Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
memcontrol.c
Go to the documentation of this file.
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
56 
57 #include <asm/uaccess.h>
58 
59 #include <trace/events/vmscan.h>
60 
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 #define MEM_CGROUP_RECLAIM_RETRIES 5
63 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64 
65 #ifdef CONFIG_MEMCG_SWAP
66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
68 
69 /* for remember boot option*/
70 #ifdef CONFIG_MEMCG_SWAP_ENABLED
71 static int really_do_swap_account __initdata = 1;
72 #else
73 static int really_do_swap_account __initdata = 0;
74 #endif
75 
76 #else
77 #define do_swap_account 0
78 #endif
79 
80 
81 /*
82  * Statistics for memory cgroup.
83  */
85  /*
86  * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87  */
88  MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
89  MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
90  MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
91  MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
93 };
94 
95 static const char * const mem_cgroup_stat_names[] = {
96  "cache",
97  "rss",
98  "mapped_file",
99  "swap",
100 };
101 
103  MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104  MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
105  MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106  MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
108 };
109 
110 static const char * const mem_cgroup_events_names[] = {
111  "pgpgin",
112  "pgpgout",
113  "pgfault",
114  "pgmajfault",
115 };
116 
117 /*
118  * Per memcg event counter is incremented at every pagein/pageout. With THP,
119  * it will be incremated by the number of pages. This counter is used for
120  * for trigger some periodic events. This is straightforward and better
121  * than using jiffies etc. to handle periodic memcg event.
122  */
128 };
129 #define THRESHOLDS_EVENTS_TARGET 128
130 #define SOFTLIMIT_EVENTS_TARGET 1024
131 #define NUMAINFO_EVENTS_TARGET 1024
132 
136  unsigned long nr_page_events;
137  unsigned long targets[MEM_CGROUP_NTARGETS];
138 };
139 
141  /* css_id of the last scanned hierarchy member */
142  int position;
143  /* scan generation, increased every round-trip */
144  unsigned int generation;
145 };
146 
147 /*
148  * per-zone information in memory controller.
149  */
151  struct lruvec lruvec;
152  unsigned long lru_size[NR_LRU_LISTS];
153 
155 
156  struct rb_node tree_node; /* RB tree node */
157  unsigned long long usage_in_excess;/* Set to the value by which */
158  /* the soft limit is exceeded*/
159  bool on_tree;
160  struct mem_cgroup *memcg; /* Back pointer, we cannot */
161  /* use container_of */
162 };
163 
165  struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166 };
167 
170 };
171 
172 /*
173  * Cgroups above their limits are maintained in a RB-Tree, independent of
174  * their hierarchy representation
175  */
176 
178  struct rb_root rb_root;
180 };
181 
184 };
185 
188 };
189 
190 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191 
195 };
196 
197 /* For threshold */
199  /* An array index points to threshold just below or equal to usage. */
201  /* Size of entries[] */
202  unsigned int size;
203  /* Array of thresholds */
205 };
206 
208  /* Primary thresholds array */
210  /*
211  * Spare threshold array.
212  * This is needed to make mem_cgroup_unregister_event() "never fail".
213  * It must be able to store at least primary->size - 1 entries.
214  */
216 };
217 
218 /* for OOM */
220  struct list_head list;
222 };
223 
224 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226 
227 /*
228  * The memory controller data structure. The memory controller controls both
229  * page cache and RSS per cgroup. We would eventually like to provide
230  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231  * to help the administrator determine what knobs to tune.
232  *
233  * TODO: Add a water mark for the memory controller. Reclaim will begin when
234  * we hit the water mark. May be even add a low water mark, such that
235  * no reclaim occurs from a cgroup at it's low water mark, this is
236  * a feature that will be implemented much later in the future.
237  */
238 struct mem_cgroup {
239  struct cgroup_subsys_state css;
240  /*
241  * the counter to account for memory usage
242  */
243  struct res_counter res;
244 
245  union {
246  /*
247  * the counter to account for mem+swap usage.
248  */
250 
251  /*
252  * rcu_freeing is used only when freeing struct mem_cgroup,
253  * so put it into a union to avoid wasting more memory.
254  * It must be disjoint from the css field. It could be
255  * in a union with the res field, but res plays a much
256  * larger part in mem_cgroup life than memsw, and might
257  * be of interest, even at time of free, when debugging.
258  * So share rcu_head with the less interesting memsw.
259  */
261  /*
262  * We also need some space for a worker in deferred freeing.
263  * By the time we call it, rcu_freeing is no longer in use.
264  */
266  };
267 
268  /*
269  * Per cgroup active and inactive list, similar to the
270  * per zone LRU lists.
271  */
274 #if MAX_NUMNODES > 1
275  nodemask_t scan_nodes;
276  atomic_t numainfo_events;
277  atomic_t numainfo_updating;
278 #endif
279  /*
280  * Should the accounting and control be hierarchical, per subtree?
281  */
283 
284  bool oom_lock;
286 
288 
290  /* OOM-Killer disable */
292 
293  /* set when res.limit == memsw.limit */
295 
296  /* protect arrays of thresholds */
298 
299  /* thresholds for memory usage. RCU-protected */
301 
302  /* thresholds for mem+swap usage. RCU-protected */
304 
305  /* For oom notifier event fd */
307 
308  /*
309  * Should we move charges of a task when a task is moved into this
310  * mem_cgroup ? And what type of charges should we move ?
311  */
313  /*
314  * set > 0 if pages under this cgroup are moving to other cgroup.
315  */
317  /* taken only while moving_account > 0 */
319  /*
320  * percpu counter.
321  */
323  /*
324  * used when a cpu is offlined or other synchronizations
325  * See mem_cgroup_read_stat().
326  */
329 
330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
331  struct tcp_memcontrol tcp_mem;
332 #endif
333 };
334 
335 /* Stuffs for move charges at task migration. */
336 /*
337  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338  * left-shifted bitmap of these types.
339  */
340 enum move_type {
341  MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
342  MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
344 };
345 
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348  spinlock_t lock; /* for from, to */
349  struct mem_cgroup *from;
350  struct mem_cgroup *to;
351  unsigned long precharge;
352  unsigned long moved_charge;
353  unsigned long moved_swap;
354  struct task_struct *moving_task; /* a task moving charges */
355  wait_queue_head_t waitq; /* a waitq for other context */
356 } mc = {
357  .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358  .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359 };
360 
361 static bool move_anon(void)
362 {
364  &mc.to->move_charge_at_immigrate);
365 }
366 
367 static bool move_file(void)
368 {
370  &mc.to->move_charge_at_immigrate);
371 }
372 
373 /*
374  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375  * limit reclaim to prevent infinite loops, if they ever occur.
376  */
377 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
379 
383  MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
384  MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
386 };
387 
388 /* for encoding cft->private value on file */
389 #define _MEM (0)
390 #define _MEMSWAP (1)
391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0)
397 
398 /*
399  * Reclaim flags for mem_cgroup_hierarchical_reclaim
400  */
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405 
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
408 
409 static inline
410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411 {
412  return container_of(s, struct mem_cgroup, css);
413 }
414 
415 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
416 {
417  return (memcg == root_mem_cgroup);
418 }
419 
420 /* Writing them here to avoid exposing memcg's inner layout */
421 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
422 
423 void sock_update_memcg(struct sock *sk)
424 {
426  struct mem_cgroup *memcg;
427  struct cg_proto *cg_proto;
428 
429  BUG_ON(!sk->sk_prot->proto_cgroup);
430 
431  /* Socket cloning can throw us here with sk_cgrp already
432  * filled. It won't however, necessarily happen from
433  * process context. So the test for root memcg given
434  * the current task's memcg won't help us in this case.
435  *
436  * Respecting the original socket's memcg is a better
437  * decision in this case.
438  */
439  if (sk->sk_cgrp) {
440  BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441  mem_cgroup_get(sk->sk_cgrp->memcg);
442  return;
443  }
444 
445  rcu_read_lock();
446  memcg = mem_cgroup_from_task(current);
447  cg_proto = sk->sk_prot->proto_cgroup(memcg);
448  if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
449  mem_cgroup_get(memcg);
450  sk->sk_cgrp = cg_proto;
451  }
452  rcu_read_unlock();
453  }
454 }
455 EXPORT_SYMBOL(sock_update_memcg);
456 
457 void sock_release_memcg(struct sock *sk)
458 {
459  if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
460  struct mem_cgroup *memcg;
461  WARN_ON(!sk->sk_cgrp->memcg);
462  memcg = sk->sk_cgrp->memcg;
463  mem_cgroup_put(memcg);
464  }
465 }
466 
467 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
468 {
469  if (!memcg || mem_cgroup_is_root(memcg))
470  return NULL;
471 
472  return &memcg->tcp_mem.cg_proto;
473 }
475 
476 static void disarm_sock_keys(struct mem_cgroup *memcg)
477 {
478  if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479  return;
480  static_key_slow_dec(&memcg_socket_limit_enabled);
481 }
482 #else
483 static void disarm_sock_keys(struct mem_cgroup *memcg)
484 {
485 }
486 #endif
487 
488 static void drain_all_stock_async(struct mem_cgroup *memcg);
489 
490 static struct mem_cgroup_per_zone *
491 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
492 {
493  return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
494 }
495 
496 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
497 {
498  return &memcg->css;
499 }
500 
501 static struct mem_cgroup_per_zone *
502 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504  int nid = page_to_nid(page);
505  int zid = page_zonenum(page);
506 
507  return mem_cgroup_zoneinfo(memcg, nid, zid);
508 }
509 
510 static struct mem_cgroup_tree_per_zone *
511 soft_limit_tree_node_zone(int nid, int zid)
512 {
513  return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
514 }
515 
516 static struct mem_cgroup_tree_per_zone *
517 soft_limit_tree_from_page(struct page *page)
518 {
519  int nid = page_to_nid(page);
520  int zid = page_zonenum(page);
521 
522  return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
523 }
524 
525 static void
526 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527  struct mem_cgroup_per_zone *mz,
528  struct mem_cgroup_tree_per_zone *mctz,
529  unsigned long long new_usage_in_excess)
530 {
531  struct rb_node **p = &mctz->rb_root.rb_node;
532  struct rb_node *parent = NULL;
533  struct mem_cgroup_per_zone *mz_node;
534 
535  if (mz->on_tree)
536  return;
537 
538  mz->usage_in_excess = new_usage_in_excess;
539  if (!mz->usage_in_excess)
540  return;
541  while (*p) {
542  parent = *p;
543  mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544  tree_node);
545  if (mz->usage_in_excess < mz_node->usage_in_excess)
546  p = &(*p)->rb_left;
547  /*
548  * We can't avoid mem cgroups that are over their soft
549  * limit by the same amount
550  */
551  else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552  p = &(*p)->rb_right;
553  }
554  rb_link_node(&mz->tree_node, parent, p);
555  rb_insert_color(&mz->tree_node, &mctz->rb_root);
556  mz->on_tree = true;
557 }
558 
559 static void
560 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561  struct mem_cgroup_per_zone *mz,
562  struct mem_cgroup_tree_per_zone *mctz)
563 {
564  if (!mz->on_tree)
565  return;
566  rb_erase(&mz->tree_node, &mctz->rb_root);
567  mz->on_tree = false;
568 }
569 
570 static void
571 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572  struct mem_cgroup_per_zone *mz,
573  struct mem_cgroup_tree_per_zone *mctz)
574 {
575  spin_lock(&mctz->lock);
576  __mem_cgroup_remove_exceeded(memcg, mz, mctz);
577  spin_unlock(&mctz->lock);
578 }
579 
580 
581 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
582 {
583  unsigned long long excess;
584  struct mem_cgroup_per_zone *mz;
585  struct mem_cgroup_tree_per_zone *mctz;
586  int nid = page_to_nid(page);
587  int zid = page_zonenum(page);
588  mctz = soft_limit_tree_from_page(page);
589 
590  /*
591  * Necessary to update all ancestors when hierarchy is used.
592  * because their event counter is not touched.
593  */
594  for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595  mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596  excess = res_counter_soft_limit_excess(&memcg->res);
597  /*
598  * We have to update the tree if mz is on RB-tree or
599  * mem is over its softlimit.
600  */
601  if (excess || mz->on_tree) {
602  spin_lock(&mctz->lock);
603  /* if on-tree, remove it */
604  if (mz->on_tree)
605  __mem_cgroup_remove_exceeded(memcg, mz, mctz);
606  /*
607  * Insert again. mz->usage_in_excess will be updated.
608  * If excess is 0, no tree ops.
609  */
610  __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611  spin_unlock(&mctz->lock);
612  }
613  }
614 }
615 
616 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
617 {
618  int node, zone;
619  struct mem_cgroup_per_zone *mz;
620  struct mem_cgroup_tree_per_zone *mctz;
621 
622  for_each_node(node) {
623  for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624  mz = mem_cgroup_zoneinfo(memcg, node, zone);
625  mctz = soft_limit_tree_node_zone(node, zone);
626  mem_cgroup_remove_exceeded(memcg, mz, mctz);
627  }
628  }
629 }
630 
631 static struct mem_cgroup_per_zone *
632 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
633 {
634  struct rb_node *rightmost = NULL;
635  struct mem_cgroup_per_zone *mz;
636 
637 retry:
638  mz = NULL;
639  rightmost = rb_last(&mctz->rb_root);
640  if (!rightmost)
641  goto done; /* Nothing to reclaim from */
642 
643  mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
644  /*
645  * Remove the node now but someone else can add it back,
646  * we will to add it back at the end of reclaim to its correct
647  * position in the tree.
648  */
649  __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650  if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651  !css_tryget(&mz->memcg->css))
652  goto retry;
653 done:
654  return mz;
655 }
656 
657 static struct mem_cgroup_per_zone *
658 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
659 {
660  struct mem_cgroup_per_zone *mz;
661 
662  spin_lock(&mctz->lock);
663  mz = __mem_cgroup_largest_soft_limit_node(mctz);
664  spin_unlock(&mctz->lock);
665  return mz;
666 }
667 
668 /*
669  * Implementation Note: reading percpu statistics for memcg.
670  *
671  * Both of vmstat[] and percpu_counter has threshold and do periodic
672  * synchronization to implement "quick" read. There are trade-off between
673  * reading cost and precision of value. Then, we may have a chance to implement
674  * a periodic synchronizion of counter in memcg's counter.
675  *
676  * But this _read() function is used for user interface now. The user accounts
677  * memory usage by memory cgroup and he _always_ requires exact value because
678  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679  * have to visit all online cpus and make sum. So, for now, unnecessary
680  * synchronization is not implemented. (just implemented for cpu hotplug)
681  *
682  * If there are kernel internal actions which can make use of some not-exact
683  * value, and reading all cpu value can be performance bottleneck in some
684  * common workload, threashold and synchonization as vmstat[] should be
685  * implemented.
686  */
687 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
689 {
690  long val = 0;
691  int cpu;
692 
693  get_online_cpus();
695  val += per_cpu(memcg->stat->count[idx], cpu);
696 #ifdef CONFIG_HOTPLUG_CPU
697  spin_lock(&memcg->pcp_counter_lock);
698  val += memcg->nocpu_base.count[idx];
699  spin_unlock(&memcg->pcp_counter_lock);
700 #endif
701  put_online_cpus();
702  return val;
703 }
704 
705 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706  bool charge)
707 {
708  int val = (charge) ? 1 : -1;
709  this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710 }
711 
712 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713  enum mem_cgroup_events_index idx)
714 {
715  unsigned long val = 0;
716  int cpu;
717 
719  val += per_cpu(memcg->stat->events[idx], cpu);
720 #ifdef CONFIG_HOTPLUG_CPU
721  spin_lock(&memcg->pcp_counter_lock);
722  val += memcg->nocpu_base.events[idx];
723  spin_unlock(&memcg->pcp_counter_lock);
724 #endif
725  return val;
726 }
727 
728 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729  bool anon, int nr_pages)
730 {
731  preempt_disable();
732 
733  /*
734  * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735  * counted as CACHE even if it's on ANON LRU.
736  */
737  if (anon)
738  __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739  nr_pages);
740  else
742  nr_pages);
743 
744  /* pagein of a big page is an event. So, ignore page size */
745  if (nr_pages > 0)
747  else {
749  nr_pages = -nr_pages; /* for event */
750  }
751 
752  __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
753 
754  preempt_enable();
755 }
756 
757 unsigned long
759 {
760  struct mem_cgroup_per_zone *mz;
761 
762  mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763  return mz->lru_size[lru];
764 }
765 
766 static unsigned long
767 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768  unsigned int lru_mask)
769 {
770  struct mem_cgroup_per_zone *mz;
771  enum lru_list lru;
772  unsigned long ret = 0;
773 
774  mz = mem_cgroup_zoneinfo(memcg, nid, zid);
775 
776  for_each_lru(lru) {
777  if (BIT(lru) & lru_mask)
778  ret += mz->lru_size[lru];
779  }
780  return ret;
781 }
782 
783 static unsigned long
784 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785  int nid, unsigned int lru_mask)
786 {
787  u64 total = 0;
788  int zid;
789 
790  for (zid = 0; zid < MAX_NR_ZONES; zid++)
791  total += mem_cgroup_zone_nr_lru_pages(memcg,
792  nid, zid, lru_mask);
793 
794  return total;
795 }
796 
797 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798  unsigned int lru_mask)
799 {
800  int nid;
801  u64 total = 0;
802 
804  total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805  return total;
806 }
807 
808 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
810 {
811  unsigned long val, next;
812 
813  val = __this_cpu_read(memcg->stat->nr_page_events);
814  next = __this_cpu_read(memcg->stat->targets[target]);
815  /* from time_after() in jiffies.h */
816  if ((long)next - (long)val < 0) {
817  switch (target) {
819  next = val + THRESHOLDS_EVENTS_TARGET;
820  break;
822  next = val + SOFTLIMIT_EVENTS_TARGET;
823  break;
825  next = val + NUMAINFO_EVENTS_TARGET;
826  break;
827  default:
828  break;
829  }
830  __this_cpu_write(memcg->stat->targets[target], next);
831  return true;
832  }
833  return false;
834 }
835 
836 /*
837  * Check events in order.
838  *
839  */
840 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
841 {
842  preempt_disable();
843  /* threshold event is triggered in finer grain than soft limit */
844  if (unlikely(mem_cgroup_event_ratelimit(memcg,
846  bool do_softlimit;
847  bool do_numainfo __maybe_unused;
848 
849  do_softlimit = mem_cgroup_event_ratelimit(memcg,
851 #if MAX_NUMNODES > 1
852  do_numainfo = mem_cgroup_event_ratelimit(memcg,
854 #endif
855  preempt_enable();
856 
857  mem_cgroup_threshold(memcg);
858  if (unlikely(do_softlimit))
859  mem_cgroup_update_tree(memcg, page);
860 #if MAX_NUMNODES > 1
861  if (unlikely(do_numainfo))
862  atomic_inc(&memcg->numainfo_events);
863 #endif
864  } else
865  preempt_enable();
866 }
867 
868 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
869 {
870  return mem_cgroup_from_css(
871  cgroup_subsys_state(cont, mem_cgroup_subsys_id));
872 }
873 
875 {
876  /*
877  * mm_update_next_owner() may clear mm->owner to NULL
878  * if it races with swapoff, page migration, etc.
879  * So this can be called with p == NULL.
880  */
881  if (unlikely(!p))
882  return NULL;
883 
884  return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
885 }
886 
888 {
889  struct mem_cgroup *memcg = NULL;
890 
891  if (!mm)
892  return NULL;
893  /*
894  * Because we have no locks, mm->owner's may be being moved to other
895  * cgroup. We use css_tryget() here even if this looks
896  * pessimistic (rather than adding locks here).
897  */
898  rcu_read_lock();
899  do {
900  memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901  if (unlikely(!memcg))
902  break;
903  } while (!css_tryget(&memcg->css));
904  rcu_read_unlock();
905  return memcg;
906 }
907 
925 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926  struct mem_cgroup *prev,
928 {
929  struct mem_cgroup *memcg = NULL;
930  int id = 0;
931 
932  if (mem_cgroup_disabled())
933  return NULL;
934 
935  if (!root)
936  root = root_mem_cgroup;
937 
938  if (prev && !reclaim)
939  id = css_id(&prev->css);
940 
941  if (prev && prev != root)
942  css_put(&prev->css);
943 
944  if (!root->use_hierarchy && root != root_mem_cgroup) {
945  if (prev)
946  return NULL;
947  return root;
948  }
949 
950  while (!memcg) {
952  struct cgroup_subsys_state *css;
953 
954  if (reclaim) {
955  int nid = zone_to_nid(reclaim->zone);
956  int zid = zone_idx(reclaim->zone);
957  struct mem_cgroup_per_zone *mz;
958 
959  mz = mem_cgroup_zoneinfo(root, nid, zid);
960  iter = &mz->reclaim_iter[reclaim->priority];
961  if (prev && reclaim->generation != iter->generation)
962  return NULL;
963  id = iter->position;
964  }
965 
966  rcu_read_lock();
967  css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968  if (css) {
969  if (css == &root->css || css_tryget(css))
970  memcg = mem_cgroup_from_css(css);
971  } else
972  id = 0;
973  rcu_read_unlock();
974 
975  if (reclaim) {
976  iter->position = id;
977  if (!css)
978  iter->generation++;
979  else if (!prev && memcg)
980  reclaim->generation = iter->generation;
981  }
982 
983  if (prev && !css)
984  return NULL;
985  }
986  return memcg;
987 }
988 
995  struct mem_cgroup *prev)
996 {
997  if (!root)
998  root = root_mem_cgroup;
999  if (prev && prev != root)
1000  css_put(&prev->css);
1001 }
1002 
1003 /*
1004  * Iteration constructs for visiting all cgroups (under a tree). If
1005  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006  * be used for reference counting.
1007  */
1008 #define for_each_mem_cgroup_tree(iter, root) \
1009  for (iter = mem_cgroup_iter(root, NULL, NULL); \
1010  iter != NULL; \
1011  iter = mem_cgroup_iter(root, iter, NULL))
1012 
1013 #define for_each_mem_cgroup(iter) \
1014  for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1015  iter != NULL; \
1016  iter = mem_cgroup_iter(NULL, iter, NULL))
1017 
1019 {
1020  struct mem_cgroup *memcg;
1021 
1022  if (!mm)
1023  return;
1024 
1025  rcu_read_lock();
1026  memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027  if (unlikely(!memcg))
1028  goto out;
1029 
1030  switch (idx) {
1031  case PGFAULT:
1032  this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033  break;
1034  case PGMAJFAULT:
1036  break;
1037  default:
1038  BUG();
1039  }
1040 out:
1041  rcu_read_unlock();
1042 }
1044 
1054 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055  struct mem_cgroup *memcg)
1056 {
1057  struct mem_cgroup_per_zone *mz;
1058  struct lruvec *lruvec;
1059 
1060  if (mem_cgroup_disabled()) {
1061  lruvec = &zone->lruvec;
1062  goto out;
1063  }
1064 
1065  mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1066  lruvec = &mz->lruvec;
1067 out:
1068  /*
1069  * Since a node can be onlined after the mem_cgroup was created,
1070  * we have to be prepared to initialize lruvec->zone here;
1071  * and if offlined then reonlined, we need to reinitialize it.
1072  */
1073  if (unlikely(lruvec->zone != zone))
1074  lruvec->zone = zone;
1075  return lruvec;
1076 }
1077 
1078 /*
1079  * Following LRU functions are allowed to be used without PCG_LOCK.
1080  * Operations are called by routine of global LRU independently from memcg.
1081  * What we have to take care of here is validness of pc->mem_cgroup.
1082  *
1083  * Changes to pc->mem_cgroup happens when
1084  * 1. charge
1085  * 2. moving account
1086  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1087  * It is added to LRU before charge.
1088  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1089  * When moving account, the page is not on LRU. It's isolated.
1090  */
1091 
1097 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1098 {
1099  struct mem_cgroup_per_zone *mz;
1100  struct mem_cgroup *memcg;
1101  struct page_cgroup *pc;
1102  struct lruvec *lruvec;
1103 
1104  if (mem_cgroup_disabled()) {
1105  lruvec = &zone->lruvec;
1106  goto out;
1107  }
1108 
1109  pc = lookup_page_cgroup(page);
1110  memcg = pc->mem_cgroup;
1111 
1112  /*
1113  * Surreptitiously switch any uncharged offlist page to root:
1114  * an uncharged page off lru does nothing to secure
1115  * its former mem_cgroup from sudden removal.
1116  *
1117  * Our caller holds lru_lock, and PageCgroupUsed is updated
1118  * under page_cgroup lock: between them, they make all uses
1119  * of pc->mem_cgroup safe.
1120  */
1121  if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1122  pc->mem_cgroup = memcg = root_mem_cgroup;
1123 
1124  mz = page_cgroup_zoneinfo(memcg, page);
1125  lruvec = &mz->lruvec;
1126 out:
1127  /*
1128  * Since a node can be onlined after the mem_cgroup was created,
1129  * we have to be prepared to initialize lruvec->zone here;
1130  * and if offlined then reonlined, we need to reinitialize it.
1131  */
1132  if (unlikely(lruvec->zone != zone))
1133  lruvec->zone = zone;
1134  return lruvec;
1135 }
1136 
1147  int nr_pages)
1148 {
1149  struct mem_cgroup_per_zone *mz;
1150  unsigned long *lru_size;
1151 
1152  if (mem_cgroup_disabled())
1153  return;
1154 
1155  mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1156  lru_size = mz->lru_size + lru;
1157  *lru_size += nr_pages;
1158  VM_BUG_ON((long)(*lru_size) < 0);
1159 }
1160 
1161 /*
1162  * Checks whether given mem is same or in the root_mem_cgroup's
1163  * hierarchy subtree
1164  */
1165 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1166  struct mem_cgroup *memcg)
1167 {
1168  if (root_memcg == memcg)
1169  return true;
1170  if (!root_memcg->use_hierarchy || !memcg)
1171  return false;
1172  return css_is_ancestor(&memcg->css, &root_memcg->css);
1173 }
1174 
1175 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1176  struct mem_cgroup *memcg)
1177 {
1178  bool ret;
1179 
1180  rcu_read_lock();
1181  ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1182  rcu_read_unlock();
1183  return ret;
1184 }
1185 
1186 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1187 {
1188  int ret;
1189  struct mem_cgroup *curr = NULL;
1190  struct task_struct *p;
1191 
1192  p = find_lock_task_mm(task);
1193  if (p) {
1194  curr = try_get_mem_cgroup_from_mm(p->mm);
1195  task_unlock(p);
1196  } else {
1197  /*
1198  * All threads may have already detached their mm's, but the oom
1199  * killer still needs to detect if they have already been oom
1200  * killed to prevent needlessly killing additional tasks.
1201  */
1202  task_lock(task);
1203  curr = mem_cgroup_from_task(task);
1204  if (curr)
1205  css_get(&curr->css);
1206  task_unlock(task);
1207  }
1208  if (!curr)
1209  return 0;
1210  /*
1211  * We should check use_hierarchy of "memcg" not "curr". Because checking
1212  * use_hierarchy of "curr" here make this function true if hierarchy is
1213  * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1214  * hierarchy(even if use_hierarchy is disabled in "memcg").
1215  */
1216  ret = mem_cgroup_same_or_subtree(memcg, curr);
1217  css_put(&curr->css);
1218  return ret;
1219 }
1220 
1222 {
1223  unsigned long inactive_ratio;
1224  unsigned long inactive;
1225  unsigned long active;
1226  unsigned long gb;
1227 
1228  inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1229  active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1230 
1231  gb = (inactive + active) >> (30 - PAGE_SHIFT);
1232  if (gb)
1233  inactive_ratio = int_sqrt(10 * gb);
1234  else
1235  inactive_ratio = 1;
1236 
1237  return inactive * inactive_ratio < active;
1238 }
1239 
1241 {
1242  unsigned long active;
1243  unsigned long inactive;
1244 
1245  inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1246  active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1247 
1248  return (active > inactive);
1249 }
1250 
1251 #define mem_cgroup_from_res_counter(counter, member) \
1252  container_of(counter, struct mem_cgroup, member)
1253 
1261 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1262 {
1263  unsigned long long margin;
1264 
1265  margin = res_counter_margin(&memcg->res);
1266  if (do_swap_account)
1267  margin = min(margin, res_counter_margin(&memcg->memsw));
1268  return margin >> PAGE_SHIFT;
1269 }
1270 
1272 {
1273  struct cgroup *cgrp = memcg->css.cgroup;
1274 
1275  /* root ? */
1276  if (cgrp->parent == NULL)
1277  return vm_swappiness;
1278 
1279  return memcg->swappiness;
1280 }
1281 
1282 /*
1283  * memcg->moving_account is used for checking possibility that some thread is
1284  * calling move_account(). When a thread on CPU-A starts moving pages under
1285  * a memcg, other threads should check memcg->moving_account under
1286  * rcu_read_lock(), like this:
1287  *
1288  * CPU-A CPU-B
1289  * rcu_read_lock()
1290  * memcg->moving_account+1 if (memcg->mocing_account)
1291  * take heavy locks.
1292  * synchronize_rcu() update something.
1293  * rcu_read_unlock()
1294  * start move here.
1295  */
1296 
1297 /* for quick checking without looking up memcg */
1298 atomic_t memcg_moving __read_mostly;
1299 
1300 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1301 {
1302  atomic_inc(&memcg_moving);
1303  atomic_inc(&memcg->moving_account);
1304  synchronize_rcu();
1305 }
1306 
1307 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1308 {
1309  /*
1310  * Now, mem_cgroup_clear_mc() may call this function with NULL.
1311  * We check NULL in callee rather than caller.
1312  */
1313  if (memcg) {
1314  atomic_dec(&memcg_moving);
1315  atomic_dec(&memcg->moving_account);
1316  }
1317 }
1318 
1319 /*
1320  * 2 routines for checking "mem" is under move_account() or not.
1321  *
1322  * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1323  * is used for avoiding races in accounting. If true,
1324  * pc->mem_cgroup may be overwritten.
1325  *
1326  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1327  * under hierarchy of moving cgroups. This is for
1328  * waiting at hith-memory prressure caused by "move".
1329  */
1330 
1331 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1332 {
1333  VM_BUG_ON(!rcu_read_lock_held());
1334  return atomic_read(&memcg->moving_account) > 0;
1335 }
1336 
1337 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1338 {
1339  struct mem_cgroup *from;
1340  struct mem_cgroup *to;
1341  bool ret = false;
1342  /*
1343  * Unlike task_move routines, we access mc.to, mc.from not under
1344  * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1345  */
1346  spin_lock(&mc.lock);
1347  from = mc.from;
1348  to = mc.to;
1349  if (!from)
1350  goto unlock;
1351 
1352  ret = mem_cgroup_same_or_subtree(memcg, from)
1353  || mem_cgroup_same_or_subtree(memcg, to);
1354 unlock:
1355  spin_unlock(&mc.lock);
1356  return ret;
1357 }
1358 
1359 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1360 {
1361  if (mc.moving_task && current != mc.moving_task) {
1362  if (mem_cgroup_under_move(memcg)) {
1363  DEFINE_WAIT(wait);
1365  /* moving charge context might have finished. */
1366  if (mc.moving_task)
1367  schedule();
1368  finish_wait(&mc.waitq, &wait);
1369  return true;
1370  }
1371  }
1372  return false;
1373 }
1374 
1375 /*
1376  * Take this lock when
1377  * - a code tries to modify page's memcg while it's USED.
1378  * - a code tries to modify page state accounting in a memcg.
1379  * see mem_cgroup_stolen(), too.
1380  */
1381 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1382  unsigned long *flags)
1383 {
1384  spin_lock_irqsave(&memcg->move_lock, *flags);
1385 }
1386 
1387 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1388  unsigned long *flags)
1389 {
1390  spin_unlock_irqrestore(&memcg->move_lock, *flags);
1391 }
1392 
1401 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1402 {
1403  struct cgroup *task_cgrp;
1404  struct cgroup *mem_cgrp;
1405  /*
1406  * Need a buffer in BSS, can't rely on allocations. The code relies
1407  * on the assumption that OOM is serialized for memory controller.
1408  * If this assumption is broken, revisit this code.
1409  */
1410  static char memcg_name[PATH_MAX];
1411  int ret;
1412 
1413  if (!memcg || !p)
1414  return;
1415 
1416  rcu_read_lock();
1417 
1418  mem_cgrp = memcg->css.cgroup;
1419  task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1420 
1421  ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1422  if (ret < 0) {
1423  /*
1424  * Unfortunately, we are unable to convert to a useful name
1425  * But we'll still print out the usage information
1426  */
1427  rcu_read_unlock();
1428  goto done;
1429  }
1430  rcu_read_unlock();
1431 
1432  printk(KERN_INFO "Task in %s killed", memcg_name);
1433 
1434  rcu_read_lock();
1435  ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1436  if (ret < 0) {
1437  rcu_read_unlock();
1438  goto done;
1439  }
1440  rcu_read_unlock();
1441 
1442  /*
1443  * Continues from above, so we don't need an KERN_ level
1444  */
1445  printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1446 done:
1447 
1448  printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1449  res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1450  res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1452  printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1453  "failcnt %llu\n",
1454  res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1455  res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1457 }
1458 
1459 /*
1460  * This function returns the number of memcg under hierarchy tree. Returns
1461  * 1(self count) if no children.
1462  */
1463 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1464 {
1465  int num = 0;
1466  struct mem_cgroup *iter;
1467 
1468  for_each_mem_cgroup_tree(iter, memcg)
1469  num++;
1470  return num;
1471 }
1472 
1473 /*
1474  * Return the memory (and swap, if configured) limit for a memcg.
1475  */
1476 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1477 {
1478  u64 limit;
1479 
1480  limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1481 
1482  /*
1483  * Do not consider swap space if we cannot swap due to swappiness
1484  */
1485  if (mem_cgroup_swappiness(memcg)) {
1486  u64 memsw;
1487 
1488  limit += total_swap_pages << PAGE_SHIFT;
1489  memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1490 
1491  /*
1492  * If memsw is finite and limits the amount of swap space
1493  * available to this memcg, return that limit.
1494  */
1495  limit = min(limit, memsw);
1496  }
1497 
1498  return limit;
1499 }
1500 
1502  int order)
1503 {
1504  struct mem_cgroup *iter;
1505  unsigned long chosen_points = 0;
1506  unsigned long totalpages;
1507  unsigned int points = 0;
1508  struct task_struct *chosen = NULL;
1509 
1510  /*
1511  * If current has a pending SIGKILL, then automatically select it. The
1512  * goal is to allow it to allocate so that it may quickly exit and free
1513  * its memory.
1514  */
1515  if (fatal_signal_pending(current)) {
1516  set_thread_flag(TIF_MEMDIE);
1517  return;
1518  }
1519 
1520  check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1521  totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1522  for_each_mem_cgroup_tree(iter, memcg) {
1523  struct cgroup *cgroup = iter->css.cgroup;
1524  struct cgroup_iter it;
1525  struct task_struct *task;
1526 
1527  cgroup_iter_start(cgroup, &it);
1528  while ((task = cgroup_iter_next(cgroup, &it))) {
1529  switch (oom_scan_process_thread(task, totalpages, NULL,
1530  false)) {
1531  case OOM_SCAN_SELECT:
1532  if (chosen)
1533  put_task_struct(chosen);
1534  chosen = task;
1535  chosen_points = ULONG_MAX;
1536  get_task_struct(chosen);
1537  /* fall through */
1538  case OOM_SCAN_CONTINUE:
1539  continue;
1540  case OOM_SCAN_ABORT:
1541  cgroup_iter_end(cgroup, &it);
1542  mem_cgroup_iter_break(memcg, iter);
1543  if (chosen)
1544  put_task_struct(chosen);
1545  return;
1546  case OOM_SCAN_OK:
1547  break;
1548  };
1549  points = oom_badness(task, memcg, NULL, totalpages);
1550  if (points > chosen_points) {
1551  if (chosen)
1552  put_task_struct(chosen);
1553  chosen = task;
1554  chosen_points = points;
1555  get_task_struct(chosen);
1556  }
1557  }
1558  cgroup_iter_end(cgroup, &it);
1559  }
1560 
1561  if (!chosen)
1562  return;
1563  points = chosen_points * 1000 / totalpages;
1564  oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1565  NULL, "Memory cgroup out of memory");
1566 }
1567 
1568 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1569  gfp_t gfp_mask,
1570  unsigned long flags)
1571 {
1572  unsigned long total = 0;
1573  bool noswap = false;
1574  int loop;
1575 
1576  if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1577  noswap = true;
1578  if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1579  noswap = true;
1580 
1581  for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1582  if (loop)
1583  drain_all_stock_async(memcg);
1584  total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1585  /*
1586  * Allow limit shrinkers, which are triggered directly
1587  * by userspace, to catch signals and stop reclaim
1588  * after minimal progress, regardless of the margin.
1589  */
1590  if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1591  break;
1592  if (mem_cgroup_margin(memcg))
1593  break;
1594  /*
1595  * If nothing was reclaimed after two attempts, there
1596  * may be no reclaimable pages in this hierarchy.
1597  */
1598  if (loop && !total)
1599  break;
1600  }
1601  return total;
1602 }
1603 
1614 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1615  int nid, bool noswap)
1616 {
1617  if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1618  return true;
1619  if (noswap || !total_swap_pages)
1620  return false;
1621  if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1622  return true;
1623  return false;
1624 
1625 }
1626 #if MAX_NUMNODES > 1
1627 
1628 /*
1629  * Always updating the nodemask is not very good - even if we have an empty
1630  * list or the wrong list here, we can start from some node and traverse all
1631  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1632  *
1633  */
1634 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1635 {
1636  int nid;
1637  /*
1638  * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1639  * pagein/pageout changes since the last update.
1640  */
1641  if (!atomic_read(&memcg->numainfo_events))
1642  return;
1643  if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1644  return;
1645 
1646  /* make a nodemask where this memcg uses memory from */
1647  memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1648 
1650 
1651  if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1652  node_clear(nid, memcg->scan_nodes);
1653  }
1654 
1655  atomic_set(&memcg->numainfo_events, 0);
1656  atomic_set(&memcg->numainfo_updating, 0);
1657 }
1658 
1659 /*
1660  * Selecting a node where we start reclaim from. Because what we need is just
1661  * reducing usage counter, start from anywhere is O,K. Considering
1662  * memory reclaim from current node, there are pros. and cons.
1663  *
1664  * Freeing memory from current node means freeing memory from a node which
1665  * we'll use or we've used. So, it may make LRU bad. And if several threads
1666  * hit limits, it will see a contention on a node. But freeing from remote
1667  * node means more costs for memory reclaim because of memory latency.
1668  *
1669  * Now, we use round-robin. Better algorithm is welcomed.
1670  */
1671 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1672 {
1673  int node;
1674 
1675  mem_cgroup_may_update_nodemask(memcg);
1676  node = memcg->last_scanned_node;
1677 
1678  node = next_node(node, memcg->scan_nodes);
1679  if (node == MAX_NUMNODES)
1680  node = first_node(memcg->scan_nodes);
1681  /*
1682  * We call this when we hit limit, not when pages are added to LRU.
1683  * No LRU may hold pages because all pages are UNEVICTABLE or
1684  * memcg is too small and all pages are not on LRU. In that case,
1685  * we use curret node.
1686  */
1687  if (unlikely(node == MAX_NUMNODES))
1688  node = numa_node_id();
1689 
1690  memcg->last_scanned_node = node;
1691  return node;
1692 }
1693 
1694 /*
1695  * Check all nodes whether it contains reclaimable pages or not.
1696  * For quick scan, we make use of scan_nodes. This will allow us to skip
1697  * unused nodes. But scan_nodes is lazily updated and may not cotain
1698  * enough new information. We need to do double check.
1699  */
1700 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1701 {
1702  int nid;
1703 
1704  /*
1705  * quick check...making use of scan_node.
1706  * We can skip unused nodes.
1707  */
1708  if (!nodes_empty(memcg->scan_nodes)) {
1709  for (nid = first_node(memcg->scan_nodes);
1710  nid < MAX_NUMNODES;
1711  nid = next_node(nid, memcg->scan_nodes)) {
1712 
1713  if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1714  return true;
1715  }
1716  }
1717  /*
1718  * Check rest of nodes.
1719  */
1720  for_each_node_state(nid, N_HIGH_MEMORY) {
1721  if (node_isset(nid, memcg->scan_nodes))
1722  continue;
1723  if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1724  return true;
1725  }
1726  return false;
1727 }
1728 
1729 #else
1731 {
1732  return 0;
1733 }
1734 
1735 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1736 {
1737  return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1738 }
1739 #endif
1740 
1741 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1742  struct zone *zone,
1743  gfp_t gfp_mask,
1744  unsigned long *total_scanned)
1745 {
1746  struct mem_cgroup *victim = NULL;
1747  int total = 0;
1748  int loop = 0;
1749  unsigned long excess;
1750  unsigned long nr_scanned;
1752  .zone = zone,
1753  .priority = 0,
1754  };
1755 
1756  excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1757 
1758  while (1) {
1759  victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1760  if (!victim) {
1761  loop++;
1762  if (loop >= 2) {
1763  /*
1764  * If we have not been able to reclaim
1765  * anything, it might because there are
1766  * no reclaimable pages under this hierarchy
1767  */
1768  if (!total)
1769  break;
1770  /*
1771  * We want to do more targeted reclaim.
1772  * excess >> 2 is not to excessive so as to
1773  * reclaim too much, nor too less that we keep
1774  * coming back to reclaim from this cgroup
1775  */
1776  if (total >= (excess >> 2) ||
1777  (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1778  break;
1779  }
1780  continue;
1781  }
1782  if (!mem_cgroup_reclaimable(victim, false))
1783  continue;
1784  total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1785  zone, &nr_scanned);
1786  *total_scanned += nr_scanned;
1787  if (!res_counter_soft_limit_excess(&root_memcg->res))
1788  break;
1789  }
1790  mem_cgroup_iter_break(root_memcg, victim);
1791  return total;
1792 }
1793 
1794 /*
1795  * Check OOM-Killer is already running under our hierarchy.
1796  * If someone is running, return false.
1797  * Has to be called with memcg_oom_lock
1798  */
1799 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1800 {
1801  struct mem_cgroup *iter, *failed = NULL;
1802 
1803  for_each_mem_cgroup_tree(iter, memcg) {
1804  if (iter->oom_lock) {
1805  /*
1806  * this subtree of our hierarchy is already locked
1807  * so we cannot give a lock.
1808  */
1809  failed = iter;
1810  mem_cgroup_iter_break(memcg, iter);
1811  break;
1812  } else
1813  iter->oom_lock = true;
1814  }
1815 
1816  if (!failed)
1817  return true;
1818 
1819  /*
1820  * OK, we failed to lock the whole subtree so we have to clean up
1821  * what we set up to the failing subtree
1822  */
1823  for_each_mem_cgroup_tree(iter, memcg) {
1824  if (iter == failed) {
1825  mem_cgroup_iter_break(memcg, iter);
1826  break;
1827  }
1828  iter->oom_lock = false;
1829  }
1830  return false;
1831 }
1832 
1833 /*
1834  * Has to be called with memcg_oom_lock
1835  */
1836 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1837 {
1838  struct mem_cgroup *iter;
1839 
1840  for_each_mem_cgroup_tree(iter, memcg)
1841  iter->oom_lock = false;
1842  return 0;
1843 }
1844 
1845 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1846 {
1847  struct mem_cgroup *iter;
1848 
1849  for_each_mem_cgroup_tree(iter, memcg)
1850  atomic_inc(&iter->under_oom);
1851 }
1852 
1853 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1854 {
1855  struct mem_cgroup *iter;
1856 
1857  /*
1858  * When a new child is created while the hierarchy is under oom,
1859  * mem_cgroup_oom_lock() may not be called. We have to use
1860  * atomic_add_unless() here.
1861  */
1862  for_each_mem_cgroup_tree(iter, memcg)
1863  atomic_add_unless(&iter->under_oom, -1, 0);
1864 }
1865 
1866 static DEFINE_SPINLOCK(memcg_oom_lock);
1867 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1868 
1872 };
1873 
1874 static int memcg_oom_wake_function(wait_queue_t *wait,
1875  unsigned mode, int sync, void *arg)
1876 {
1877  struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1878  struct mem_cgroup *oom_wait_memcg;
1879  struct oom_wait_info *oom_wait_info;
1880 
1881  oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1882  oom_wait_memcg = oom_wait_info->memcg;
1883 
1884  /*
1885  * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1886  * Then we can use css_is_ancestor without taking care of RCU.
1887  */
1888  if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1889  && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1890  return 0;
1891  return autoremove_wake_function(wait, mode, sync, arg);
1892 }
1893 
1894 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1895 {
1896  /* for filtering, pass "memcg" as argument. */
1897  __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1898 }
1899 
1900 static void memcg_oom_recover(struct mem_cgroup *memcg)
1901 {
1902  if (memcg && atomic_read(&memcg->under_oom))
1903  memcg_wakeup_oom(memcg);
1904 }
1905 
1906 /*
1907  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1908  */
1909 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1910  int order)
1911 {
1912  struct oom_wait_info owait;
1913  bool locked, need_to_kill;
1914 
1915  owait.memcg = memcg;
1916  owait.wait.flags = 0;
1917  owait.wait.func = memcg_oom_wake_function;
1918  owait.wait.private = current;
1919  INIT_LIST_HEAD(&owait.wait.task_list);
1920  need_to_kill = true;
1921  mem_cgroup_mark_under_oom(memcg);
1922 
1923  /* At first, try to OOM lock hierarchy under memcg.*/
1924  spin_lock(&memcg_oom_lock);
1925  locked = mem_cgroup_oom_lock(memcg);
1926  /*
1927  * Even if signal_pending(), we can't quit charge() loop without
1928  * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1929  * under OOM is always welcomed, use TASK_KILLABLE here.
1930  */
1931  prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1932  if (!locked || memcg->oom_kill_disable)
1933  need_to_kill = false;
1934  if (locked)
1935  mem_cgroup_oom_notify(memcg);
1936  spin_unlock(&memcg_oom_lock);
1937 
1938  if (need_to_kill) {
1939  finish_wait(&memcg_oom_waitq, &owait.wait);
1940  mem_cgroup_out_of_memory(memcg, mask, order);
1941  } else {
1942  schedule();
1943  finish_wait(&memcg_oom_waitq, &owait.wait);
1944  }
1945  spin_lock(&memcg_oom_lock);
1946  if (locked)
1947  mem_cgroup_oom_unlock(memcg);
1948  memcg_wakeup_oom(memcg);
1949  spin_unlock(&memcg_oom_lock);
1950 
1951  mem_cgroup_unmark_under_oom(memcg);
1952 
1953  if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1954  return false;
1955  /* Give chance to dying process */
1957  return true;
1958 }
1959 
1960 /*
1961  * Currently used to update mapped file statistics, but the routine can be
1962  * generalized to update other statistics as well.
1963  *
1964  * Notes: Race condition
1965  *
1966  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1967  * it tends to be costly. But considering some conditions, we doesn't need
1968  * to do so _always_.
1969  *
1970  * Considering "charge", lock_page_cgroup() is not required because all
1971  * file-stat operations happen after a page is attached to radix-tree. There
1972  * are no race with "charge".
1973  *
1974  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1975  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1976  * if there are race with "uncharge". Statistics itself is properly handled
1977  * by flags.
1978  *
1979  * Considering "move", this is an only case we see a race. To make the race
1980  * small, we check mm->moving_account and detect there are possibility of race
1981  * If there is, we take a lock.
1982  */
1983 
1985  bool *locked, unsigned long *flags)
1986 {
1987  struct mem_cgroup *memcg;
1988  struct page_cgroup *pc;
1989 
1990  pc = lookup_page_cgroup(page);
1991 again:
1992  memcg = pc->mem_cgroup;
1993  if (unlikely(!memcg || !PageCgroupUsed(pc)))
1994  return;
1995  /*
1996  * If this memory cgroup is not under account moving, we don't
1997  * need to take move_lock_mem_cgroup(). Because we already hold
1998  * rcu_read_lock(), any calls to move_account will be delayed until
1999  * rcu_read_unlock() if mem_cgroup_stolen() == true.
2000  */
2001  if (!mem_cgroup_stolen(memcg))
2002  return;
2003 
2004  move_lock_mem_cgroup(memcg, flags);
2005  if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2006  move_unlock_mem_cgroup(memcg, flags);
2007  goto again;
2008  }
2009  *locked = true;
2010 }
2011 
2012 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2013 {
2014  struct page_cgroup *pc = lookup_page_cgroup(page);
2015 
2016  /*
2017  * It's guaranteed that pc->mem_cgroup never changes while
2018  * lock is held because a routine modifies pc->mem_cgroup
2019  * should take move_lock_mem_cgroup().
2020  */
2021  move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2022 }
2023 
2024 void mem_cgroup_update_page_stat(struct page *page,
2025  enum mem_cgroup_page_stat_item idx, int val)
2026 {
2027  struct mem_cgroup *memcg;
2028  struct page_cgroup *pc = lookup_page_cgroup(page);
2029  unsigned long uninitialized_var(flags);
2030 
2031  if (mem_cgroup_disabled())
2032  return;
2033 
2034  memcg = pc->mem_cgroup;
2035  if (unlikely(!memcg || !PageCgroupUsed(pc)))
2036  return;
2037 
2038  switch (idx) {
2039  case MEMCG_NR_FILE_MAPPED:
2041  break;
2042  default:
2043  BUG();
2044  }
2045 
2046  this_cpu_add(memcg->stat->count[idx], val);
2047 }
2048 
2049 /*
2050  * size of first charge trial. "32" comes from vmscan.c's magic value.
2051  * TODO: maybe necessary to use big numbers in big irons.
2052  */
2053 #define CHARGE_BATCH 32U
2055  struct mem_cgroup *cached; /* this never be root cgroup */
2056  unsigned int nr_pages;
2058  unsigned long flags;
2059 #define FLUSHING_CACHED_CHARGE 0
2060 };
2061 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2062 static DEFINE_MUTEX(percpu_charge_mutex);
2063 
2064 /*
2065  * Try to consume stocked charge on this cpu. If success, one page is consumed
2066  * from local stock and true is returned. If the stock is 0 or charges from a
2067  * cgroup which is not current target, returns false. This stock will be
2068  * refilled.
2069  */
2070 static bool consume_stock(struct mem_cgroup *memcg)
2071 {
2072  struct memcg_stock_pcp *stock;
2073  bool ret = true;
2074 
2075  stock = &get_cpu_var(memcg_stock);
2076  if (memcg == stock->cached && stock->nr_pages)
2077  stock->nr_pages--;
2078  else /* need to call res_counter_charge */
2079  ret = false;
2080  put_cpu_var(memcg_stock);
2081  return ret;
2082 }
2083 
2084 /*
2085  * Returns stocks cached in percpu to res_counter and reset cached information.
2086  */
2087 static void drain_stock(struct memcg_stock_pcp *stock)
2088 {
2089  struct mem_cgroup *old = stock->cached;
2090 
2091  if (stock->nr_pages) {
2092  unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2093 
2094  res_counter_uncharge(&old->res, bytes);
2095  if (do_swap_account)
2096  res_counter_uncharge(&old->memsw, bytes);
2097  stock->nr_pages = 0;
2098  }
2099  stock->cached = NULL;
2100 }
2101 
2102 /*
2103  * This must be called under preempt disabled or must be called by
2104  * a thread which is pinned to local cpu.
2105  */
2106 static void drain_local_stock(struct work_struct *dummy)
2107 {
2108  struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2109  drain_stock(stock);
2111 }
2112 
2113 /*
2114  * Cache charges(val) which is from res_counter, to local per_cpu area.
2115  * This will be consumed by consume_stock() function, later.
2116  */
2117 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 {
2119  struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2120 
2121  if (stock->cached != memcg) { /* reset if necessary */
2122  drain_stock(stock);
2123  stock->cached = memcg;
2124  }
2125  stock->nr_pages += nr_pages;
2126  put_cpu_var(memcg_stock);
2127 }
2128 
2129 /*
2130  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2131  * of the hierarchy under it. sync flag says whether we should block
2132  * until the work is done.
2133  */
2134 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2135 {
2136  int cpu, curcpu;
2137 
2138  /* Notify other cpus that system-wide "drain" is running */
2139  get_online_cpus();
2140  curcpu = get_cpu();
2141  for_each_online_cpu(cpu) {
2142  struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2143  struct mem_cgroup *memcg;
2144 
2145  memcg = stock->cached;
2146  if (!memcg || !stock->nr_pages)
2147  continue;
2148  if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2149  continue;
2151  if (cpu == curcpu)
2152  drain_local_stock(&stock->work);
2153  else
2154  schedule_work_on(cpu, &stock->work);
2155  }
2156  }
2157  put_cpu();
2158 
2159  if (!sync)
2160  goto out;
2161 
2162  for_each_online_cpu(cpu) {
2163  struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2164  if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2165  flush_work(&stock->work);
2166  }
2167 out:
2168  put_online_cpus();
2169 }
2170 
2171 /*
2172  * Tries to drain stocked charges in other cpus. This function is asynchronous
2173  * and just put a work per cpu for draining localy on each cpu. Caller can
2174  * expects some charges will be back to res_counter later but cannot wait for
2175  * it.
2176  */
2177 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2178 {
2179  /*
2180  * If someone calls draining, avoid adding more kworker runs.
2181  */
2182  if (!mutex_trylock(&percpu_charge_mutex))
2183  return;
2184  drain_all_stock(root_memcg, false);
2185  mutex_unlock(&percpu_charge_mutex);
2186 }
2187 
2188 /* This is a synchronous drain interface. */
2189 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2190 {
2191  /* called when force_empty is called */
2192  mutex_lock(&percpu_charge_mutex);
2193  drain_all_stock(root_memcg, true);
2194  mutex_unlock(&percpu_charge_mutex);
2195 }
2196 
2197 /*
2198  * This function drains percpu counter value from DEAD cpu and
2199  * move it to local cpu. Note that this function can be preempted.
2200  */
2201 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2202 {
2203  int i;
2204 
2205  spin_lock(&memcg->pcp_counter_lock);
2206  for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2207  long x = per_cpu(memcg->stat->count[i], cpu);
2208 
2209  per_cpu(memcg->stat->count[i], cpu) = 0;
2210  memcg->nocpu_base.count[i] += x;
2211  }
2212  for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2213  unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2214 
2215  per_cpu(memcg->stat->events[i], cpu) = 0;
2216  memcg->nocpu_base.events[i] += x;
2217  }
2218  spin_unlock(&memcg->pcp_counter_lock);
2219 }
2220 
2221 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2222  unsigned long action,
2223  void *hcpu)
2224 {
2225  int cpu = (unsigned long)hcpu;
2226  struct memcg_stock_pcp *stock;
2227  struct mem_cgroup *iter;
2228 
2229  if (action == CPU_ONLINE)
2230  return NOTIFY_OK;
2231 
2232  if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2233  return NOTIFY_OK;
2234 
2235  for_each_mem_cgroup(iter)
2236  mem_cgroup_drain_pcp_counter(iter, cpu);
2237 
2238  stock = &per_cpu(memcg_stock, cpu);
2239  drain_stock(stock);
2240  return NOTIFY_OK;
2241 }
2242 
2243 
2244 /* See __mem_cgroup_try_charge() for details */
2245 enum {
2246  CHARGE_OK, /* success */
2247  CHARGE_RETRY, /* need to retry but retry is not bad */
2248  CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2249  CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2250  CHARGE_OOM_DIE, /* the current is killed because of OOM */
2251 };
2252 
2253 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2254  unsigned int nr_pages, bool oom_check)
2255 {
2256  unsigned long csize = nr_pages * PAGE_SIZE;
2257  struct mem_cgroup *mem_over_limit;
2258  struct res_counter *fail_res;
2259  unsigned long flags = 0;
2260  int ret;
2261 
2262  ret = res_counter_charge(&memcg->res, csize, &fail_res);
2263 
2264  if (likely(!ret)) {
2265  if (!do_swap_account)
2266  return CHARGE_OK;
2267  ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2268  if (likely(!ret))
2269  return CHARGE_OK;
2270 
2271  res_counter_uncharge(&memcg->res, csize);
2272  mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2273  flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2274  } else
2275  mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2276  /*
2277  * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2278  * of regular pages (CHARGE_BATCH), or a single regular page (1).
2279  *
2280  * Never reclaim on behalf of optional batching, retry with a
2281  * single page instead.
2282  */
2283  if (nr_pages == CHARGE_BATCH)
2284  return CHARGE_RETRY;
2285 
2286  if (!(gfp_mask & __GFP_WAIT))
2287  return CHARGE_WOULDBLOCK;
2288 
2289  ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2290  if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2291  return CHARGE_RETRY;
2292  /*
2293  * Even though the limit is exceeded at this point, reclaim
2294  * may have been able to free some pages. Retry the charge
2295  * before killing the task.
2296  *
2297  * Only for regular pages, though: huge pages are rather
2298  * unlikely to succeed so close to the limit, and we fall back
2299  * to regular pages anyway in case of failure.
2300  */
2301  if (nr_pages == 1 && ret)
2302  return CHARGE_RETRY;
2303 
2304  /*
2305  * At task move, charge accounts can be doubly counted. So, it's
2306  * better to wait until the end of task_move if something is going on.
2307  */
2308  if (mem_cgroup_wait_acct_move(mem_over_limit))
2309  return CHARGE_RETRY;
2310 
2311  /* If we don't need to call oom-killer at el, return immediately */
2312  if (!oom_check)
2313  return CHARGE_NOMEM;
2314  /* check OOM */
2315  if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2316  return CHARGE_OOM_DIE;
2317 
2318  return CHARGE_RETRY;
2319 }
2320 
2321 /*
2322  * __mem_cgroup_try_charge() does
2323  * 1. detect memcg to be charged against from passed *mm and *ptr,
2324  * 2. update res_counter
2325  * 3. call memory reclaim if necessary.
2326  *
2327  * In some special case, if the task is fatal, fatal_signal_pending() or
2328  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2329  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2330  * as possible without any hazards. 2: all pages should have a valid
2331  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2332  * pointer, that is treated as a charge to root_mem_cgroup.
2333  *
2334  * So __mem_cgroup_try_charge() will return
2335  * 0 ... on success, filling *ptr with a valid memcg pointer.
2336  * -ENOMEM ... charge failure because of resource limits.
2337  * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2338  *
2339  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2340  * the oom-killer can be invoked.
2341  */
2342 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2343  gfp_t gfp_mask,
2344  unsigned int nr_pages,
2345  struct mem_cgroup **ptr,
2346  bool oom)
2347 {
2348  unsigned int batch = max(CHARGE_BATCH, nr_pages);
2349  int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2350  struct mem_cgroup *memcg = NULL;
2351  int ret;
2352 
2353  /*
2354  * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2355  * in system level. So, allow to go ahead dying process in addition to
2356  * MEMDIE process.
2357  */
2358  if (unlikely(test_thread_flag(TIF_MEMDIE)
2359  || fatal_signal_pending(current)))
2360  goto bypass;
2361 
2362  /*
2363  * We always charge the cgroup the mm_struct belongs to.
2364  * The mm_struct's mem_cgroup changes on task migration if the
2365  * thread group leader migrates. It's possible that mm is not
2366  * set, if so charge the root memcg (happens for pagecache usage).
2367  */
2368  if (!*ptr && !mm)
2369  *ptr = root_mem_cgroup;
2370 again:
2371  if (*ptr) { /* css should be a valid one */
2372  memcg = *ptr;
2373  VM_BUG_ON(css_is_removed(&memcg->css));
2374  if (mem_cgroup_is_root(memcg))
2375  goto done;
2376  if (nr_pages == 1 && consume_stock(memcg))
2377  goto done;
2378  css_get(&memcg->css);
2379  } else {
2380  struct task_struct *p;
2381 
2382  rcu_read_lock();
2383  p = rcu_dereference(mm->owner);
2384  /*
2385  * Because we don't have task_lock(), "p" can exit.
2386  * In that case, "memcg" can point to root or p can be NULL with
2387  * race with swapoff. Then, we have small risk of mis-accouning.
2388  * But such kind of mis-account by race always happens because
2389  * we don't have cgroup_mutex(). It's overkill and we allo that
2390  * small race, here.
2391  * (*) swapoff at el will charge against mm-struct not against
2392  * task-struct. So, mm->owner can be NULL.
2393  */
2394  memcg = mem_cgroup_from_task(p);
2395  if (!memcg)
2396  memcg = root_mem_cgroup;
2397  if (mem_cgroup_is_root(memcg)) {
2398  rcu_read_unlock();
2399  goto done;
2400  }
2401  if (nr_pages == 1 && consume_stock(memcg)) {
2402  /*
2403  * It seems dagerous to access memcg without css_get().
2404  * But considering how consume_stok works, it's not
2405  * necessary. If consume_stock success, some charges
2406  * from this memcg are cached on this cpu. So, we
2407  * don't need to call css_get()/css_tryget() before
2408  * calling consume_stock().
2409  */
2410  rcu_read_unlock();
2411  goto done;
2412  }
2413  /* after here, we may be blocked. we need to get refcnt */
2414  if (!css_tryget(&memcg->css)) {
2415  rcu_read_unlock();
2416  goto again;
2417  }
2418  rcu_read_unlock();
2419  }
2420 
2421  do {
2422  bool oom_check;
2423 
2424  /* If killed, bypass charge */
2425  if (fatal_signal_pending(current)) {
2426  css_put(&memcg->css);
2427  goto bypass;
2428  }
2429 
2430  oom_check = false;
2431  if (oom && !nr_oom_retries) {
2432  oom_check = true;
2433  nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2434  }
2435 
2436  ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2437  switch (ret) {
2438  case CHARGE_OK:
2439  break;
2440  case CHARGE_RETRY: /* not in OOM situation but retry */
2441  batch = nr_pages;
2442  css_put(&memcg->css);
2443  memcg = NULL;
2444  goto again;
2445  case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2446  css_put(&memcg->css);
2447  goto nomem;
2448  case CHARGE_NOMEM: /* OOM routine works */
2449  if (!oom) {
2450  css_put(&memcg->css);
2451  goto nomem;
2452  }
2453  /* If oom, we never return -ENOMEM */
2454  nr_oom_retries--;
2455  break;
2456  case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2457  css_put(&memcg->css);
2458  goto bypass;
2459  }
2460  } while (ret != CHARGE_OK);
2461 
2462  if (batch > nr_pages)
2463  refill_stock(memcg, batch - nr_pages);
2464  css_put(&memcg->css);
2465 done:
2466  *ptr = memcg;
2467  return 0;
2468 nomem:
2469  *ptr = NULL;
2470  return -ENOMEM;
2471 bypass:
2472  *ptr = root_mem_cgroup;
2473  return -EINTR;
2474 }
2475 
2476 /*
2477  * Somemtimes we have to undo a charge we got by try_charge().
2478  * This function is for that and do uncharge, put css's refcnt.
2479  * gotten by try_charge().
2480  */
2481 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2482  unsigned int nr_pages)
2483 {
2484  if (!mem_cgroup_is_root(memcg)) {
2485  unsigned long bytes = nr_pages * PAGE_SIZE;
2486 
2487  res_counter_uncharge(&memcg->res, bytes);
2488  if (do_swap_account)
2489  res_counter_uncharge(&memcg->memsw, bytes);
2490  }
2491 }
2492 
2493 /*
2494  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2495  * This is useful when moving usage to parent cgroup.
2496  */
2497 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2498  unsigned int nr_pages)
2499 {
2500  unsigned long bytes = nr_pages * PAGE_SIZE;
2501 
2502  if (mem_cgroup_is_root(memcg))
2503  return;
2504 
2505  res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2506  if (do_swap_account)
2508  memcg->memsw.parent, bytes);
2509 }
2510 
2511 /*
2512  * A helper function to get mem_cgroup from ID. must be called under
2513  * rcu_read_lock(). The caller must check css_is_removed() or some if
2514  * it's concern. (dropping refcnt from swap can be called against removed
2515  * memcg.)
2516  */
2517 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2518 {
2519  struct cgroup_subsys_state *css;
2520 
2521  /* ID 0 is unused ID */
2522  if (!id)
2523  return NULL;
2524  css = css_lookup(&mem_cgroup_subsys, id);
2525  if (!css)
2526  return NULL;
2527  return mem_cgroup_from_css(css);
2528 }
2529 
2530 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2531 {
2532  struct mem_cgroup *memcg = NULL;
2533  struct page_cgroup *pc;
2534  unsigned short id;
2535  swp_entry_t ent;
2536 
2537  VM_BUG_ON(!PageLocked(page));
2538 
2539  pc = lookup_page_cgroup(page);
2540  lock_page_cgroup(pc);
2541  if (PageCgroupUsed(pc)) {
2542  memcg = pc->mem_cgroup;
2543  if (memcg && !css_tryget(&memcg->css))
2544  memcg = NULL;
2545  } else if (PageSwapCache(page)) {
2546  ent.val = page_private(page);
2547  id = lookup_swap_cgroup_id(ent);
2548  rcu_read_lock();
2549  memcg = mem_cgroup_lookup(id);
2550  if (memcg && !css_tryget(&memcg->css))
2551  memcg = NULL;
2552  rcu_read_unlock();
2553  }
2554  unlock_page_cgroup(pc);
2555  return memcg;
2556 }
2557 
2558 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2559  struct page *page,
2560  unsigned int nr_pages,
2561  enum charge_type ctype,
2562  bool lrucare)
2563 {
2564  struct page_cgroup *pc = lookup_page_cgroup(page);
2565  struct zone *uninitialized_var(zone);
2566  struct lruvec *lruvec;
2567  bool was_on_lru = false;
2568  bool anon;
2569 
2570  lock_page_cgroup(pc);
2571  VM_BUG_ON(PageCgroupUsed(pc));
2572  /*
2573  * we don't need page_cgroup_lock about tail pages, becase they are not
2574  * accessed by any other context at this point.
2575  */
2576 
2577  /*
2578  * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2579  * may already be on some other mem_cgroup's LRU. Take care of it.
2580  */
2581  if (lrucare) {
2582  zone = page_zone(page);
2583  spin_lock_irq(&zone->lru_lock);
2584  if (PageLRU(page)) {
2585  lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2586  ClearPageLRU(page);
2587  del_page_from_lru_list(page, lruvec, page_lru(page));
2588  was_on_lru = true;
2589  }
2590  }
2591 
2592  pc->mem_cgroup = memcg;
2593  /*
2594  * We access a page_cgroup asynchronously without lock_page_cgroup().
2595  * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2596  * is accessed after testing USED bit. To make pc->mem_cgroup visible
2597  * before USED bit, we need memory barrier here.
2598  * See mem_cgroup_add_lru_list(), etc.
2599  */
2600  smp_wmb();
2601  SetPageCgroupUsed(pc);
2602 
2603  if (lrucare) {
2604  if (was_on_lru) {
2605  lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2606  VM_BUG_ON(PageLRU(page));
2607  SetPageLRU(page);
2608  add_page_to_lru_list(page, lruvec, page_lru(page));
2609  }
2610  spin_unlock_irq(&zone->lru_lock);
2611  }
2612 
2613  if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2614  anon = true;
2615  else
2616  anon = false;
2617 
2618  mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2619  unlock_page_cgroup(pc);
2620 
2621  /*
2622  * "charge_statistics" updated event counter. Then, check it.
2623  * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2624  * if they exceeds softlimit.
2625  */
2626  memcg_check_events(memcg, page);
2627 }
2628 
2629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2630 
2631 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2632 /*
2633  * Because tail pages are not marked as "used", set it. We're under
2634  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2635  * charge/uncharge will be never happen and move_account() is done under
2636  * compound_lock(), so we don't have to take care of races.
2637  */
2638 void mem_cgroup_split_huge_fixup(struct page *head)
2639 {
2640  struct page_cgroup *head_pc = lookup_page_cgroup(head);
2641  struct page_cgroup *pc;
2642  int i;
2643 
2644  if (mem_cgroup_disabled())
2645  return;
2646  for (i = 1; i < HPAGE_PMD_NR; i++) {
2647  pc = head_pc + i;
2648  pc->mem_cgroup = head_pc->mem_cgroup;
2649  smp_wmb();/* see __commit_charge() */
2650  pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2651  }
2652 }
2653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2654 
2670 static int mem_cgroup_move_account(struct page *page,
2671  unsigned int nr_pages,
2672  struct page_cgroup *pc,
2673  struct mem_cgroup *from,
2674  struct mem_cgroup *to)
2675 {
2676  unsigned long flags;
2677  int ret;
2678  bool anon = PageAnon(page);
2679 
2680  VM_BUG_ON(from == to);
2681  VM_BUG_ON(PageLRU(page));
2682  /*
2683  * The page is isolated from LRU. So, collapse function
2684  * will not handle this page. But page splitting can happen.
2685  * Do this check under compound_page_lock(). The caller should
2686  * hold it.
2687  */
2688  ret = -EBUSY;
2689  if (nr_pages > 1 && !PageTransHuge(page))
2690  goto out;
2691 
2692  lock_page_cgroup(pc);
2693 
2694  ret = -EINVAL;
2695  if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2696  goto unlock;
2697 
2698  move_lock_mem_cgroup(from, &flags);
2699 
2700  if (!anon && page_mapped(page)) {
2701  /* Update mapped_file data for mem_cgroup */
2702  preempt_disable();
2705  preempt_enable();
2706  }
2707  mem_cgroup_charge_statistics(from, anon, -nr_pages);
2708 
2709  /* caller should have done css_get */
2710  pc->mem_cgroup = to;
2711  mem_cgroup_charge_statistics(to, anon, nr_pages);
2712  /*
2713  * We charges against "to" which may not have any tasks. Then, "to"
2714  * can be under rmdir(). But in current implementation, caller of
2715  * this function is just force_empty() and move charge, so it's
2716  * guaranteed that "to" is never removed. So, we don't check rmdir
2717  * status here.
2718  */
2719  move_unlock_mem_cgroup(from, &flags);
2720  ret = 0;
2721 unlock:
2722  unlock_page_cgroup(pc);
2723  /*
2724  * check events
2725  */
2726  memcg_check_events(to, page);
2727  memcg_check_events(from, page);
2728 out:
2729  return ret;
2730 }
2731 
2732 /*
2733  * move charges to its parent.
2734  */
2735 
2736 static int mem_cgroup_move_parent(struct page *page,
2737  struct page_cgroup *pc,
2738  struct mem_cgroup *child)
2739 {
2740  struct mem_cgroup *parent;
2741  unsigned int nr_pages;
2742  unsigned long uninitialized_var(flags);
2743  int ret;
2744 
2745  /* Is ROOT ? */
2746  if (mem_cgroup_is_root(child))
2747  return -EINVAL;
2748 
2749  ret = -EBUSY;
2750  if (!get_page_unless_zero(page))
2751  goto out;
2752  if (isolate_lru_page(page))
2753  goto put;
2754 
2755  nr_pages = hpage_nr_pages(page);
2756 
2757  parent = parent_mem_cgroup(child);
2758  /*
2759  * If no parent, move charges to root cgroup.
2760  */
2761  if (!parent)
2762  parent = root_mem_cgroup;
2763 
2764  if (nr_pages > 1)
2765  flags = compound_lock_irqsave(page);
2766 
2767  ret = mem_cgroup_move_account(page, nr_pages,
2768  pc, child, parent);
2769  if (!ret)
2770  __mem_cgroup_cancel_local_charge(child, nr_pages);
2771 
2772  if (nr_pages > 1)
2773  compound_unlock_irqrestore(page, flags);
2774  putback_lru_page(page);
2775 put:
2776  put_page(page);
2777 out:
2778  return ret;
2779 }
2780 
2781 /*
2782  * Charge the memory controller for page usage.
2783  * Return
2784  * 0 if the charge was successful
2785  * < 0 if the cgroup is over its limit
2786  */
2787 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2788  gfp_t gfp_mask, enum charge_type ctype)
2789 {
2790  struct mem_cgroup *memcg = NULL;
2791  unsigned int nr_pages = 1;
2792  bool oom = true;
2793  int ret;
2794 
2795  if (PageTransHuge(page)) {
2796  nr_pages <<= compound_order(page);
2797  VM_BUG_ON(!PageTransHuge(page));
2798  /*
2799  * Never OOM-kill a process for a huge page. The
2800  * fault handler will fall back to regular pages.
2801  */
2802  oom = false;
2803  }
2804 
2805  ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2806  if (ret == -ENOMEM)
2807  return ret;
2808  __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2809  return 0;
2810 }
2811 
2812 int mem_cgroup_newpage_charge(struct page *page,
2813  struct mm_struct *mm, gfp_t gfp_mask)
2814 {
2815  if (mem_cgroup_disabled())
2816  return 0;
2817  VM_BUG_ON(page_mapped(page));
2818  VM_BUG_ON(page->mapping && !PageAnon(page));
2819  VM_BUG_ON(!mm);
2820  return mem_cgroup_charge_common(page, mm, gfp_mask,
2822 }
2823 
2824 /*
2825  * While swap-in, try_charge -> commit or cancel, the page is locked.
2826  * And when try_charge() successfully returns, one refcnt to memcg without
2827  * struct page_cgroup is acquired. This refcnt will be consumed by
2828  * "commit()" or removed by "cancel()"
2829  */
2830 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2831  struct page *page,
2832  gfp_t mask,
2833  struct mem_cgroup **memcgp)
2834 {
2835  struct mem_cgroup *memcg;
2836  struct page_cgroup *pc;
2837  int ret;
2838 
2839  pc = lookup_page_cgroup(page);
2840  /*
2841  * Every swap fault against a single page tries to charge the
2842  * page, bail as early as possible. shmem_unuse() encounters
2843  * already charged pages, too. The USED bit is protected by
2844  * the page lock, which serializes swap cache removal, which
2845  * in turn serializes uncharging.
2846  */
2847  if (PageCgroupUsed(pc))
2848  return 0;
2849  if (!do_swap_account)
2850  goto charge_cur_mm;
2851  memcg = try_get_mem_cgroup_from_page(page);
2852  if (!memcg)
2853  goto charge_cur_mm;
2854  *memcgp = memcg;
2855  ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2856  css_put(&memcg->css);
2857  if (ret == -EINTR)
2858  ret = 0;
2859  return ret;
2860 charge_cur_mm:
2861  ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2862  if (ret == -EINTR)
2863  ret = 0;
2864  return ret;
2865 }
2866 
2867 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2868  gfp_t gfp_mask, struct mem_cgroup **memcgp)
2869 {
2870  *memcgp = NULL;
2871  if (mem_cgroup_disabled())
2872  return 0;
2873  /*
2874  * A racing thread's fault, or swapoff, may have already
2875  * updated the pte, and even removed page from swap cache: in
2876  * those cases unuse_pte()'s pte_same() test will fail; but
2877  * there's also a KSM case which does need to charge the page.
2878  */
2879  if (!PageSwapCache(page)) {
2880  int ret;
2881 
2882  ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2883  if (ret == -EINTR)
2884  ret = 0;
2885  return ret;
2886  }
2887  return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2888 }
2889 
2891 {
2892  if (mem_cgroup_disabled())
2893  return;
2894  if (!memcg)
2895  return;
2896  __mem_cgroup_cancel_charge(memcg, 1);
2897 }
2898 
2899 static void
2900 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2901  enum charge_type ctype)
2902 {
2903  if (mem_cgroup_disabled())
2904  return;
2905  if (!memcg)
2906  return;
2907  cgroup_exclude_rmdir(&memcg->css);
2908 
2909  __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2910  /*
2911  * Now swap is on-memory. This means this page may be
2912  * counted both as mem and swap....double count.
2913  * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2914  * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2915  * may call delete_from_swap_cache() before reach here.
2916  */
2917  if (do_swap_account && PageSwapCache(page)) {
2918  swp_entry_t ent = {.val = page_private(page)};
2919  mem_cgroup_uncharge_swap(ent);
2920  }
2921  /*
2922  * At swapin, we may charge account against cgroup which has no tasks.
2923  * So, rmdir()->pre_destroy() can be called while we do this charge.
2924  * In that case, we need to call pre_destroy() again. check it here.
2925  */
2927 }
2928 
2929 void mem_cgroup_commit_charge_swapin(struct page *page,
2930  struct mem_cgroup *memcg)
2931 {
2932  __mem_cgroup_commit_charge_swapin(page, memcg,
2934 }
2935 
2936 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2937  gfp_t gfp_mask)
2938 {
2939  struct mem_cgroup *memcg = NULL;
2941  int ret;
2942 
2943  if (mem_cgroup_disabled())
2944  return 0;
2945  if (PageCompound(page))
2946  return 0;
2947 
2948  if (!PageSwapCache(page))
2949  ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2950  else { /* page is swapcache/shmem */
2951  ret = __mem_cgroup_try_charge_swapin(mm, page,
2952  gfp_mask, &memcg);
2953  if (!ret)
2954  __mem_cgroup_commit_charge_swapin(page, memcg, type);
2955  }
2956  return ret;
2957 }
2958 
2959 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2960  unsigned int nr_pages,
2961  const enum charge_type ctype)
2962 {
2963  struct memcg_batch_info *batch = NULL;
2964  bool uncharge_memsw = true;
2965 
2966  /* If swapout, usage of swap doesn't decrease */
2968  uncharge_memsw = false;
2969 
2970  batch = &current->memcg_batch;
2971  /*
2972  * In usual, we do css_get() when we remember memcg pointer.
2973  * But in this case, we keep res->usage until end of a series of
2974  * uncharges. Then, it's ok to ignore memcg's refcnt.
2975  */
2976  if (!batch->memcg)
2977  batch->memcg = memcg;
2978  /*
2979  * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2980  * In those cases, all pages freed continuously can be expected to be in
2981  * the same cgroup and we have chance to coalesce uncharges.
2982  * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2983  * because we want to do uncharge as soon as possible.
2984  */
2985 
2986  if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2987  goto direct_uncharge;
2988 
2989  if (nr_pages > 1)
2990  goto direct_uncharge;
2991 
2992  /*
2993  * In typical case, batch->memcg == mem. This means we can
2994  * merge a series of uncharges to an uncharge of res_counter.
2995  * If not, we uncharge res_counter ony by one.
2996  */
2997  if (batch->memcg != memcg)
2998  goto direct_uncharge;
2999  /* remember freed charge and uncharge it later */
3000  batch->nr_pages++;
3001  if (uncharge_memsw)
3002  batch->memsw_nr_pages++;
3003  return;
3004 direct_uncharge:
3005  res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3006  if (uncharge_memsw)
3007  res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3008  if (unlikely(batch->memcg != memcg))
3009  memcg_oom_recover(memcg);
3010 }
3011 
3012 /*
3013  * uncharge if !page_mapped(page)
3014  */
3015 static struct mem_cgroup *
3016 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3017  bool end_migration)
3018 {
3019  struct mem_cgroup *memcg = NULL;
3020  unsigned int nr_pages = 1;
3021  struct page_cgroup *pc;
3022  bool anon;
3023 
3024  if (mem_cgroup_disabled())
3025  return NULL;
3026 
3027  VM_BUG_ON(PageSwapCache(page));
3028 
3029  if (PageTransHuge(page)) {
3030  nr_pages <<= compound_order(page);
3031  VM_BUG_ON(!PageTransHuge(page));
3032  }
3033  /*
3034  * Check if our page_cgroup is valid
3035  */
3036  pc = lookup_page_cgroup(page);
3037  if (unlikely(!PageCgroupUsed(pc)))
3038  return NULL;
3039 
3040  lock_page_cgroup(pc);
3041 
3042  memcg = pc->mem_cgroup;
3043 
3044  if (!PageCgroupUsed(pc))
3045  goto unlock_out;
3046 
3047  anon = PageAnon(page);
3048 
3049  switch (ctype) {
3051  /*
3052  * Generally PageAnon tells if it's the anon statistics to be
3053  * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3054  * used before page reached the stage of being marked PageAnon.
3055  */
3056  anon = true;
3057  /* fallthrough */
3059  /* See mem_cgroup_prepare_migration() */
3060  if (page_mapped(page))
3061  goto unlock_out;
3062  /*
3063  * Pages under migration may not be uncharged. But
3064  * end_migration() /must/ be the one uncharging the
3065  * unused post-migration page and so it has to call
3066  * here with the migration bit still set. See the
3067  * res_counter handling below.
3068  */
3069  if (!end_migration && PageCgroupMigration(pc))
3070  goto unlock_out;
3071  break;
3073  if (!PageAnon(page)) { /* Shared memory */
3074  if (page->mapping && !page_is_file_cache(page))
3075  goto unlock_out;
3076  } else if (page_mapped(page)) /* Anon */
3077  goto unlock_out;
3078  break;
3079  default:
3080  break;
3081  }
3082 
3083  mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3084 
3085  ClearPageCgroupUsed(pc);
3086  /*
3087  * pc->mem_cgroup is not cleared here. It will be accessed when it's
3088  * freed from LRU. This is safe because uncharged page is expected not
3089  * to be reused (freed soon). Exception is SwapCache, it's handled by
3090  * special functions.
3091  */
3092 
3093  unlock_page_cgroup(pc);
3094  /*
3095  * even after unlock, we have memcg->res.usage here and this memcg
3096  * will never be freed.
3097  */
3098  memcg_check_events(memcg, page);
3100  mem_cgroup_swap_statistics(memcg, true);
3101  mem_cgroup_get(memcg);
3102  }
3103  /*
3104  * Migration does not charge the res_counter for the
3105  * replacement page, so leave it alone when phasing out the
3106  * page that is unused after the migration.
3107  */
3108  if (!end_migration && !mem_cgroup_is_root(memcg))
3109  mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3110 
3111  return memcg;
3112 
3113 unlock_out:
3114  unlock_page_cgroup(pc);
3115  return NULL;
3116 }
3117 
3118 void mem_cgroup_uncharge_page(struct page *page)
3119 {
3120  /* early check. */
3121  if (page_mapped(page))
3122  return;
3123  VM_BUG_ON(page->mapping && !PageAnon(page));
3124  if (PageSwapCache(page))
3125  return;
3126  __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3127 }
3128 
3129 void mem_cgroup_uncharge_cache_page(struct page *page)
3130 {
3131  VM_BUG_ON(page_mapped(page));
3132  VM_BUG_ON(page->mapping);
3133  __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3134 }
3135 
3136 /*
3137  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3138  * In that cases, pages are freed continuously and we can expect pages
3139  * are in the same memcg. All these calls itself limits the number of
3140  * pages freed at once, then uncharge_start/end() is called properly.
3141  * This may be called prural(2) times in a context,
3142  */
3143 
3145 {
3146  current->memcg_batch.do_batch++;
3147  /* We can do nest. */
3148  if (current->memcg_batch.do_batch == 1) {
3149  current->memcg_batch.memcg = NULL;
3150  current->memcg_batch.nr_pages = 0;
3151  current->memcg_batch.memsw_nr_pages = 0;
3152  }
3153 }
3154 
3156 {
3157  struct memcg_batch_info *batch = &current->memcg_batch;
3158 
3159  if (!batch->do_batch)
3160  return;
3161 
3162  batch->do_batch--;
3163  if (batch->do_batch) /* If stacked, do nothing. */
3164  return;
3165 
3166  if (!batch->memcg)
3167  return;
3168  /*
3169  * This "batch->memcg" is valid without any css_get/put etc...
3170  * bacause we hide charges behind us.
3171  */
3172  if (batch->nr_pages)
3173  res_counter_uncharge(&batch->memcg->res,
3174  batch->nr_pages * PAGE_SIZE);
3175  if (batch->memsw_nr_pages)
3176  res_counter_uncharge(&batch->memcg->memsw,
3177  batch->memsw_nr_pages * PAGE_SIZE);
3178  memcg_oom_recover(batch->memcg);
3179  /* forget this pointer (for sanity check) */
3180  batch->memcg = NULL;
3181 }
3182 
3183 #ifdef CONFIG_SWAP
3184 /*
3185  * called after __delete_from_swap_cache() and drop "page" account.
3186  * memcg information is recorded to swap_cgroup of "ent"
3187  */
3188 void
3189 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3190 {
3191  struct mem_cgroup *memcg;
3192  int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3193 
3194  if (!swapout) /* this was a swap cache but the swap is unused ! */
3196 
3197  memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3198 
3199  /*
3200  * record memcg information, if swapout && memcg != NULL,
3201  * mem_cgroup_get() was called in uncharge().
3202  */
3203  if (do_swap_account && swapout && memcg)
3204  swap_cgroup_record(ent, css_id(&memcg->css));
3205 }
3206 #endif
3207 
3208 #ifdef CONFIG_MEMCG_SWAP
3209 /*
3210  * called from swap_entry_free(). remove record in swap_cgroup and
3211  * uncharge "memsw" account.
3212  */
3213 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3214 {
3215  struct mem_cgroup *memcg;
3216  unsigned short id;
3217 
3218  if (!do_swap_account)
3219  return;
3220 
3221  id = swap_cgroup_record(ent, 0);
3222  rcu_read_lock();
3223  memcg = mem_cgroup_lookup(id);
3224  if (memcg) {
3225  /*
3226  * We uncharge this because swap is freed.
3227  * This memcg can be obsolete one. We avoid calling css_tryget
3228  */
3229  if (!mem_cgroup_is_root(memcg))
3230  res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3231  mem_cgroup_swap_statistics(memcg, false);
3232  mem_cgroup_put(memcg);
3233  }
3234  rcu_read_unlock();
3235 }
3236 
3251 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3252  struct mem_cgroup *from, struct mem_cgroup *to)
3253 {
3254  unsigned short old_id, new_id;
3255 
3256  old_id = css_id(&from->css);
3257  new_id = css_id(&to->css);
3258 
3259  if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3260  mem_cgroup_swap_statistics(from, false);
3261  mem_cgroup_swap_statistics(to, true);
3262  /*
3263  * This function is only called from task migration context now.
3264  * It postpones res_counter and refcount handling till the end
3265  * of task migration(mem_cgroup_clear_mc()) for performance
3266  * improvement. But we cannot postpone mem_cgroup_get(to)
3267  * because if the process that has been moved to @to does
3268  * swap-in, the refcount of @to might be decreased to 0.
3269  */
3270  mem_cgroup_get(to);
3271  return 0;
3272  }
3273  return -EINVAL;
3274 }
3275 #else
3276 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3277  struct mem_cgroup *from, struct mem_cgroup *to)
3278 {
3279  return -EINVAL;
3280 }
3281 #endif
3282 
3283 /*
3284  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3285  * page belongs to.
3286  */
3287 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3288  struct mem_cgroup **memcgp)
3289 {
3290  struct mem_cgroup *memcg = NULL;
3291  struct page_cgroup *pc;
3292  enum charge_type ctype;
3293 
3294  *memcgp = NULL;
3295 
3296  VM_BUG_ON(PageTransHuge(page));
3297  if (mem_cgroup_disabled())
3298  return;
3299 
3300  pc = lookup_page_cgroup(page);
3301  lock_page_cgroup(pc);
3302  if (PageCgroupUsed(pc)) {
3303  memcg = pc->mem_cgroup;
3304  css_get(&memcg->css);
3305  /*
3306  * At migrating an anonymous page, its mapcount goes down
3307  * to 0 and uncharge() will be called. But, even if it's fully
3308  * unmapped, migration may fail and this page has to be
3309  * charged again. We set MIGRATION flag here and delay uncharge
3310  * until end_migration() is called
3311  *
3312  * Corner Case Thinking
3313  * A)
3314  * When the old page was mapped as Anon and it's unmap-and-freed
3315  * while migration was ongoing.
3316  * If unmap finds the old page, uncharge() of it will be delayed
3317  * until end_migration(). If unmap finds a new page, it's
3318  * uncharged when it make mapcount to be 1->0. If unmap code
3319  * finds swap_migration_entry, the new page will not be mapped
3320  * and end_migration() will find it(mapcount==0).
3321  *
3322  * B)
3323  * When the old page was mapped but migraion fails, the kernel
3324  * remaps it. A charge for it is kept by MIGRATION flag even
3325  * if mapcount goes down to 0. We can do remap successfully
3326  * without charging it again.
3327  *
3328  * C)
3329  * The "old" page is under lock_page() until the end of
3330  * migration, so, the old page itself will not be swapped-out.
3331  * If the new page is swapped out before end_migraton, our
3332  * hook to usual swap-out path will catch the event.
3333  */
3334  if (PageAnon(page))
3335  SetPageCgroupMigration(pc);
3336  }
3337  unlock_page_cgroup(pc);
3338  /*
3339  * If the page is not charged at this point,
3340  * we return here.
3341  */
3342  if (!memcg)
3343  return;
3344 
3345  *memcgp = memcg;
3346  /*
3347  * We charge new page before it's used/mapped. So, even if unlock_page()
3348  * is called before end_migration, we can catch all events on this new
3349  * page. In the case new page is migrated but not remapped, new page's
3350  * mapcount will be finally 0 and we call uncharge in end_migration().
3351  */
3352  if (PageAnon(page))
3354  else
3356  /*
3357  * The page is committed to the memcg, but it's not actually
3358  * charged to the res_counter since we plan on replacing the
3359  * old one and only one page is going to be left afterwards.
3360  */
3361  __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3362 }
3363 
3364 /* remove redundant charge if migration failed*/
3366  struct page *oldpage, struct page *newpage, bool migration_ok)
3367 {
3368  struct page *used, *unused;
3369  struct page_cgroup *pc;
3370  bool anon;
3371 
3372  if (!memcg)
3373  return;
3374  /* blocks rmdir() */
3375  cgroup_exclude_rmdir(&memcg->css);
3376  if (!migration_ok) {
3377  used = oldpage;
3378  unused = newpage;
3379  } else {
3380  used = newpage;
3381  unused = oldpage;
3382  }
3383  anon = PageAnon(used);
3384  __mem_cgroup_uncharge_common(unused,
3387  true);
3388  css_put(&memcg->css);
3389  /*
3390  * We disallowed uncharge of pages under migration because mapcount
3391  * of the page goes down to zero, temporarly.
3392  * Clear the flag and check the page should be charged.
3393  */
3394  pc = lookup_page_cgroup(oldpage);
3395  lock_page_cgroup(pc);
3396  ClearPageCgroupMigration(pc);
3397  unlock_page_cgroup(pc);
3398 
3399  /*
3400  * If a page is a file cache, radix-tree replacement is very atomic
3401  * and we can skip this check. When it was an Anon page, its mapcount
3402  * goes down to 0. But because we added MIGRATION flage, it's not
3403  * uncharged yet. There are several case but page->mapcount check
3404  * and USED bit check in mem_cgroup_uncharge_page() will do enough
3405  * check. (see prepare_charge() also)
3406  */
3407  if (anon)
3409  /*
3410  * At migration, we may charge account against cgroup which has no
3411  * tasks.
3412  * So, rmdir()->pre_destroy() can be called while we do this charge.
3413  * In that case, we need to call pre_destroy() again. check it here.
3414  */
3416 }
3417 
3418 /*
3419  * At replace page cache, newpage is not under any memcg but it's on
3420  * LRU. So, this function doesn't touch res_counter but handles LRU
3421  * in correct way. Both pages are locked so we cannot race with uncharge.
3422  */
3423 void mem_cgroup_replace_page_cache(struct page *oldpage,
3424  struct page *newpage)
3425 {
3426  struct mem_cgroup *memcg = NULL;
3427  struct page_cgroup *pc;
3429 
3430  if (mem_cgroup_disabled())
3431  return;
3432 
3433  pc = lookup_page_cgroup(oldpage);
3434  /* fix accounting on old pages */
3435  lock_page_cgroup(pc);
3436  if (PageCgroupUsed(pc)) {
3437  memcg = pc->mem_cgroup;
3438  mem_cgroup_charge_statistics(memcg, false, -1);
3439  ClearPageCgroupUsed(pc);
3440  }
3441  unlock_page_cgroup(pc);
3442 
3443  /*
3444  * When called from shmem_replace_page(), in some cases the
3445  * oldpage has already been charged, and in some cases not.
3446  */
3447  if (!memcg)
3448  return;
3449  /*
3450  * Even if newpage->mapping was NULL before starting replacement,
3451  * the newpage may be on LRU(or pagevec for LRU) already. We lock
3452  * LRU while we overwrite pc->mem_cgroup.
3453  */
3454  __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3455 }
3456 
3457 #ifdef CONFIG_DEBUG_VM
3458 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3459 {
3460  struct page_cgroup *pc;
3461 
3462  pc = lookup_page_cgroup(page);
3463  /*
3464  * Can be NULL while feeding pages into the page allocator for
3465  * the first time, i.e. during boot or memory hotplug;
3466  * or when mem_cgroup_disabled().
3467  */
3468  if (likely(pc) && PageCgroupUsed(pc))
3469  return pc;
3470  return NULL;
3471 }
3472 
3473 bool mem_cgroup_bad_page_check(struct page *page)
3474 {
3475  if (mem_cgroup_disabled())
3476  return false;
3477 
3478  return lookup_page_cgroup_used(page) != NULL;
3479 }
3480 
3481 void mem_cgroup_print_bad_page(struct page *page)
3482 {
3483  struct page_cgroup *pc;
3484 
3485  pc = lookup_page_cgroup_used(page);
3486  if (pc) {
3487  printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3488  pc, pc->flags, pc->mem_cgroup);
3489  }
3490 }
3491 #endif
3492 
3493 static DEFINE_MUTEX(set_limit_mutex);
3494 
3495 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3496  unsigned long long val)
3497 {
3498  int retry_count;
3499  u64 memswlimit, memlimit;
3500  int ret = 0;
3501  int children = mem_cgroup_count_children(memcg);
3502  u64 curusage, oldusage;
3503  int enlarge;
3504 
3505  /*
3506  * For keeping hierarchical_reclaim simple, how long we should retry
3507  * is depends on callers. We set our retry-count to be function
3508  * of # of children which we should visit in this loop.
3509  */
3510  retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3511 
3512  oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3513 
3514  enlarge = 0;
3515  while (retry_count) {
3516  if (signal_pending(current)) {
3517  ret = -EINTR;
3518  break;
3519  }
3520  /*
3521  * Rather than hide all in some function, I do this in
3522  * open coded manner. You see what this really does.
3523  * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3524  */
3525  mutex_lock(&set_limit_mutex);
3526  memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3527  if (memswlimit < val) {
3528  ret = -EINVAL;
3529  mutex_unlock(&set_limit_mutex);
3530  break;
3531  }
3532 
3533  memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3534  if (memlimit < val)
3535  enlarge = 1;
3536 
3537  ret = res_counter_set_limit(&memcg->res, val);
3538  if (!ret) {
3539  if (memswlimit == val)
3540  memcg->memsw_is_minimum = true;
3541  else
3542  memcg->memsw_is_minimum = false;
3543  }
3544  mutex_unlock(&set_limit_mutex);
3545 
3546  if (!ret)
3547  break;
3548 
3549  mem_cgroup_reclaim(memcg, GFP_KERNEL,
3550  MEM_CGROUP_RECLAIM_SHRINK);
3551  curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3552  /* Usage is reduced ? */
3553  if (curusage >= oldusage)
3554  retry_count--;
3555  else
3556  oldusage = curusage;
3557  }
3558  if (!ret && enlarge)
3559  memcg_oom_recover(memcg);
3560 
3561  return ret;
3562 }
3563 
3564 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3565  unsigned long long val)
3566 {
3567  int retry_count;
3568  u64 memlimit, memswlimit, oldusage, curusage;
3569  int children = mem_cgroup_count_children(memcg);
3570  int ret = -EBUSY;
3571  int enlarge = 0;
3572 
3573  /* see mem_cgroup_resize_res_limit */
3574  retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3575  oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3576  while (retry_count) {
3577  if (signal_pending(current)) {
3578  ret = -EINTR;
3579  break;
3580  }
3581  /*
3582  * Rather than hide all in some function, I do this in
3583  * open coded manner. You see what this really does.
3584  * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3585  */
3586  mutex_lock(&set_limit_mutex);
3587  memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3588  if (memlimit > val) {
3589  ret = -EINVAL;
3590  mutex_unlock(&set_limit_mutex);
3591  break;
3592  }
3593  memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3594  if (memswlimit < val)
3595  enlarge = 1;
3596  ret = res_counter_set_limit(&memcg->memsw, val);
3597  if (!ret) {
3598  if (memlimit == val)
3599  memcg->memsw_is_minimum = true;
3600  else
3601  memcg->memsw_is_minimum = false;
3602  }
3603  mutex_unlock(&set_limit_mutex);
3604 
3605  if (!ret)
3606  break;
3607 
3608  mem_cgroup_reclaim(memcg, GFP_KERNEL,
3609  MEM_CGROUP_RECLAIM_NOSWAP |
3610  MEM_CGROUP_RECLAIM_SHRINK);
3611  curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3612  /* Usage is reduced ? */
3613  if (curusage >= oldusage)
3614  retry_count--;
3615  else
3616  oldusage = curusage;
3617  }
3618  if (!ret && enlarge)
3619  memcg_oom_recover(memcg);
3620  return ret;
3621 }
3622 
3623 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3624  gfp_t gfp_mask,
3625  unsigned long *total_scanned)
3626 {
3627  unsigned long nr_reclaimed = 0;
3628  struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3629  unsigned long reclaimed;
3630  int loop = 0;
3631  struct mem_cgroup_tree_per_zone *mctz;
3632  unsigned long long excess;
3633  unsigned long nr_scanned;
3634 
3635  if (order > 0)
3636  return 0;
3637 
3638  mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3639  /*
3640  * This loop can run a while, specially if mem_cgroup's continuously
3641  * keep exceeding their soft limit and putting the system under
3642  * pressure
3643  */
3644  do {
3645  if (next_mz)
3646  mz = next_mz;
3647  else
3648  mz = mem_cgroup_largest_soft_limit_node(mctz);
3649  if (!mz)
3650  break;
3651 
3652  nr_scanned = 0;
3653  reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3654  gfp_mask, &nr_scanned);
3655  nr_reclaimed += reclaimed;
3656  *total_scanned += nr_scanned;
3657  spin_lock(&mctz->lock);
3658 
3659  /*
3660  * If we failed to reclaim anything from this memory cgroup
3661  * it is time to move on to the next cgroup
3662  */
3663  next_mz = NULL;
3664  if (!reclaimed) {
3665  do {
3666  /*
3667  * Loop until we find yet another one.
3668  *
3669  * By the time we get the soft_limit lock
3670  * again, someone might have aded the
3671  * group back on the RB tree. Iterate to
3672  * make sure we get a different mem.
3673  * mem_cgroup_largest_soft_limit_node returns
3674  * NULL if no other cgroup is present on
3675  * the tree
3676  */
3677  next_mz =
3678  __mem_cgroup_largest_soft_limit_node(mctz);
3679  if (next_mz == mz)
3680  css_put(&next_mz->memcg->css);
3681  else /* next_mz == NULL or other memcg */
3682  break;
3683  } while (1);
3684  }
3685  __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3686  excess = res_counter_soft_limit_excess(&mz->memcg->res);
3687  /*
3688  * One school of thought says that we should not add
3689  * back the node to the tree if reclaim returns 0.
3690  * But our reclaim could return 0, simply because due
3691  * to priority we are exposing a smaller subset of
3692  * memory to reclaim from. Consider this as a longer
3693  * term TODO.
3694  */
3695  /* If excess == 0, no tree ops */
3696  __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3697  spin_unlock(&mctz->lock);
3698  css_put(&mz->memcg->css);
3699  loop++;
3700  /*
3701  * Could not reclaim anything and there are no more
3702  * mem cgroups to try or we seem to be looping without
3703  * reclaiming anything.
3704  */
3705  if (!nr_reclaimed &&
3706  (next_mz == NULL ||
3708  break;
3709  } while (!nr_reclaimed);
3710  if (next_mz)
3711  css_put(&next_mz->memcg->css);
3712  return nr_reclaimed;
3713 }
3714 
3715 /*
3716  * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3717  * reclaim the pages page themselves - it just removes the page_cgroups.
3718  * Returns true if some page_cgroups were not freed, indicating that the caller
3719  * must retry this operation.
3720  */
3721 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3722  int node, int zid, enum lru_list lru)
3723 {
3724  struct lruvec *lruvec;
3725  unsigned long flags, loop;
3726  struct list_head *list;
3727  struct page *busy;
3728  struct zone *zone;
3729 
3730  zone = &NODE_DATA(node)->node_zones[zid];
3731  lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3732  list = &lruvec->lists[lru];
3733 
3734  loop = mem_cgroup_get_lru_size(lruvec, lru);
3735  /* give some margin against EBUSY etc...*/
3736  loop += 256;
3737  busy = NULL;
3738  while (loop--) {
3739  struct page_cgroup *pc;
3740  struct page *page;
3741 
3742  spin_lock_irqsave(&zone->lru_lock, flags);
3743  if (list_empty(list)) {
3744  spin_unlock_irqrestore(&zone->lru_lock, flags);
3745  break;
3746  }
3747  page = list_entry(list->prev, struct page, lru);
3748  if (busy == page) {
3749  list_move(&page->lru, list);
3750  busy = NULL;
3751  spin_unlock_irqrestore(&zone->lru_lock, flags);
3752  continue;
3753  }
3754  spin_unlock_irqrestore(&zone->lru_lock, flags);
3755 
3756  pc = lookup_page_cgroup(page);
3757 
3758  if (mem_cgroup_move_parent(page, pc, memcg)) {
3759  /* found lock contention or "pc" is obsolete. */
3760  busy = page;
3761  cond_resched();
3762  } else
3763  busy = NULL;
3764  }
3765  return !list_empty(list);
3766 }
3767 
3768 /*
3769  * make mem_cgroup's charge to be 0 if there is no task.
3770  * This enables deleting this mem_cgroup.
3771  */
3772 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3773 {
3774  int ret;
3775  int node, zid, shrink;
3776  int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3777  struct cgroup *cgrp = memcg->css.cgroup;
3778 
3779  css_get(&memcg->css);
3780 
3781  shrink = 0;
3782  /* should free all ? */
3783  if (free_all)
3784  goto try_to_free;
3785 move_account:
3786  do {
3787  ret = -EBUSY;
3788  if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3789  goto out;
3790  /* This is for making all *used* pages to be on LRU. */
3792  drain_all_stock_sync(memcg);
3793  ret = 0;
3794  mem_cgroup_start_move(memcg);
3795  for_each_node_state(node, N_HIGH_MEMORY) {
3796  for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3797  enum lru_list lru;
3798  for_each_lru(lru) {
3799  ret = mem_cgroup_force_empty_list(memcg,
3800  node, zid, lru);
3801  if (ret)
3802  break;
3803  }
3804  }
3805  if (ret)
3806  break;
3807  }
3808  mem_cgroup_end_move(memcg);
3809  memcg_oom_recover(memcg);
3810  cond_resched();
3811  /* "ret" should also be checked to ensure all lists are empty. */
3812  } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3813 out:
3814  css_put(&memcg->css);
3815  return ret;
3816 
3817 try_to_free:
3818  /* returns EBUSY if there is a task or if we come here twice. */
3819  if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3820  ret = -EBUSY;
3821  goto out;
3822  }
3823  /* we call try-to-free pages for make this cgroup empty */
3825  /* try to free all pages in this cgroup */
3826  shrink = 1;
3827  while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3828  int progress;
3829 
3830  if (signal_pending(current)) {
3831  ret = -EINTR;
3832  goto out;
3833  }
3834  progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3835  false);
3836  if (!progress) {
3837  nr_retries--;
3838  /* maybe some writeback is necessary */
3840  }
3841 
3842  }
3843  lru_add_drain();
3844  /* try move_account...there may be some *locked* pages. */
3845  goto move_account;
3846 }
3847 
3848 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3849 {
3850  return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3851 }
3852 
3853 
3854 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3855 {
3856  return mem_cgroup_from_cont(cont)->use_hierarchy;
3857 }
3858 
3859 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3860  u64 val)
3861 {
3862  int retval = 0;
3863  struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3864  struct cgroup *parent = cont->parent;
3865  struct mem_cgroup *parent_memcg = NULL;
3866 
3867  if (parent)
3868  parent_memcg = mem_cgroup_from_cont(parent);
3869 
3870  cgroup_lock();
3871 
3872  if (memcg->use_hierarchy == val)
3873  goto out;
3874 
3875  /*
3876  * If parent's use_hierarchy is set, we can't make any modifications
3877  * in the child subtrees. If it is unset, then the change can
3878  * occur, provided the current cgroup has no children.
3879  *
3880  * For the root cgroup, parent_mem is NULL, we allow value to be
3881  * set if there are no children.
3882  */
3883  if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3884  (val == 1 || val == 0)) {
3885  if (list_empty(&cont->children))
3886  memcg->use_hierarchy = val;
3887  else
3888  retval = -EBUSY;
3889  } else
3890  retval = -EINVAL;
3891 
3892 out:
3893  cgroup_unlock();
3894 
3895  return retval;
3896 }
3897 
3898 
3899 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3900  enum mem_cgroup_stat_index idx)
3901 {
3902  struct mem_cgroup *iter;
3903  long val = 0;
3904 
3905  /* Per-cpu values can be negative, use a signed accumulator */
3906  for_each_mem_cgroup_tree(iter, memcg)
3907  val += mem_cgroup_read_stat(iter, idx);
3908 
3909  if (val < 0) /* race ? */
3910  val = 0;
3911  return val;
3912 }
3913 
3914 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3915 {
3916  u64 val;
3917 
3918  if (!mem_cgroup_is_root(memcg)) {
3919  if (!swap)
3920  return res_counter_read_u64(&memcg->res, RES_USAGE);
3921  else
3922  return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3923  }
3924 
3925  val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3926  val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3927 
3928  if (swap)
3929  val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3930 
3931  return val << PAGE_SHIFT;
3932 }
3933 
3934 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3935  struct file *file, char __user *buf,
3936  size_t nbytes, loff_t *ppos)
3937 {
3938  struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3939  char str[64];
3940  u64 val;
3941  int type, name, len;
3942 
3943  type = MEMFILE_TYPE(cft->private);
3944  name = MEMFILE_ATTR(cft->private);
3945 
3946  if (!do_swap_account && type == _MEMSWAP)
3947  return -EOPNOTSUPP;
3948 
3949  switch (type) {
3950  case _MEM:
3951  if (name == RES_USAGE)
3952  val = mem_cgroup_usage(memcg, false);
3953  else
3954  val = res_counter_read_u64(&memcg->res, name);
3955  break;
3956  case _MEMSWAP:
3957  if (name == RES_USAGE)
3958  val = mem_cgroup_usage(memcg, true);
3959  else
3960  val = res_counter_read_u64(&memcg->memsw, name);
3961  break;
3962  default:
3963  BUG();
3964  }
3965 
3966  len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3967  return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3968 }
3969 /*
3970  * The user of this function is...
3971  * RES_LIMIT.
3972  */
3973 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3974  const char *buffer)
3975 {
3976  struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3977  int type, name;
3978  unsigned long long val;
3979  int ret;
3980 
3981  type = MEMFILE_TYPE(cft->private);
3982  name = MEMFILE_ATTR(cft->private);
3983 
3984  if (!do_swap_account && type == _MEMSWAP)
3985  return -EOPNOTSUPP;
3986 
3987  switch (name) {
3988  case RES_LIMIT:
3989  if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3990  ret = -EINVAL;
3991  break;
3992  }
3993  /* This function does all necessary parse...reuse it */
3994  ret = res_counter_memparse_write_strategy(buffer, &val);
3995  if (ret)
3996  break;
3997  if (type == _MEM)
3998  ret = mem_cgroup_resize_limit(memcg, val);
3999  else
4000  ret = mem_cgroup_resize_memsw_limit(memcg, val);
4001  break;
4002  case RES_SOFT_LIMIT:
4003  ret = res_counter_memparse_write_strategy(buffer, &val);
4004  if (ret)
4005  break;
4006  /*
4007  * For memsw, soft limits are hard to implement in terms
4008  * of semantics, for now, we support soft limits for
4009  * control without swap
4010  */
4011  if (type == _MEM)
4012  ret = res_counter_set_soft_limit(&memcg->res, val);
4013  else
4014  ret = -EINVAL;
4015  break;
4016  default:
4017  ret = -EINVAL; /* should be BUG() ? */
4018  break;
4019  }
4020  return ret;
4021 }
4022 
4023 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4024  unsigned long long *mem_limit, unsigned long long *memsw_limit)
4025 {
4026  struct cgroup *cgroup;
4027  unsigned long long min_limit, min_memsw_limit, tmp;
4028 
4029  min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4030  min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4031  cgroup = memcg->css.cgroup;
4032  if (!memcg->use_hierarchy)
4033  goto out;
4034 
4035  while (cgroup->parent) {
4036  cgroup = cgroup->parent;
4037  memcg = mem_cgroup_from_cont(cgroup);
4038  if (!memcg->use_hierarchy)
4039  break;
4040  tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4041  min_limit = min(min_limit, tmp);
4042  tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4043  min_memsw_limit = min(min_memsw_limit, tmp);
4044  }
4045 out:
4046  *mem_limit = min_limit;
4047  *memsw_limit = min_memsw_limit;
4048 }
4049 
4050 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4051 {
4052  struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4053  int type, name;
4054 
4055  type = MEMFILE_TYPE(event);
4056  name = MEMFILE_ATTR(event);
4057 
4058  if (!do_swap_account && type == _MEMSWAP)
4059  return -EOPNOTSUPP;
4060 
4061  switch (name) {
4062  case RES_MAX_USAGE:
4063  if (type == _MEM)
4064  res_counter_reset_max(&memcg->res);
4065  else
4066  res_counter_reset_max(&memcg->memsw);
4067  break;
4068  case RES_FAILCNT:
4069  if (type == _MEM)
4070  res_counter_reset_failcnt(&memcg->res);
4071  else
4072  res_counter_reset_failcnt(&memcg->memsw);
4073  break;
4074  }
4075 
4076  return 0;
4077 }
4078 
4079 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4080  struct cftype *cft)
4081 {
4082  return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4083 }
4084 
4085 #ifdef CONFIG_MMU
4086 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4087  struct cftype *cft, u64 val)
4088 {
4089  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4090 
4091  if (val >= (1 << NR_MOVE_TYPE))
4092  return -EINVAL;
4093  /*
4094  * We check this value several times in both in can_attach() and
4095  * attach(), so we need cgroup lock to prevent this value from being
4096  * inconsistent.
4097  */
4098  cgroup_lock();
4099  memcg->move_charge_at_immigrate = val;
4100  cgroup_unlock();
4101 
4102  return 0;
4103 }
4104 #else
4105 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4106  struct cftype *cft, u64 val)
4107 {
4108  return -ENOSYS;
4109 }
4110 #endif
4111 
4112 #ifdef CONFIG_NUMA
4113 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4114  struct seq_file *m)
4115 {
4116  int nid;
4117  unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4118  unsigned long node_nr;
4119  struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4120 
4121  total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4122  seq_printf(m, "total=%lu", total_nr);
4123  for_each_node_state(nid, N_HIGH_MEMORY) {
4124  node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4125  seq_printf(m, " N%d=%lu", nid, node_nr);
4126  }
4127  seq_putc(m, '\n');
4128 
4129  file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4130  seq_printf(m, "file=%lu", file_nr);
4131  for_each_node_state(nid, N_HIGH_MEMORY) {
4132  node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4133  LRU_ALL_FILE);
4134  seq_printf(m, " N%d=%lu", nid, node_nr);
4135  }
4136  seq_putc(m, '\n');
4137 
4138  anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4139  seq_printf(m, "anon=%lu", anon_nr);
4140  for_each_node_state(nid, N_HIGH_MEMORY) {
4141  node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4142  LRU_ALL_ANON);
4143  seq_printf(m, " N%d=%lu", nid, node_nr);
4144  }
4145  seq_putc(m, '\n');
4146 
4147  unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4148  seq_printf(m, "unevictable=%lu", unevictable_nr);
4149  for_each_node_state(nid, N_HIGH_MEMORY) {
4150  node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4151  BIT(LRU_UNEVICTABLE));
4152  seq_printf(m, " N%d=%lu", nid, node_nr);
4153  }
4154  seq_putc(m, '\n');
4155  return 0;
4156 }
4157 #endif /* CONFIG_NUMA */
4158 
4159 static const char * const mem_cgroup_lru_names[] = {
4160  "inactive_anon",
4161  "active_anon",
4162  "inactive_file",
4163  "active_file",
4164  "unevictable",
4165 };
4166 
4167 static inline void mem_cgroup_lru_names_not_uptodate(void)
4168 {
4169  BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4170 }
4171 
4172 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4173  struct seq_file *m)
4174 {
4175  struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4176  struct mem_cgroup *mi;
4177  unsigned int i;
4178 
4179  for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4181  continue;
4182  seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4183  mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4184  }
4185 
4186  for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4187  seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4188  mem_cgroup_read_events(memcg, i));
4189 
4190  for (i = 0; i < NR_LRU_LISTS; i++)
4191  seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4192  mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4193 
4194  /* Hierarchical information */
4195  {
4196  unsigned long long limit, memsw_limit;
4197  memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4198  seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4199  if (do_swap_account)
4200  seq_printf(m, "hierarchical_memsw_limit %llu\n",
4201  memsw_limit);
4202  }
4203 
4204  for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4205  long long val = 0;
4206 
4208  continue;
4209  for_each_mem_cgroup_tree(mi, memcg)
4210  val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4211  seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4212  }
4213 
4214  for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4215  unsigned long long val = 0;
4216 
4217  for_each_mem_cgroup_tree(mi, memcg)
4218  val += mem_cgroup_read_events(mi, i);
4219  seq_printf(m, "total_%s %llu\n",
4220  mem_cgroup_events_names[i], val);
4221  }
4222 
4223  for (i = 0; i < NR_LRU_LISTS; i++) {
4224  unsigned long long val = 0;
4225 
4226  for_each_mem_cgroup_tree(mi, memcg)
4227  val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4228  seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4229  }
4230 
4231 #ifdef CONFIG_DEBUG_VM
4232  {
4233  int nid, zid;
4234  struct mem_cgroup_per_zone *mz;
4235  struct zone_reclaim_stat *rstat;
4236  unsigned long recent_rotated[2] = {0, 0};
4237  unsigned long recent_scanned[2] = {0, 0};
4238 
4240  for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4241  mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4242  rstat = &mz->lruvec.reclaim_stat;
4243 
4244  recent_rotated[0] += rstat->recent_rotated[0];
4245  recent_rotated[1] += rstat->recent_rotated[1];
4246  recent_scanned[0] += rstat->recent_scanned[0];
4247  recent_scanned[1] += rstat->recent_scanned[1];
4248  }
4249  seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4250  seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4251  seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4252  seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4253  }
4254 #endif
4255 
4256  return 0;
4257 }
4258 
4259 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4260 {
4261  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4262 
4263  return mem_cgroup_swappiness(memcg);
4264 }
4265 
4266 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4267  u64 val)
4268 {
4269  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4270  struct mem_cgroup *parent;
4271 
4272  if (val > 100)
4273  return -EINVAL;
4274 
4275  if (cgrp->parent == NULL)
4276  return -EINVAL;
4277 
4278  parent = mem_cgroup_from_cont(cgrp->parent);
4279 
4280  cgroup_lock();
4281 
4282  /* If under hierarchy, only empty-root can set this value */
4283  if ((parent->use_hierarchy) ||
4284  (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4285  cgroup_unlock();
4286  return -EINVAL;
4287  }
4288 
4289  memcg->swappiness = val;
4290 
4291  cgroup_unlock();
4292 
4293  return 0;
4294 }
4295 
4296 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4297 {
4298  struct mem_cgroup_threshold_ary *t;
4299  u64 usage;
4300  int i;
4301 
4302  rcu_read_lock();
4303  if (!swap)
4304  t = rcu_dereference(memcg->thresholds.primary);
4305  else
4306  t = rcu_dereference(memcg->memsw_thresholds.primary);
4307 
4308  if (!t)
4309  goto unlock;
4310 
4311  usage = mem_cgroup_usage(memcg, swap);
4312 
4313  /*
4314  * current_threshold points to threshold just below or equal to usage.
4315  * If it's not true, a threshold was crossed after last
4316  * call of __mem_cgroup_threshold().
4317  */
4318  i = t->current_threshold;
4319 
4320  /*
4321  * Iterate backward over array of thresholds starting from
4322  * current_threshold and check if a threshold is crossed.
4323  * If none of thresholds below usage is crossed, we read
4324  * only one element of the array here.
4325  */
4326  for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4327  eventfd_signal(t->entries[i].eventfd, 1);
4328 
4329  /* i = current_threshold + 1 */
4330  i++;
4331 
4332  /*
4333  * Iterate forward over array of thresholds starting from
4334  * current_threshold+1 and check if a threshold is crossed.
4335  * If none of thresholds above usage is crossed, we read
4336  * only one element of the array here.
4337  */
4338  for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4339  eventfd_signal(t->entries[i].eventfd, 1);
4340 
4341  /* Update current_threshold */
4342  t->current_threshold = i - 1;
4343 unlock:
4344  rcu_read_unlock();
4345 }
4346 
4347 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4348 {
4349  while (memcg) {
4350  __mem_cgroup_threshold(memcg, false);
4351  if (do_swap_account)
4352  __mem_cgroup_threshold(memcg, true);
4353 
4354  memcg = parent_mem_cgroup(memcg);
4355  }
4356 }
4357 
4358 static int compare_thresholds(const void *a, const void *b)
4359 {
4360  const struct mem_cgroup_threshold *_a = a;
4361  const struct mem_cgroup_threshold *_b = b;
4362 
4363  return _a->threshold - _b->threshold;
4364 }
4365 
4366 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4367 {
4368  struct mem_cgroup_eventfd_list *ev;
4369 
4370  list_for_each_entry(ev, &memcg->oom_notify, list)
4371  eventfd_signal(ev->eventfd, 1);
4372  return 0;
4373 }
4374 
4375 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4376 {
4377  struct mem_cgroup *iter;
4378 
4379  for_each_mem_cgroup_tree(iter, memcg)
4380  mem_cgroup_oom_notify_cb(iter);
4381 }
4382 
4383 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4384  struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4385 {
4386  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4387  struct mem_cgroup_thresholds *thresholds;
4388  struct mem_cgroup_threshold_ary *new;
4389  int type = MEMFILE_TYPE(cft->private);
4390  u64 threshold, usage;
4391  int i, size, ret;
4392 
4393  ret = res_counter_memparse_write_strategy(args, &threshold);
4394  if (ret)
4395  return ret;
4396 
4397  mutex_lock(&memcg->thresholds_lock);
4398 
4399  if (type == _MEM)
4400  thresholds = &memcg->thresholds;
4401  else if (type == _MEMSWAP)
4402  thresholds = &memcg->memsw_thresholds;
4403  else
4404  BUG();
4405 
4406  usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4407 
4408  /* Check if a threshold crossed before adding a new one */
4409  if (thresholds->primary)
4410  __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4411 
4412  size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4413 
4414  /* Allocate memory for new array of thresholds */
4415  new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4416  GFP_KERNEL);
4417  if (!new) {
4418  ret = -ENOMEM;
4419  goto unlock;
4420  }
4421  new->size = size;
4422 
4423  /* Copy thresholds (if any) to new array */
4424  if (thresholds->primary) {
4425  memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4426  sizeof(struct mem_cgroup_threshold));
4427  }
4428 
4429  /* Add new threshold */
4430  new->entries[size - 1].eventfd = eventfd;
4431  new->entries[size - 1].threshold = threshold;
4432 
4433  /* Sort thresholds. Registering of new threshold isn't time-critical */
4434  sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4435  compare_thresholds, NULL);
4436 
4437  /* Find current threshold */
4438  new->current_threshold = -1;
4439  for (i = 0; i < size; i++) {
4440  if (new->entries[i].threshold <= usage) {
4441  /*
4442  * new->current_threshold will not be used until
4443  * rcu_assign_pointer(), so it's safe to increment
4444  * it here.
4445  */
4446  ++new->current_threshold;
4447  } else
4448  break;
4449  }
4450 
4451  /* Free old spare buffer and save old primary buffer as spare */
4452  kfree(thresholds->spare);
4453  thresholds->spare = thresholds->primary;
4454 
4455  rcu_assign_pointer(thresholds->primary, new);
4456 
4457  /* To be sure that nobody uses thresholds */
4458  synchronize_rcu();
4459 
4460 unlock:
4461  mutex_unlock(&memcg->thresholds_lock);
4462 
4463  return ret;
4464 }
4465 
4466 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4467  struct cftype *cft, struct eventfd_ctx *eventfd)
4468 {
4469  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4470  struct mem_cgroup_thresholds *thresholds;
4471  struct mem_cgroup_threshold_ary *new;
4472  int type = MEMFILE_TYPE(cft->private);
4473  u64 usage;
4474  int i, j, size;
4475 
4476  mutex_lock(&memcg->thresholds_lock);
4477  if (type == _MEM)
4478  thresholds = &memcg->thresholds;
4479  else if (type == _MEMSWAP)
4480  thresholds = &memcg->memsw_thresholds;
4481  else
4482  BUG();
4483 
4484  if (!thresholds->primary)
4485  goto unlock;
4486 
4487  usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4488 
4489  /* Check if a threshold crossed before removing */
4490  __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4491 
4492  /* Calculate new number of threshold */
4493  size = 0;
4494  for (i = 0; i < thresholds->primary->size; i++) {
4495  if (thresholds->primary->entries[i].eventfd != eventfd)
4496  size++;
4497  }
4498 
4499  new = thresholds->spare;
4500 
4501  /* Set thresholds array to NULL if we don't have thresholds */
4502  if (!size) {
4503  kfree(new);
4504  new = NULL;
4505  goto swap_buffers;
4506  }
4507 
4508  new->size = size;
4509 
4510  /* Copy thresholds and find current threshold */
4511  new->current_threshold = -1;
4512  for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4513  if (thresholds->primary->entries[i].eventfd == eventfd)
4514  continue;
4515 
4516  new->entries[j] = thresholds->primary->entries[i];
4517  if (new->entries[j].threshold <= usage) {
4518  /*
4519  * new->current_threshold will not be used
4520  * until rcu_assign_pointer(), so it's safe to increment
4521  * it here.
4522  */
4523  ++new->current_threshold;
4524  }
4525  j++;
4526  }
4527 
4528 swap_buffers:
4529  /* Swap primary and spare array */
4530  thresholds->spare = thresholds->primary;
4531  /* If all events are unregistered, free the spare array */
4532  if (!new) {
4533  kfree(thresholds->spare);
4534  thresholds->spare = NULL;
4535  }
4536 
4537  rcu_assign_pointer(thresholds->primary, new);
4538 
4539  /* To be sure that nobody uses thresholds */
4540  synchronize_rcu();
4541 unlock:
4542  mutex_unlock(&memcg->thresholds_lock);
4543 }
4544 
4545 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4546  struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4547 {
4548  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4550  int type = MEMFILE_TYPE(cft->private);
4551 
4552  BUG_ON(type != _OOM_TYPE);
4553  event = kmalloc(sizeof(*event), GFP_KERNEL);
4554  if (!event)
4555  return -ENOMEM;
4556 
4557  spin_lock(&memcg_oom_lock);
4558 
4559  event->eventfd = eventfd;
4560  list_add(&event->list, &memcg->oom_notify);
4561 
4562  /* already in OOM ? */
4563  if (atomic_read(&memcg->under_oom))
4564  eventfd_signal(eventfd, 1);
4565  spin_unlock(&memcg_oom_lock);
4566 
4567  return 0;
4568 }
4569 
4570 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4571  struct cftype *cft, struct eventfd_ctx *eventfd)
4572 {
4573  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4574  struct mem_cgroup_eventfd_list *ev, *tmp;
4575  int type = MEMFILE_TYPE(cft->private);
4576 
4577  BUG_ON(type != _OOM_TYPE);
4578 
4579  spin_lock(&memcg_oom_lock);
4580 
4581  list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4582  if (ev->eventfd == eventfd) {
4583  list_del(&ev->list);
4584  kfree(ev);
4585  }
4586  }
4587 
4588  spin_unlock(&memcg_oom_lock);
4589 }
4590 
4591 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4592  struct cftype *cft, struct cgroup_map_cb *cb)
4593 {
4594  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4595 
4596  cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4597 
4598  if (atomic_read(&memcg->under_oom))
4599  cb->fill(cb, "under_oom", 1);
4600  else
4601  cb->fill(cb, "under_oom", 0);
4602  return 0;
4603 }
4604 
4605 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4606  struct cftype *cft, u64 val)
4607 {
4608  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4609  struct mem_cgroup *parent;
4610 
4611  /* cannot set to root cgroup and only 0 and 1 are allowed */
4612  if (!cgrp->parent || !((val == 0) || (val == 1)))
4613  return -EINVAL;
4614 
4615  parent = mem_cgroup_from_cont(cgrp->parent);
4616 
4617  cgroup_lock();
4618  /* oom-kill-disable is a flag for subhierarchy. */
4619  if ((parent->use_hierarchy) ||
4620  (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4621  cgroup_unlock();
4622  return -EINVAL;
4623  }
4624  memcg->oom_kill_disable = val;
4625  if (!val)
4626  memcg_oom_recover(memcg);
4627  cgroup_unlock();
4628  return 0;
4629 }
4630 
4631 #ifdef CONFIG_MEMCG_KMEM
4632 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4633 {
4634  return mem_cgroup_sockets_init(memcg, ss);
4635 };
4636 
4637 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4638 {
4639  mem_cgroup_sockets_destroy(memcg);
4640 }
4641 #else
4642 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4643 {
4644  return 0;
4645 }
4646 
4647 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4648 {
4649 }
4650 #endif
4651 
4652 static struct cftype mem_cgroup_files[] = {
4653  {
4654  .name = "usage_in_bytes",
4655  .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4656  .read = mem_cgroup_read,
4657  .register_event = mem_cgroup_usage_register_event,
4658  .unregister_event = mem_cgroup_usage_unregister_event,
4659  },
4660  {
4661  .name = "max_usage_in_bytes",
4662  .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4663  .trigger = mem_cgroup_reset,
4664  .read = mem_cgroup_read,
4665  },
4666  {
4667  .name = "limit_in_bytes",
4668  .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4669  .write_string = mem_cgroup_write,
4670  .read = mem_cgroup_read,
4671  },
4672  {
4673  .name = "soft_limit_in_bytes",
4674  .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4675  .write_string = mem_cgroup_write,
4676  .read = mem_cgroup_read,
4677  },
4678  {
4679  .name = "failcnt",
4680  .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4681  .trigger = mem_cgroup_reset,
4682  .read = mem_cgroup_read,
4683  },
4684  {
4685  .name = "stat",
4686  .read_seq_string = memcg_stat_show,
4687  },
4688  {
4689  .name = "force_empty",
4690  .trigger = mem_cgroup_force_empty_write,
4691  },
4692  {
4693  .name = "use_hierarchy",
4694  .write_u64 = mem_cgroup_hierarchy_write,
4695  .read_u64 = mem_cgroup_hierarchy_read,
4696  },
4697  {
4698  .name = "swappiness",
4699  .read_u64 = mem_cgroup_swappiness_read,
4700  .write_u64 = mem_cgroup_swappiness_write,
4701  },
4702  {
4703  .name = "move_charge_at_immigrate",
4704  .read_u64 = mem_cgroup_move_charge_read,
4705  .write_u64 = mem_cgroup_move_charge_write,
4706  },
4707  {
4708  .name = "oom_control",
4709  .read_map = mem_cgroup_oom_control_read,
4710  .write_u64 = mem_cgroup_oom_control_write,
4711  .register_event = mem_cgroup_oom_register_event,
4712  .unregister_event = mem_cgroup_oom_unregister_event,
4713  .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4714  },
4715 #ifdef CONFIG_NUMA
4716  {
4717  .name = "numa_stat",
4718  .read_seq_string = memcg_numa_stat_show,
4719  },
4720 #endif
4721 #ifdef CONFIG_MEMCG_SWAP
4722  {
4723  .name = "memsw.usage_in_bytes",
4724  .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4725  .read = mem_cgroup_read,
4726  .register_event = mem_cgroup_usage_register_event,
4727  .unregister_event = mem_cgroup_usage_unregister_event,
4728  },
4729  {
4730  .name = "memsw.max_usage_in_bytes",
4731  .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4732  .trigger = mem_cgroup_reset,
4733  .read = mem_cgroup_read,
4734  },
4735  {
4736  .name = "memsw.limit_in_bytes",
4737  .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4738  .write_string = mem_cgroup_write,
4739  .read = mem_cgroup_read,
4740  },
4741  {
4742  .name = "memsw.failcnt",
4743  .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4744  .trigger = mem_cgroup_reset,
4745  .read = mem_cgroup_read,
4746  },
4747 #endif
4748  { }, /* terminate */
4749 };
4750 
4751 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4752 {
4753  struct mem_cgroup_per_node *pn;
4754  struct mem_cgroup_per_zone *mz;
4755  int zone, tmp = node;
4756  /*
4757  * This routine is called against possible nodes.
4758  * But it's BUG to call kmalloc() against offline node.
4759  *
4760  * TODO: this routine can waste much memory for nodes which will
4761  * never be onlined. It's better to use memory hotplug callback
4762  * function.
4763  */
4764  if (!node_state(node, N_NORMAL_MEMORY))
4765  tmp = -1;
4766  pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4767  if (!pn)
4768  return 1;
4769 
4770  for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4771  mz = &pn->zoneinfo[zone];
4772  lruvec_init(&mz->lruvec);
4773  mz->usage_in_excess = 0;
4774  mz->on_tree = false;
4775  mz->memcg = memcg;
4776  }
4777  memcg->info.nodeinfo[node] = pn;
4778  return 0;
4779 }
4780 
4781 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4782 {
4783  kfree(memcg->info.nodeinfo[node]);
4784 }
4785 
4786 static struct mem_cgroup *mem_cgroup_alloc(void)
4787 {
4788  struct mem_cgroup *memcg;
4789  int size = sizeof(struct mem_cgroup);
4790 
4791  /* Can be very big if MAX_NUMNODES is very big */
4792  if (size < PAGE_SIZE)
4793  memcg = kzalloc(size, GFP_KERNEL);
4794  else
4795  memcg = vzalloc(size);
4796 
4797  if (!memcg)
4798  return NULL;
4799 
4800  memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4801  if (!memcg->stat)
4802  goto out_free;
4804  return memcg;
4805 
4806 out_free:
4807  if (size < PAGE_SIZE)
4808  kfree(memcg);
4809  else
4810  vfree(memcg);
4811  return NULL;
4812 }
4813 
4814 /*
4815  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4816  * but in process context. The work_freeing structure is overlaid
4817  * on the rcu_freeing structure, which itself is overlaid on memsw.
4818  */
4819 static void free_work(struct work_struct *work)
4820 {
4821  struct mem_cgroup *memcg;
4822  int size = sizeof(struct mem_cgroup);
4823 
4824  memcg = container_of(work, struct mem_cgroup, work_freeing);
4825  /*
4826  * We need to make sure that (at least for now), the jump label
4827  * destruction code runs outside of the cgroup lock. This is because
4828  * get_online_cpus(), which is called from the static_branch update,
4829  * can't be called inside the cgroup_lock. cpusets are the ones
4830  * enforcing this dependency, so if they ever change, we might as well.
4831  *
4832  * schedule_work() will guarantee this happens. Be careful if you need
4833  * to move this code around, and make sure it is outside
4834  * the cgroup_lock.
4835  */
4836  disarm_sock_keys(memcg);
4837  if (size < PAGE_SIZE)
4838  kfree(memcg);
4839  else
4840  vfree(memcg);
4841 }
4842 
4843 static void free_rcu(struct rcu_head *rcu_head)
4844 {
4845  struct mem_cgroup *memcg;
4846 
4847  memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4848  INIT_WORK(&memcg->work_freeing, free_work);
4849  schedule_work(&memcg->work_freeing);
4850 }
4851 
4852 /*
4853  * At destroying mem_cgroup, references from swap_cgroup can remain.
4854  * (scanning all at force_empty is too costly...)
4855  *
4856  * Instead of clearing all references at force_empty, we remember
4857  * the number of reference from swap_cgroup and free mem_cgroup when
4858  * it goes down to 0.
4859  *
4860  * Removal of cgroup itself succeeds regardless of refs from swap.
4861  */
4862 
4863 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4864 {
4865  int node;
4866 
4867  mem_cgroup_remove_from_trees(memcg);
4868  free_css_id(&mem_cgroup_subsys, &memcg->css);
4869 
4870  for_each_node(node)
4871  free_mem_cgroup_per_zone_info(memcg, node);
4872 
4873  free_percpu(memcg->stat);
4874  call_rcu(&memcg->rcu_freeing, free_rcu);
4875 }
4876 
4877 static void mem_cgroup_get(struct mem_cgroup *memcg)
4878 {
4879  atomic_inc(&memcg->refcnt);
4880 }
4881 
4882 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4883 {
4884  if (atomic_sub_and_test(count, &memcg->refcnt)) {
4885  struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4886  __mem_cgroup_free(memcg);
4887  if (parent)
4888  mem_cgroup_put(parent);
4889  }
4890 }
4891 
4892 static void mem_cgroup_put(struct mem_cgroup *memcg)
4893 {
4894  __mem_cgroup_put(memcg, 1);
4895 }
4896 
4897 /*
4898  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4899  */
4901 {
4902  if (!memcg->res.parent)
4903  return NULL;
4904  return mem_cgroup_from_res_counter(memcg->res.parent, res);
4905 }
4907 
4908 #ifdef CONFIG_MEMCG_SWAP
4909 static void __init enable_swap_cgroup(void)
4910 {
4911  if (!mem_cgroup_disabled() && really_do_swap_account)
4912  do_swap_account = 1;
4913 }
4914 #else
4915 static void __init enable_swap_cgroup(void)
4916 {
4917 }
4918 #endif
4919 
4920 static int mem_cgroup_soft_limit_tree_init(void)
4921 {
4922  struct mem_cgroup_tree_per_node *rtpn;
4923  struct mem_cgroup_tree_per_zone *rtpz;
4924  int tmp, node, zone;
4925 
4926  for_each_node(node) {
4927  tmp = node;
4928  if (!node_state(node, N_NORMAL_MEMORY))
4929  tmp = -1;
4930  rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4931  if (!rtpn)
4932  goto err_cleanup;
4933 
4934  soft_limit_tree.rb_tree_per_node[node] = rtpn;
4935 
4936  for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4937  rtpz = &rtpn->rb_tree_per_zone[zone];
4938  rtpz->rb_root = RB_ROOT;
4939  spin_lock_init(&rtpz->lock);
4940  }
4941  }
4942  return 0;
4943 
4944 err_cleanup:
4945  for_each_node(node) {
4946  if (!soft_limit_tree.rb_tree_per_node[node])
4947  break;
4948  kfree(soft_limit_tree.rb_tree_per_node[node]);
4949  soft_limit_tree.rb_tree_per_node[node] = NULL;
4950  }
4951  return 1;
4952 
4953 }
4954 
4955 static struct cgroup_subsys_state * __ref
4956 mem_cgroup_create(struct cgroup *cont)
4957 {
4958  struct mem_cgroup *memcg, *parent;
4959  long error = -ENOMEM;
4960  int node;
4961 
4962  memcg = mem_cgroup_alloc();
4963  if (!memcg)
4964  return ERR_PTR(error);
4965 
4966  for_each_node(node)
4967  if (alloc_mem_cgroup_per_zone_info(memcg, node))
4968  goto free_out;
4969 
4970  /* root ? */
4971  if (cont->parent == NULL) {
4972  int cpu;
4973  enable_swap_cgroup();
4974  parent = NULL;
4975  if (mem_cgroup_soft_limit_tree_init())
4976  goto free_out;
4977  root_mem_cgroup = memcg;
4978  for_each_possible_cpu(cpu) {
4979  struct memcg_stock_pcp *stock =
4980  &per_cpu(memcg_stock, cpu);
4981  INIT_WORK(&stock->work, drain_local_stock);
4982  }
4983  hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4984  } else {
4985  parent = mem_cgroup_from_cont(cont->parent);
4986  memcg->use_hierarchy = parent->use_hierarchy;
4987  memcg->oom_kill_disable = parent->oom_kill_disable;
4988  }
4989 
4990  if (parent && parent->use_hierarchy) {
4991  res_counter_init(&memcg->res, &parent->res);
4992  res_counter_init(&memcg->memsw, &parent->memsw);
4993  /*
4994  * We increment refcnt of the parent to ensure that we can
4995  * safely access it on res_counter_charge/uncharge.
4996  * This refcnt will be decremented when freeing this
4997  * mem_cgroup(see mem_cgroup_put).
4998  */
4999  mem_cgroup_get(parent);
5000  } else {
5001  res_counter_init(&memcg->res, NULL);
5002  res_counter_init(&memcg->memsw, NULL);
5003  /*
5004  * Deeper hierachy with use_hierarchy == false doesn't make
5005  * much sense so let cgroup subsystem know about this
5006  * unfortunate state in our controller.
5007  */
5008  if (parent && parent != root_mem_cgroup)
5009  mem_cgroup_subsys.broken_hierarchy = true;
5010  }
5011  memcg->last_scanned_node = MAX_NUMNODES;
5012  INIT_LIST_HEAD(&memcg->oom_notify);
5013 
5014  if (parent)
5015  memcg->swappiness = mem_cgroup_swappiness(parent);
5016  atomic_set(&memcg->refcnt, 1);
5017  memcg->move_charge_at_immigrate = 0;
5018  mutex_init(&memcg->thresholds_lock);
5019  spin_lock_init(&memcg->move_lock);
5020 
5021  error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5022  if (error) {
5023  /*
5024  * We call put now because our (and parent's) refcnts
5025  * are already in place. mem_cgroup_put() will internally
5026  * call __mem_cgroup_free, so return directly
5027  */
5028  mem_cgroup_put(memcg);
5029  return ERR_PTR(error);
5030  }
5031  return &memcg->css;
5032 free_out:
5033  __mem_cgroup_free(memcg);
5034  return ERR_PTR(error);
5035 }
5036 
5037 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5038 {
5039  struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5040 
5041  return mem_cgroup_force_empty(memcg, false);
5042 }
5043 
5044 static void mem_cgroup_destroy(struct cgroup *cont)
5045 {
5046  struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5047 
5048  kmem_cgroup_destroy(memcg);
5049 
5050  mem_cgroup_put(memcg);
5051 }
5052 
5053 #ifdef CONFIG_MMU
5054 /* Handlers for move charge at task migration. */
5055 #define PRECHARGE_COUNT_AT_ONCE 256
5056 static int mem_cgroup_do_precharge(unsigned long count)
5057 {
5058  int ret = 0;
5059  int batch_count = PRECHARGE_COUNT_AT_ONCE;
5060  struct mem_cgroup *memcg = mc.to;
5061 
5062  if (mem_cgroup_is_root(memcg)) {
5063  mc.precharge += count;
5064  /* we don't need css_get for root */
5065  return ret;
5066  }
5067  /* try to charge at once */
5068  if (count > 1) {
5069  struct res_counter *dummy;
5070  /*
5071  * "memcg" cannot be under rmdir() because we've already checked
5072  * by cgroup_lock_live_cgroup() that it is not removed and we
5073  * are still under the same cgroup_mutex. So we can postpone
5074  * css_get().
5075  */
5076  if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5077  goto one_by_one;
5078  if (do_swap_account && res_counter_charge(&memcg->memsw,
5079  PAGE_SIZE * count, &dummy)) {
5080  res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5081  goto one_by_one;
5082  }
5083  mc.precharge += count;
5084  return ret;
5085  }
5086 one_by_one:
5087  /* fall back to one by one charge */
5088  while (count--) {
5089  if (signal_pending(current)) {
5090  ret = -EINTR;
5091  break;
5092  }
5093  if (!batch_count--) {
5094  batch_count = PRECHARGE_COUNT_AT_ONCE;
5095  cond_resched();
5096  }
5097  ret = __mem_cgroup_try_charge(NULL,
5098  GFP_KERNEL, 1, &memcg, false);
5099  if (ret)
5100  /* mem_cgroup_clear_mc() will do uncharge later */
5101  return ret;
5102  mc.precharge++;
5103  }
5104  return ret;
5105 }
5106 
5125 union mc_target {
5126  struct page *page;
5127  swp_entry_t ent;
5128 };
5129 
5130 enum mc_target_type {
5131  MC_TARGET_NONE = 0,
5132  MC_TARGET_PAGE,
5133  MC_TARGET_SWAP,
5134 };
5135 
5136 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5137  unsigned long addr, pte_t ptent)
5138 {
5139  struct page *page = vm_normal_page(vma, addr, ptent);
5140 
5141  if (!page || !page_mapped(page))
5142  return NULL;
5143  if (PageAnon(page)) {
5144  /* we don't move shared anon */
5145  if (!move_anon())
5146  return NULL;
5147  } else if (!move_file())
5148  /* we ignore mapcount for file pages */
5149  return NULL;
5150  if (!get_page_unless_zero(page))
5151  return NULL;
5152 
5153  return page;
5154 }
5155 
5156 #ifdef CONFIG_SWAP
5157 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5158  unsigned long addr, pte_t ptent, swp_entry_t *entry)
5159 {
5160  struct page *page = NULL;
5161  swp_entry_t ent = pte_to_swp_entry(ptent);
5162 
5163  if (!move_anon() || non_swap_entry(ent))
5164  return NULL;
5165  /*
5166  * Because lookup_swap_cache() updates some statistics counter,
5167  * we call find_get_page() with swapper_space directly.
5168  */
5169  page = find_get_page(&swapper_space, ent.val);
5170  if (do_swap_account)
5171  entry->val = ent.val;
5172 
5173  return page;
5174 }
5175 #else
5176 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5177  unsigned long addr, pte_t ptent, swp_entry_t *entry)
5178 {
5179  return NULL;
5180 }
5181 #endif
5182 
5183 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5184  unsigned long addr, pte_t ptent, swp_entry_t *entry)
5185 {
5186  struct page *page = NULL;
5187  struct address_space *mapping;
5188  pgoff_t pgoff;
5189 
5190  if (!vma->vm_file) /* anonymous vma */
5191  return NULL;
5192  if (!move_file())
5193  return NULL;
5194 
5195  mapping = vma->vm_file->f_mapping;
5196  if (pte_none(ptent))
5197  pgoff = linear_page_index(vma, addr);
5198  else /* pte_file(ptent) is true */
5199  pgoff = pte_to_pgoff(ptent);
5200 
5201  /* page is moved even if it's not RSS of this task(page-faulted). */
5202  page = find_get_page(mapping, pgoff);
5203 
5204 #ifdef CONFIG_SWAP
5205  /* shmem/tmpfs may report page out on swap: account for that too. */
5206  if (radix_tree_exceptional_entry(page)) {
5207  swp_entry_t swap = radix_to_swp_entry(page);
5208  if (do_swap_account)
5209  *entry = swap;
5210  page = find_get_page(&swapper_space, swap.val);
5211  }
5212 #endif
5213  return page;
5214 }
5215 
5216 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5217  unsigned long addr, pte_t ptent, union mc_target *target)
5218 {
5219  struct page *page = NULL;
5220  struct page_cgroup *pc;
5221  enum mc_target_type ret = MC_TARGET_NONE;
5222  swp_entry_t ent = { .val = 0 };
5223 
5224  if (pte_present(ptent))
5225  page = mc_handle_present_pte(vma, addr, ptent);
5226  else if (is_swap_pte(ptent))
5227  page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5228  else if (pte_none(ptent) || pte_file(ptent))
5229  page = mc_handle_file_pte(vma, addr, ptent, &ent);
5230 
5231  if (!page && !ent.val)
5232  return ret;
5233  if (page) {
5234  pc = lookup_page_cgroup(page);
5235  /*
5236  * Do only loose check w/o page_cgroup lock.
5237  * mem_cgroup_move_account() checks the pc is valid or not under
5238  * the lock.
5239  */
5240  if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5241  ret = MC_TARGET_PAGE;
5242  if (target)
5243  target->page = page;
5244  }
5245  if (!ret || !target)
5246  put_page(page);
5247  }
5248  /* There is a swap entry and a page doesn't exist or isn't charged */
5249  if (ent.val && !ret &&
5250  css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5251  ret = MC_TARGET_SWAP;
5252  if (target)
5253  target->ent = ent;
5254  }
5255  return ret;
5256 }
5257 
5258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5259 /*
5260  * We don't consider swapping or file mapped pages because THP does not
5261  * support them for now.
5262  * Caller should make sure that pmd_trans_huge(pmd) is true.
5263  */
5264 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5265  unsigned long addr, pmd_t pmd, union mc_target *target)
5266 {
5267  struct page *page = NULL;
5268  struct page_cgroup *pc;
5269  enum mc_target_type ret = MC_TARGET_NONE;
5270 
5271  page = pmd_page(pmd);
5272  VM_BUG_ON(!page || !PageHead(page));
5273  if (!move_anon())
5274  return ret;
5275  pc = lookup_page_cgroup(page);
5276  if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5277  ret = MC_TARGET_PAGE;
5278  if (target) {
5279  get_page(page);
5280  target->page = page;
5281  }
5282  }
5283  return ret;
5284 }
5285 #else
5286 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5287  unsigned long addr, pmd_t pmd, union mc_target *target)
5288 {
5289  return MC_TARGET_NONE;
5290 }
5291 #endif
5292 
5293 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5294  unsigned long addr, unsigned long end,
5295  struct mm_walk *walk)
5296 {
5297  struct vm_area_struct *vma = walk->private;
5298  pte_t *pte;
5299  spinlock_t *ptl;
5300 
5301  if (pmd_trans_huge_lock(pmd, vma) == 1) {
5302  if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5303  mc.precharge += HPAGE_PMD_NR;
5304  spin_unlock(&vma->vm_mm->page_table_lock);
5305  return 0;
5306  }
5307 
5308  if (pmd_trans_unstable(pmd))
5309  return 0;
5310  pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5311  for (; addr != end; pte++, addr += PAGE_SIZE)
5312  if (get_mctgt_type(vma, addr, *pte, NULL))
5313  mc.precharge++; /* increment precharge temporarily */
5314  pte_unmap_unlock(pte - 1, ptl);
5315  cond_resched();
5316 
5317  return 0;
5318 }
5319 
5320 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5321 {
5322  unsigned long precharge;
5323  struct vm_area_struct *vma;
5324 
5325  down_read(&mm->mmap_sem);
5326  for (vma = mm->mmap; vma; vma = vma->vm_next) {
5327  struct mm_walk mem_cgroup_count_precharge_walk = {
5328  .pmd_entry = mem_cgroup_count_precharge_pte_range,
5329  .mm = mm,
5330  .private = vma,
5331  };
5332  if (is_vm_hugetlb_page(vma))
5333  continue;
5334  walk_page_range(vma->vm_start, vma->vm_end,
5335  &mem_cgroup_count_precharge_walk);
5336  }
5337  up_read(&mm->mmap_sem);
5338 
5339  precharge = mc.precharge;
5340  mc.precharge = 0;
5341 
5342  return precharge;
5343 }
5344 
5345 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5346 {
5347  unsigned long precharge = mem_cgroup_count_precharge(mm);
5348 
5349  VM_BUG_ON(mc.moving_task);
5350  mc.moving_task = current;
5351  return mem_cgroup_do_precharge(precharge);
5352 }
5353 
5354 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5355 static void __mem_cgroup_clear_mc(void)
5356 {
5357  struct mem_cgroup *from = mc.from;
5358  struct mem_cgroup *to = mc.to;
5359 
5360  /* we must uncharge all the leftover precharges from mc.to */
5361  if (mc.precharge) {
5362  __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5363  mc.precharge = 0;
5364  }
5365  /*
5366  * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5367  * we must uncharge here.
5368  */
5369  if (mc.moved_charge) {
5370  __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5371  mc.moved_charge = 0;
5372  }
5373  /* we must fixup refcnts and charges */
5374  if (mc.moved_swap) {
5375  /* uncharge swap account from the old cgroup */
5376  if (!mem_cgroup_is_root(mc.from))
5377  res_counter_uncharge(&mc.from->memsw,
5378  PAGE_SIZE * mc.moved_swap);
5379  __mem_cgroup_put(mc.from, mc.moved_swap);
5380 
5381  if (!mem_cgroup_is_root(mc.to)) {
5382  /*
5383  * we charged both to->res and to->memsw, so we should
5384  * uncharge to->res.
5385  */
5386  res_counter_uncharge(&mc.to->res,
5387  PAGE_SIZE * mc.moved_swap);
5388  }
5389  /* we've already done mem_cgroup_get(mc.to) */
5390  mc.moved_swap = 0;
5391  }
5392  memcg_oom_recover(from);
5393  memcg_oom_recover(to);
5394  wake_up_all(&mc.waitq);
5395 }
5396 
5397 static void mem_cgroup_clear_mc(void)
5398 {
5399  struct mem_cgroup *from = mc.from;
5400 
5401  /*
5402  * we must clear moving_task before waking up waiters at the end of
5403  * task migration.
5404  */
5405  mc.moving_task = NULL;
5406  __mem_cgroup_clear_mc();
5407  spin_lock(&mc.lock);
5408  mc.from = NULL;
5409  mc.to = NULL;
5410  spin_unlock(&mc.lock);
5411  mem_cgroup_end_move(from);
5412 }
5413 
5414 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5415  struct cgroup_taskset *tset)
5416 {
5417  struct task_struct *p = cgroup_taskset_first(tset);
5418  int ret = 0;
5419  struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5420 
5421  if (memcg->move_charge_at_immigrate) {
5422  struct mm_struct *mm;
5423  struct mem_cgroup *from = mem_cgroup_from_task(p);
5424 
5425  VM_BUG_ON(from == memcg);
5426 
5427  mm = get_task_mm(p);
5428  if (!mm)
5429  return 0;
5430  /* We move charges only when we move a owner of the mm */
5431  if (mm->owner == p) {
5432  VM_BUG_ON(mc.from);
5433  VM_BUG_ON(mc.to);
5434  VM_BUG_ON(mc.precharge);
5435  VM_BUG_ON(mc.moved_charge);
5436  VM_BUG_ON(mc.moved_swap);
5437  mem_cgroup_start_move(from);
5438  spin_lock(&mc.lock);
5439  mc.from = from;
5440  mc.to = memcg;
5441  spin_unlock(&mc.lock);
5442  /* We set mc.moving_task later */
5443 
5444  ret = mem_cgroup_precharge_mc(mm);
5445  if (ret)
5446  mem_cgroup_clear_mc();
5447  }
5448  mmput(mm);
5449  }
5450  return ret;
5451 }
5452 
5453 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5454  struct cgroup_taskset *tset)
5455 {
5456  mem_cgroup_clear_mc();
5457 }
5458 
5459 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5460  unsigned long addr, unsigned long end,
5461  struct mm_walk *walk)
5462 {
5463  int ret = 0;
5464  struct vm_area_struct *vma = walk->private;
5465  pte_t *pte;
5466  spinlock_t *ptl;
5467  enum mc_target_type target_type;
5468  union mc_target target;
5469  struct page *page;
5470  struct page_cgroup *pc;
5471 
5472  /*
5473  * We don't take compound_lock() here but no race with splitting thp
5474  * happens because:
5475  * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5476  * under splitting, which means there's no concurrent thp split,
5477  * - if another thread runs into split_huge_page() just after we
5478  * entered this if-block, the thread must wait for page table lock
5479  * to be unlocked in __split_huge_page_splitting(), where the main
5480  * part of thp split is not executed yet.
5481  */
5482  if (pmd_trans_huge_lock(pmd, vma) == 1) {
5483  if (mc.precharge < HPAGE_PMD_NR) {
5484  spin_unlock(&vma->vm_mm->page_table_lock);
5485  return 0;
5486  }
5487  target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5488  if (target_type == MC_TARGET_PAGE) {
5489  page = target.page;
5490  if (!isolate_lru_page(page)) {
5491  pc = lookup_page_cgroup(page);
5492  if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5493  pc, mc.from, mc.to)) {
5494  mc.precharge -= HPAGE_PMD_NR;
5495  mc.moved_charge += HPAGE_PMD_NR;
5496  }
5497  putback_lru_page(page);
5498  }
5499  put_page(page);
5500  }
5501  spin_unlock(&vma->vm_mm->page_table_lock);
5502  return 0;
5503  }
5504 
5505  if (pmd_trans_unstable(pmd))
5506  return 0;
5507 retry:
5508  pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5509  for (; addr != end; addr += PAGE_SIZE) {
5510  pte_t ptent = *(pte++);
5511  swp_entry_t ent;
5512 
5513  if (!mc.precharge)
5514  break;
5515 
5516  switch (get_mctgt_type(vma, addr, ptent, &target)) {
5517  case MC_TARGET_PAGE:
5518  page = target.page;
5519  if (isolate_lru_page(page))
5520  goto put;
5521  pc = lookup_page_cgroup(page);
5522  if (!mem_cgroup_move_account(page, 1, pc,
5523  mc.from, mc.to)) {
5524  mc.precharge--;
5525  /* we uncharge from mc.from later. */
5526  mc.moved_charge++;
5527  }
5528  putback_lru_page(page);
5529 put: /* get_mctgt_type() gets the page */
5530  put_page(page);
5531  break;
5532  case MC_TARGET_SWAP:
5533  ent = target.ent;
5534  if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5535  mc.precharge--;
5536  /* we fixup refcnts and charges later. */
5537  mc.moved_swap++;
5538  }
5539  break;
5540  default:
5541  break;
5542  }
5543  }
5544  pte_unmap_unlock(pte - 1, ptl);
5545  cond_resched();
5546 
5547  if (addr != end) {
5548  /*
5549  * We have consumed all precharges we got in can_attach().
5550  * We try charge one by one, but don't do any additional
5551  * charges to mc.to if we have failed in charge once in attach()
5552  * phase.
5553  */
5554  ret = mem_cgroup_do_precharge(1);
5555  if (!ret)
5556  goto retry;
5557  }
5558 
5559  return ret;
5560 }
5561 
5562 static void mem_cgroup_move_charge(struct mm_struct *mm)
5563 {
5564  struct vm_area_struct *vma;
5565 
5567 retry:
5568  if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5569  /*
5570  * Someone who are holding the mmap_sem might be waiting in
5571  * waitq. So we cancel all extra charges, wake up all waiters,
5572  * and retry. Because we cancel precharges, we might not be able
5573  * to move enough charges, but moving charge is a best-effort
5574  * feature anyway, so it wouldn't be a big problem.
5575  */
5576  __mem_cgroup_clear_mc();
5577  cond_resched();
5578  goto retry;
5579  }
5580  for (vma = mm->mmap; vma; vma = vma->vm_next) {
5581  int ret;
5582  struct mm_walk mem_cgroup_move_charge_walk = {
5583  .pmd_entry = mem_cgroup_move_charge_pte_range,
5584  .mm = mm,
5585  .private = vma,
5586  };
5587  if (is_vm_hugetlb_page(vma))
5588  continue;
5589  ret = walk_page_range(vma->vm_start, vma->vm_end,
5590  &mem_cgroup_move_charge_walk);
5591  if (ret)
5592  /*
5593  * means we have consumed all precharges and failed in
5594  * doing additional charge. Just abandon here.
5595  */
5596  break;
5597  }
5598  up_read(&mm->mmap_sem);
5599 }
5600 
5601 static void mem_cgroup_move_task(struct cgroup *cont,
5602  struct cgroup_taskset *tset)
5603 {
5604  struct task_struct *p = cgroup_taskset_first(tset);
5605  struct mm_struct *mm = get_task_mm(p);
5606 
5607  if (mm) {
5608  if (mc.to)
5609  mem_cgroup_move_charge(mm);
5610  mmput(mm);
5611  }
5612  if (mc.to)
5613  mem_cgroup_clear_mc();
5614 }
5615 #else /* !CONFIG_MMU */
5616 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5617  struct cgroup_taskset *tset)
5618 {
5619  return 0;
5620 }
5621 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5622  struct cgroup_taskset *tset)
5623 {
5624 }
5625 static void mem_cgroup_move_task(struct cgroup *cont,
5626  struct cgroup_taskset *tset)
5627 {
5628 }
5629 #endif
5630 
5631 struct cgroup_subsys mem_cgroup_subsys = {
5632  .name = "memory",
5633  .subsys_id = mem_cgroup_subsys_id,
5634  .create = mem_cgroup_create,
5635  .pre_destroy = mem_cgroup_pre_destroy,
5636  .destroy = mem_cgroup_destroy,
5637  .can_attach = mem_cgroup_can_attach,
5638  .cancel_attach = mem_cgroup_cancel_attach,
5639  .attach = mem_cgroup_move_task,
5640  .base_cftypes = mem_cgroup_files,
5641  .early_init = 0,
5642  .use_id = 1,
5643  .__DEPRECATED_clear_css_refs = true,
5644 };
5645 
5646 #ifdef CONFIG_MEMCG_SWAP
5647 static int __init enable_swap_account(char *s)
5648 {
5649  /* consider enabled if no parameter or 1 is given */
5650  if (!strcmp(s, "1"))
5651  really_do_swap_account = 1;
5652  else if (!strcmp(s, "0"))
5653  really_do_swap_account = 0;
5654  return 1;
5655 }
5656 __setup("swapaccount=", enable_swap_account);
5657 
5658 #endif