_finish(struct net_device *dev)
217 {
218  struct fs_enet_private *fep = netdev_priv(dev);
219  struct fec __iomem *fecp = fep->fec.fecp;
220 
221  /* if all multi or too many multicasts; just enable all */
222  if ((dev->flags & IFF_ALLMULTI) != 0 ||
224  fep->fec.hthi = 0xffffffffU;
225  fep->fec.htlo = 0xffffffffU;
226  }
227 
228  FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
229  FW(fecp, grp_hash_table_high, fep->fec.hthi);
230  FW(fecp, grp_hash_table_low, fep->fec.htlo);
231 }
232 
233 static void set_multicast_list(struct net_device *dev)
234 {
235  struct netdev_hw_addr *ha;
236 
237  if ((dev->flags & IFF_PROMISC) == 0) {
238  set_multicast_start(dev);
239  netdev_for_each_mc_addr(ha, dev)
240  set_multicast_one(dev, ha->addr);
241  set_multicast_finish(dev);
242  } else
243  set_promiscuous_mode(dev);
244 }
245 
246 static void restart(struct net_device *dev)
247 {
248  struct fs_enet_private *fep = netdev_priv(dev);
249  struct fec __iomem *fecp = fep->fec.fecp;
250  const struct fs_platform_info *fpi = fep->fpi;
251  dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
252  int r;
253  u32 addrhi, addrlo;
254 
255  struct mii_bus* mii = fep->phydev->bus;
256  struct fec_info* fec_inf = mii->priv;
257 
258  r = whack_reset(fep->fec.fecp);
259  if (r != 0)
260  dev_err(fep->dev, "FEC Reset FAILED!\n");
261  /*
262  * Set station address.
263  */
264  addrhi = ((u32) dev->dev_addr[0] << 24) |
265  ((u32) dev->dev_addr[1] << 16) |
266  ((u32) dev->dev_addr[2] << 8) |
267  (u32) dev->dev_addr[3];
268  addrlo = ((u32) dev->dev_addr[4] << 24) |
269  ((u32) dev->dev_addr[5] << 16);
270  FW(fecp, addr_low, addrhi);
271  FW(fecp, addr_high, addrlo);
272 
273  /*
274  * Reset all multicast.
275  */
276  FW(fecp, grp_hash_table_high, fep->fec.hthi);
277  FW(fecp, grp_hash_table_low, fep->fec.htlo);
278 
279  /*
280  * Set maximum receive buffer size.
281  */
282  FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
283 #ifdef CONFIG_FS_ENET_MPC5121_FEC
284  FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16);
285 #else
286  FW(fecp, r_hash, PKT_MAXBUF_SIZE);
287 #endif
288 
289  /* get physical address */
290  rx_bd_base_phys = fep->ring_mem_addr;
291  tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
292 
293  /*
294  * Set receive and transmit descriptor base.
295  */
296  FW(fecp, r_des_start, rx_bd_base_phys);
297  FW(fecp, x_des_start, tx_bd_base_phys);
298 
299  fs_init_bds(dev);
300 
301  /*
302  * Enable big endian and don't care about SDMA FC.
303  */
304 #ifdef CONFIG_FS_ENET_MPC5121_FEC
305  FS(fecp, dma_control, 0xC0000000);
306 #else
307  FW(fecp, fun_code, 0x78000000);
308 #endif
309 
310  /*
311  * Set MII speed.
312  */
313  FW(fecp, mii_speed, fec_inf->mii_speed);
314 
315  /*
316  * Clear any outstanding interrupt.
317  */
318  FW(fecp, ievent, 0xffc0);
319 #ifndef CONFIG_FS_ENET_MPC5121_FEC
320  FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
321 
322  FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
323 #else
324  /*
325  * Only set MII/RMII mode - do not touch maximum frame length
326  * configured before.
327  */
328  FS(fecp, r_cntrl, fpi->use_rmii ?
330 #endif
331  /*
332  * adjust to duplex mode
333  */
334  if (fep->phydev->duplex) {
335  FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
336  FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
337  } else {
338  FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
339  FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
340  }
341 
342  /*
343  * Enable interrupts we wish to service.
344  */
345  FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
347 
348  /*
349  * And last, enable the transmit and receive processing.
350  */
351  FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
352  FW(fecp, r_des_active, 0x01000000);
353 }
354 
355 static void stop(struct net_device *dev)
356 {
357  struct fs_enet_private *fep = netdev_priv(dev);
358  const struct fs_platform_info *fpi = fep->fpi;
359  struct fec __iomem *fecp = fep->fec.fecp;
360 
361  struct fec_info* feci= fep->phydev->bus->priv;
362 
363  int i;
364 
365  if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
366  return; /* already down */
367 
368  FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
369  for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
370  i < FEC_RESET_DELAY; i++)
371  udelay(1);
372 
373  if (i == FEC_RESET_DELAY)
374  dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n");
375  /*
376  * Disable FEC. Let only MII interrupts.
377  */
378  FW(fecp, imask, 0);
379  FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
380 
381  fs_cleanup_bds(dev);
382 
383  /* shut down FEC1? that's where the mii bus is */
384  if (fpi->has_phy) {
385  FS(fecp, r_cntrl, fpi->use_rmii ?
387  FEC_RCNTRL_MII_MODE); /* MII/RMII enable */
388  FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
389  FW(fecp, ievent, FEC_ENET_MII);
390  FW(fecp, mii_speed, feci->mii_speed);
391  }
392 }
393 
394 static void napi_clear_rx_event(struct net_device *dev)
395 {
396  struct fs_enet_private *fep = netdev_priv(dev);
397  struct fec __iomem *fecp = fep->fec.fecp;
398 
399  FW(fecp, ievent, FEC_NAPI_RX_EVENT_MSK);
400 }
401 
402 static void napi_enable_rx(struct net_device *dev)
403 {
404  struct fs_enet_private *fep = netdev_priv(dev);
405  struct fec __iomem *fecp = fep->fec.fecp;
406 
407  FS(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
408 }
409 
410 static void napi_disable_rx(struct net_device *dev)
411 {
412  struct fs_enet_private *fep = netdev_priv(dev);
413  struct fec __iomem *fecp = fep->fec.fecp;
414 
415  FC(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
416 }
417 
418 static void rx_bd_done(struct net_device *dev)
419 {
420  struct fs_enet_private *fep = netdev_priv(dev);
421  struct fec __iomem *fecp = fep->fec.fecp;
422 
423  FW(fecp, r_des_active, 0x01000000);
424 }
425 
426 static void tx_kickstart(struct net_device *dev)
427 {
428  struct fs_enet_private *fep = netdev_priv(dev);
429  struct fec __iomem *fecp = fep->fec.fecp;
430 
431  FW(fecp, x_des_active, 0x01000000);
432 }
433 
434 static u32 get_int_events(struct net_device *dev)
435 {
436  struct fs_enet_private *fep = netdev_priv(dev);
437  struct fec __iomem *fecp = fep->fec.fecp;
438 
439  return FR(fecp, ievent) & FR(fecp, imask);
440 }
441 
442 static void clear_int_events(struct net_device *dev, u32 int_events)
443 {
444  struct fs_enet_private *fep = netdev_priv(dev);
445  struct fec __iomem *fecp = fep->fec.fecp;
446 
447  FW(fecp, ievent, int_events);
448 }
449 
450 static void ev_error(struct net_device *dev, u32 int_events)
451 {
452  struct fs_enet_private *fep = netdev_priv(dev);
453 
454  dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events);
455 }
456 
457 static int get_regs(struct net_device *dev, void *p, int *sizep)
458 {
459  struct fs_enet_private *fep = netdev_priv(dev);
460 
461  if (*sizep < sizeof(struct fec))
462  return -EINVAL;
463 
464  memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec));
465 
466  return 0;
467 }
468 
469 static int get_regs_len(struct net_device *dev)
470 {
471  return sizeof(struct fec);
472 }
473 
474 static void tx_restart(struct net_device *dev)
475 {
476  /* nothing */
477 }
478 
479 /*************************************************************************/
480 
481 const struct fs_ops fs_fec_ops = {
482  .setup_data = setup_data,
483  .cleanup_data = cleanup_data,
484  .set_multicast_list = set_multicast_list,
485  .restart = restart,
486  .stop = stop,
487  .napi_clear_rx_event = napi_clear_rx_event,
488  .napi_enable_rx = napi_enable_rx,
489  .napi_disable_rx = napi_disable_rx,
490  .rx_bd_done = rx_bd_done,
491  .tx_kickstart = tx_kickstart,
492  .get_int_events = get_int_events,
493  .clear_int_events = clear_int_events,
494  .ev_error = ev_error,
495  .get_regs = get_regs,
496  .get_regs_len = get_regs_len,
497  .tx_restart = tx_restart,
498  .allocate_bd = allocate_bd,
499  .free_bd = free_bd,
500 };
501