Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tcp.c
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors: Ross Biro
9  * Fred N. van Kempen, <[email protected]>
10  * Mark Evans, <[email protected]>
11  * Corey Minyard <[email protected]>
12  * Florian La Roche, <[email protected]>
13  * Charles Hedrick, <[email protected]>
14  * Linus Torvalds, <[email protected]>
15  * Alan Cox, <[email protected]>
16  * Matthew Dillon, <[email protected]>
17  * Arnt Gulbrandsen, <[email protected]>
18  * Jorge Cwik, <[email protected]>
19  *
20  * Fixes:
21  * Alan Cox : Numerous verify_area() calls
22  * Alan Cox : Set the ACK bit on a reset
23  * Alan Cox : Stopped it crashing if it closed while
24  * sk->inuse=1 and was trying to connect
25  * (tcp_err()).
26  * Alan Cox : All icmp error handling was broken
27  * pointers passed where wrong and the
28  * socket was looked up backwards. Nobody
29  * tested any icmp error code obviously.
30  * Alan Cox : tcp_err() now handled properly. It
31  * wakes people on errors. poll
32  * behaves and the icmp error race
33  * has gone by moving it into sock.c
34  * Alan Cox : tcp_send_reset() fixed to work for
35  * everything not just packets for
36  * unknown sockets.
37  * Alan Cox : tcp option processing.
38  * Alan Cox : Reset tweaked (still not 100%) [Had
39  * syn rule wrong]
40  * Herp Rosmanith : More reset fixes
41  * Alan Cox : No longer acks invalid rst frames.
42  * Acking any kind of RST is right out.
43  * Alan Cox : Sets an ignore me flag on an rst
44  * receive otherwise odd bits of prattle
45  * escape still
46  * Alan Cox : Fixed another acking RST frame bug.
47  * Should stop LAN workplace lockups.
48  * Alan Cox : Some tidyups using the new skb list
49  * facilities
50  * Alan Cox : sk->keepopen now seems to work
51  * Alan Cox : Pulls options out correctly on accepts
52  * Alan Cox : Fixed assorted sk->rqueue->next errors
53  * Alan Cox : PSH doesn't end a TCP read. Switched a
54  * bit to skb ops.
55  * Alan Cox : Tidied tcp_data to avoid a potential
56  * nasty.
57  * Alan Cox : Added some better commenting, as the
58  * tcp is hard to follow
59  * Alan Cox : Removed incorrect check for 20 * psh
60  * Michael O'Reilly : ack < copied bug fix.
61  * Johannes Stille : Misc tcp fixes (not all in yet).
62  * Alan Cox : FIN with no memory -> CRASH
63  * Alan Cox : Added socket option proto entries.
64  * Also added awareness of them to accept.
65  * Alan Cox : Added TCP options (SOL_TCP)
66  * Alan Cox : Switched wakeup calls to callbacks,
67  * so the kernel can layer network
68  * sockets.
69  * Alan Cox : Use ip_tos/ip_ttl settings.
70  * Alan Cox : Handle FIN (more) properly (we hope).
71  * Alan Cox : RST frames sent on unsynchronised
72  * state ack error.
73  * Alan Cox : Put in missing check for SYN bit.
74  * Alan Cox : Added tcp_select_window() aka NET2E
75  * window non shrink trick.
76  * Alan Cox : Added a couple of small NET2E timer
77  * fixes
78  * Charles Hedrick : TCP fixes
79  * Toomas Tamm : TCP window fixes
80  * Alan Cox : Small URG fix to rlogin ^C ack fight
81  * Charles Hedrick : Rewrote most of it to actually work
82  * Linus : Rewrote tcp_read() and URG handling
83  * completely
84  * Gerhard Koerting: Fixed some missing timer handling
85  * Matthew Dillon : Reworked TCP machine states as per RFC
86  * Gerhard Koerting: PC/TCP workarounds
87  * Adam Caldwell : Assorted timer/timing errors
88  * Matthew Dillon : Fixed another RST bug
89  * Alan Cox : Move to kernel side addressing changes.
90  * Alan Cox : Beginning work on TCP fastpathing
91  * (not yet usable)
92  * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93  * Alan Cox : TCP fast path debugging
94  * Alan Cox : Window clamping
95  * Michael Riepe : Bug in tcp_check()
96  * Matt Dillon : More TCP improvements and RST bug fixes
97  * Matt Dillon : Yet more small nasties remove from the
98  * TCP code (Be very nice to this man if
99  * tcp finally works 100%) 8)
100  * Alan Cox : BSD accept semantics.
101  * Alan Cox : Reset on closedown bug.
102  * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103  * Michael Pall : Handle poll() after URG properly in
104  * all cases.
105  * Michael Pall : Undo the last fix in tcp_read_urg()
106  * (multi URG PUSH broke rlogin).
107  * Michael Pall : Fix the multi URG PUSH problem in
108  * tcp_readable(), poll() after URG
109  * works now.
110  * Michael Pall : recv(...,MSG_OOB) never blocks in the
111  * BSD api.
112  * Alan Cox : Changed the semantics of sk->socket to
113  * fix a race and a signal problem with
114  * accept() and async I/O.
115  * Alan Cox : Relaxed the rules on tcp_sendto().
116  * Yury Shevchuk : Really fixed accept() blocking problem.
117  * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118  * clients/servers which listen in on
119  * fixed ports.
120  * Alan Cox : Cleaned the above up and shrank it to
121  * a sensible code size.
122  * Alan Cox : Self connect lockup fix.
123  * Alan Cox : No connect to multicast.
124  * Ross Biro : Close unaccepted children on master
125  * socket close.
126  * Alan Cox : Reset tracing code.
127  * Alan Cox : Spurious resets on shutdown.
128  * Alan Cox : Giant 15 minute/60 second timer error
129  * Alan Cox : Small whoops in polling before an
130  * accept.
131  * Alan Cox : Kept the state trace facility since
132  * it's handy for debugging.
133  * Alan Cox : More reset handler fixes.
134  * Alan Cox : Started rewriting the code based on
135  * the RFC's for other useful protocol
136  * references see: Comer, KA9Q NOS, and
137  * for a reference on the difference
138  * between specifications and how BSD
139  * works see the 4.4lite source.
140  * A.N.Kuznetsov : Don't time wait on completion of tidy
141  * close.
142  * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143  * Linus Torvalds : Fixed BSD port reuse to work first syn
144  * Alan Cox : Reimplemented timers as per the RFC
145  * and using multiple timers for sanity.
146  * Alan Cox : Small bug fixes, and a lot of new
147  * comments.
148  * Alan Cox : Fixed dual reader crash by locking
149  * the buffers (much like datagram.c)
150  * Alan Cox : Fixed stuck sockets in probe. A probe
151  * now gets fed up of retrying without
152  * (even a no space) answer.
153  * Alan Cox : Extracted closing code better
154  * Alan Cox : Fixed the closing state machine to
155  * resemble the RFC.
156  * Alan Cox : More 'per spec' fixes.
157  * Jorge Cwik : Even faster checksumming.
158  * Alan Cox : tcp_data() doesn't ack illegal PSH
159  * only frames. At least one pc tcp stack
160  * generates them.
161  * Alan Cox : Cache last socket.
162  * Alan Cox : Per route irtt.
163  * Matt Day : poll()->select() match BSD precisely on error
164  * Alan Cox : New buffers
165  * Marc Tamsky : Various sk->prot->retransmits and
166  * sk->retransmits misupdating fixed.
167  * Fixed tcp_write_timeout: stuck close,
168  * and TCP syn retries gets used now.
169  * Mark Yarvis : In tcp_read_wakeup(), don't send an
170  * ack if state is TCP_CLOSED.
171  * Alan Cox : Look up device on a retransmit - routes may
172  * change. Doesn't yet cope with MSS shrink right
173  * but it's a start!
174  * Marc Tamsky : Closing in closing fixes.
175  * Mike Shaver : RFC1122 verifications.
176  * Alan Cox : rcv_saddr errors.
177  * Alan Cox : Block double connect().
178  * Alan Cox : Small hooks for enSKIP.
179  * Alexey Kuznetsov: Path MTU discovery.
180  * Alan Cox : Support soft errors.
181  * Alan Cox : Fix MTU discovery pathological case
182  * when the remote claims no mtu!
183  * Marc Tamsky : TCP_CLOSE fix.
184  * Colin (G3TNE) : Send a reset on syn ack replies in
185  * window but wrong (fixes NT lpd problems)
186  * Pedro Roque : Better TCP window handling, delayed ack.
187  * Joerg Reuter : No modification of locked buffers in
188  * tcp_do_retransmit()
189  * Eric Schenk : Changed receiver side silly window
190  * avoidance algorithm to BSD style
191  * algorithm. This doubles throughput
192  * against machines running Solaris,
193  * and seems to result in general
194  * improvement.
195  * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196  * Willy Konynenberg : Transparent proxying support.
197  * Mike McLagan : Routing by source
198  * Keith Owens : Do proper merging with partial SKB's in
199  * tcp_do_sendmsg to avoid burstiness.
200  * Eric Schenk : Fix fast close down bug with
201  * shutdown() followed by close().
202  * Andi Kleen : Make poll agree with SIGIO
203  * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204  * lingertime == 0 (RFC 793 ABORT Call)
205  * Hirokazu Takahashi : Use copy_from_user() instead of
206  * csum_and_copy_from_user() if possible.
207  *
208  * This program is free software; you can redistribute it and/or
209  * modify it under the terms of the GNU General Public License
210  * as published by the Free Software Foundation; either version
211  * 2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  * TCP_SYN_SENT sent a connection request, waiting for ack
216  *
217  * TCP_SYN_RECV received a connection request, sent ack,
218  * waiting for final ack in three-way handshake.
219  *
220  * TCP_ESTABLISHED connection established
221  *
222  * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223  * transmission of remaining buffered data
224  *
225  * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226  * to shutdown
227  *
228  * TCP_CLOSING both sides have shutdown but we still have
229  * data we have to finish sending
230  *
231  * TCP_TIME_WAIT timeout to catch resent junk before entering
232  * closed, can only be entered from FIN_WAIT2
233  * or CLOSING. Required because the other end
234  * may not have gotten our last ACK causing it
235  * to retransmit the data packet (which we ignore)
236  *
237  * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238  * us to finish writing our data and to shutdown
239  * (we have to close() to move on to LAST_ACK)
240  *
241  * TCP_LAST_ACK out side has shutdown after remote has
242  * shutdown. There may still be data in our
243  * buffer that we have to finish sending
244  *
245  * TCP_CLOSE socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 
284 
287 
290 
293 
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 
297 /*
298  * Current number of TCP sockets.
299  */
302 
303 /*
304  * TCP splice context
305  */
308  size_t len;
309  unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
319 EXPORT_SYMBOL(tcp_memory_pressure);
320 
322 {
323  if (!tcp_memory_pressure) {
326  }
327 }
329 
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333  u8 res = 0;
334 
335  if (seconds > 0) {
336  int period = timeout;
337 
338  res = 1;
339  while (seconds > period && res < 255) {
340  res++;
341  timeout <<= 1;
342  if (timeout > rto_max)
343  timeout = rto_max;
344  period += timeout;
345  }
346  }
347  return res;
348 }
349 
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353  int period = 0;
354 
355  if (retrans > 0) {
356  period = timeout;
357  while (--retrans) {
358  timeout <<= 1;
359  if (timeout > rto_max)
360  timeout = rto_max;
361  period += timeout;
362  }
363  }
364  return period;
365 }
366 
367 /* Address-family independent initialization for a tcp_sock.
368  *
369  * NOTE: A lot of things set to zero explicitly by call to
370  * sk_alloc() so need not be done here.
371  */
372 void tcp_init_sock(struct sock *sk)
373 {
374  struct inet_connection_sock *icsk = inet_csk(sk);
375  struct tcp_sock *tp = tcp_sk(sk);
376 
377  skb_queue_head_init(&tp->out_of_order_queue);
379  tcp_prequeue_init(tp);
380  INIT_LIST_HEAD(&tp->tsq_node);
381 
382  icsk->icsk_rto = TCP_TIMEOUT_INIT;
383  tp->mdev = TCP_TIMEOUT_INIT;
384 
385  /* So many TCP implementations out there (incorrectly) count the
386  * initial SYN frame in their delayed-ACK and congestion control
387  * algorithms that we must have the following bandaid to talk
388  * efficiently to them. -DaveM
389  */
390  tp->snd_cwnd = TCP_INIT_CWND;
391 
392  /* See draft-stevens-tcpca-spec-01 for discussion of the
393  * initialization of these values.
394  */
396  tp->snd_cwnd_clamp = ~0;
398 
400  tcp_enable_early_retrans(tp);
402 
403  sk->sk_state = TCP_CLOSE;
404 
406  sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407 
408  icsk->icsk_sync_mss = tcp_sync_mss;
409 
410  /* TCP Cookie Transactions */
411  if (sysctl_tcp_cookie_size > 0) {
412  /* Default, cookies without s_data_payload. */
413  tp->cookie_values =
414  kzalloc(sizeof(*tp->cookie_values),
415  sk->sk_allocation);
416  if (tp->cookie_values != NULL)
417  kref_init(&tp->cookie_values->kref);
418  }
419  /* Presumed zeroed, in order of appearance:
420  * cookie_in_always, cookie_out_never,
421  * s_data_constant, s_data_in, s_data_out
422  */
423  sk->sk_sndbuf = sysctl_tcp_wmem[1];
424  sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
427  sock_update_memcg(sk);
428  sk_sockets_allocated_inc(sk);
429  local_bh_enable();
430 }
432 
433 /*
434  * Wait for a TCP event.
435  *
436  * Note that we don't need to lock the socket, as the upper poll layers
437  * take care of normal races (between the test and the event) and we don't
438  * go look at any of the socket buffers directly.
439  */
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441 {
442  unsigned int mask;
443  struct sock *sk = sock->sk;
444  const struct tcp_sock *tp = tcp_sk(sk);
445 
446  sock_poll_wait(file, sk_sleep(sk), wait);
447  if (sk->sk_state == TCP_LISTEN)
448  return inet_csk_listen_poll(sk);
449 
450  /* Socket is not locked. We are protected from async events
451  * by poll logic and correct handling of state changes
452  * made by other threads is impossible in any case.
453  */
454 
455  mask = 0;
456 
457  /*
458  * POLLHUP is certainly not done right. But poll() doesn't
459  * have a notion of HUP in just one direction, and for a
460  * socket the read side is more interesting.
461  *
462  * Some poll() documentation says that POLLHUP is incompatible
463  * with the POLLOUT/POLLWR flags, so somebody should check this
464  * all. But careful, it tends to be safer to return too many
465  * bits than too few, and you can easily break real applications
466  * if you don't tell them that something has hung up!
467  *
468  * Check-me.
469  *
470  * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471  * our fs/select.c). It means that after we received EOF,
472  * poll always returns immediately, making impossible poll() on write()
473  * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474  * if and only if shutdown has been made in both directions.
475  * Actually, it is interesting to look how Solaris and DUX
476  * solve this dilemma. I would prefer, if POLLHUP were maskable,
477  * then we could set it on SND_SHUTDOWN. BTW examples given
478  * in Stevens' books assume exactly this behaviour, it explains
479  * why POLLHUP is incompatible with POLLOUT. --ANK
480  *
481  * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482  * blocking on fresh not-connected or disconnected socket. --ANK
483  */
484  if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485  mask |= POLLHUP;
486  if (sk->sk_shutdown & RCV_SHUTDOWN)
487  mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488 
489  /* Connected or passive Fast Open socket? */
490  if (sk->sk_state != TCP_SYN_SENT &&
491  (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492  int target = sock_rcvlowat(sk, 0, INT_MAX);
493 
494  if (tp->urg_seq == tp->copied_seq &&
495  !sock_flag(sk, SOCK_URGINLINE) &&
496  tp->urg_data)
497  target++;
498 
499  /* Potential race condition. If read of tp below will
500  * escape above sk->sk_state, we can be illegally awaken
501  * in SYN_* states. */
502  if (tp->rcv_nxt - tp->copied_seq >= target)
503  mask |= POLLIN | POLLRDNORM;
504 
505  if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506  if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507  mask |= POLLOUT | POLLWRNORM;
508  } else { /* send SIGIO later */
510  &sk->sk_socket->flags);
511  set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
512 
513  /* Race breaker. If space is freed after
514  * wspace test but before the flags are set,
515  * IO signal will be lost.
516  */
517  if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518  mask |= POLLOUT | POLLWRNORM;
519  }
520  } else
521  mask |= POLLOUT | POLLWRNORM;
522 
523  if (tp->urg_data & TCP_URG_VALID)
524  mask |= POLLPRI;
525  }
526  /* This barrier is coupled with smp_wmb() in tcp_reset() */
527  smp_rmb();
528  if (sk->sk_err)
529  mask |= POLLERR;
530 
531  return mask;
532 }
534 
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
536 {
537  struct tcp_sock *tp = tcp_sk(sk);
538  int answ;
539 
540  switch (cmd) {
541  case SIOCINQ:
542  if (sk->sk_state == TCP_LISTEN)
543  return -EINVAL;
544 
545  lock_sock(sk);
546  if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
547  answ = 0;
548  else if (sock_flag(sk, SOCK_URGINLINE) ||
549  !tp->urg_data ||
550  before(tp->urg_seq, tp->copied_seq) ||
551  !before(tp->urg_seq, tp->rcv_nxt)) {
552 
553  answ = tp->rcv_nxt - tp->copied_seq;
554 
555  /* Subtract 1, if FIN was received */
556  if (answ && sock_flag(sk, SOCK_DONE))
557  answ--;
558  } else
559  answ = tp->urg_seq - tp->copied_seq;
560  release_sock(sk);
561  break;
562  case SIOCATMARK:
563  answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
564  break;
565  case SIOCOUTQ:
566  if (sk->sk_state == TCP_LISTEN)
567  return -EINVAL;
568 
569  if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
570  answ = 0;
571  else
572  answ = tp->write_seq - tp->snd_una;
573  break;
574  case SIOCOUTQNSD:
575  if (sk->sk_state == TCP_LISTEN)
576  return -EINVAL;
577 
578  if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
579  answ = 0;
580  else
581  answ = tp->write_seq - tp->snd_nxt;
582  break;
583  default:
584  return -ENOIOCTLCMD;
585  }
586 
587  return put_user(answ, (int __user *)arg);
588 }
590 
591 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
592 {
593  TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
594  tp->pushed_seq = tp->write_seq;
595 }
596 
597 static inline bool forced_push(const struct tcp_sock *tp)
598 {
599  return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
600 }
601 
602 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
603 {
604  struct tcp_sock *tp = tcp_sk(sk);
605  struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
606 
607  skb->csum = 0;
608  tcb->seq = tcb->end_seq = tp->write_seq;
609  tcb->tcp_flags = TCPHDR_ACK;
610  tcb->sacked = 0;
611  skb_header_release(skb);
612  tcp_add_write_queue_tail(sk, skb);
613  sk->sk_wmem_queued += skb->truesize;
614  sk_mem_charge(sk, skb->truesize);
615  if (tp->nonagle & TCP_NAGLE_PUSH)
616  tp->nonagle &= ~TCP_NAGLE_PUSH;
617 }
618 
619 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
620 {
621  if (flags & MSG_OOB)
622  tp->snd_up = tp->write_seq;
623 }
624 
625 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
626  int nonagle)
627 {
628  if (tcp_send_head(sk)) {
629  struct tcp_sock *tp = tcp_sk(sk);
630 
631  if (!(flags & MSG_MORE) || forced_push(tp))
632  tcp_mark_push(tp, tcp_write_queue_tail(sk));
633 
634  tcp_mark_urg(tp, flags);
635  __tcp_push_pending_frames(sk, mss_now,
636  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
637  }
638 }
639 
640 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
641  unsigned int offset, size_t len)
642 {
643  struct tcp_splice_state *tss = rd_desc->arg.data;
644  int ret;
645 
646  ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
647  tss->flags);
648  if (ret > 0)
649  rd_desc->count -= ret;
650  return ret;
651 }
652 
653 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
654 {
655  /* Store TCP splice context information in read_descriptor_t. */
656  read_descriptor_t rd_desc = {
657  .arg.data = tss,
658  .count = tss->len,
659  };
660 
661  return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
662 }
663 
676 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
677  struct pipe_inode_info *pipe, size_t len,
678  unsigned int flags)
679 {
680  struct sock *sk = sock->sk;
681  struct tcp_splice_state tss = {
682  .pipe = pipe,
683  .len = len,
684  .flags = flags,
685  };
686  long timeo;
687  ssize_t spliced;
688  int ret;
689 
690  sock_rps_record_flow(sk);
691  /*
692  * We can't seek on a socket input
693  */
694  if (unlikely(*ppos))
695  return -ESPIPE;
696 
697  ret = spliced = 0;
698 
699  lock_sock(sk);
700 
701  timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
702  while (tss.len) {
703  ret = __tcp_splice_read(sk, &tss);
704  if (ret < 0)
705  break;
706  else if (!ret) {
707  if (spliced)
708  break;
709  if (sock_flag(sk, SOCK_DONE))
710  break;
711  if (sk->sk_err) {
712  ret = sock_error(sk);
713  break;
714  }
715  if (sk->sk_shutdown & RCV_SHUTDOWN)
716  break;
717  if (sk->sk_state == TCP_CLOSE) {
718  /*
719  * This occurs when user tries to read
720  * from never connected socket.
721  */
722  if (!sock_flag(sk, SOCK_DONE))
723  ret = -ENOTCONN;
724  break;
725  }
726  if (!timeo) {
727  ret = -EAGAIN;
728  break;
729  }
730  sk_wait_data(sk, &timeo);
731  if (signal_pending(current)) {
732  ret = sock_intr_errno(timeo);
733  break;
734  }
735  continue;
736  }
737  tss.len -= ret;
738  spliced += ret;
739 
740  if (!timeo)
741  break;
742  release_sock(sk);
743  lock_sock(sk);
744 
745  if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
746  (sk->sk_shutdown & RCV_SHUTDOWN) ||
747  signal_pending(current))
748  break;
749  }
750 
751  release_sock(sk);
752 
753  if (spliced)
754  return spliced;
755 
756  return ret;
757 }
759 
760 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
761 {
762  struct sk_buff *skb;
763 
764  /* The TCP header must be at least 32-bit aligned. */
765  size = ALIGN(size, 4);
766 
767  skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
768  if (skb) {
769  if (sk_wmem_schedule(sk, skb->truesize)) {
770  skb_reserve(skb, sk->sk_prot->max_header);
771  /*
772  * Make sure that we have exactly size bytes
773  * available to the caller, no more, no less.
774  */
775  skb->avail_size = size;
776  return skb;
777  }
778  __kfree_skb(skb);
779  } else {
780  sk->sk_prot->enter_memory_pressure(sk);
781  sk_stream_moderate_sndbuf(sk);
782  }
783  return NULL;
784 }
785 
786 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
787  int large_allowed)
788 {
789  struct tcp_sock *tp = tcp_sk(sk);
790  u32 xmit_size_goal, old_size_goal;
791 
792  xmit_size_goal = mss_now;
793 
794  if (large_allowed && sk_can_gso(sk)) {
795  xmit_size_goal = ((sk->sk_gso_max_size - 1) -
796  inet_csk(sk)->icsk_af_ops->net_header_len -
797  inet_csk(sk)->icsk_ext_hdr_len -
798  tp->tcp_header_len);
799 
800  /* TSQ : try to have two TSO segments in flight */
801  xmit_size_goal = min_t(u32, xmit_size_goal,
802  sysctl_tcp_limit_output_bytes >> 1);
803 
804  xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
805 
806  /* We try hard to avoid divides here */
807  old_size_goal = tp->xmit_size_goal_segs * mss_now;
808 
809  if (likely(old_size_goal <= xmit_size_goal &&
810  old_size_goal + mss_now > xmit_size_goal)) {
811  xmit_size_goal = old_size_goal;
812  } else {
813  tp->xmit_size_goal_segs =
814  min_t(u16, xmit_size_goal / mss_now,
815  sk->sk_gso_max_segs);
816  xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
817  }
818  }
819 
820  return max(xmit_size_goal, mss_now);
821 }
822 
823 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
824 {
825  int mss_now;
826 
827  mss_now = tcp_current_mss(sk);
828  *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
829 
830  return mss_now;
831 }
832 
833 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
834  size_t size, int flags)
835 {
836  struct tcp_sock *tp = tcp_sk(sk);
837  int mss_now, size_goal;
838  int err;
839  ssize_t copied;
840  long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
841 
842  /* Wait for a connection to finish. One exception is TCP Fast Open
843  * (passive side) where data is allowed to be sent before a connection
844  * is fully established.
845  */
846  if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
847  !tcp_passive_fastopen(sk)) {
848  if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
849  goto out_err;
850  }
851 
852  clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
853 
854  mss_now = tcp_send_mss(sk, &size_goal, flags);
855  copied = 0;
856 
857  err = -EPIPE;
858  if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
859  goto out_err;
860 
861  while (size > 0) {
862  struct sk_buff *skb = tcp_write_queue_tail(sk);
863  int copy, i;
864  bool can_coalesce;
865 
866  if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
867 new_segment:
868  if (!sk_stream_memory_free(sk))
869  goto wait_for_sndbuf;
870 
871  skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
872  if (!skb)
873  goto wait_for_memory;
874 
875  skb_entail(sk, skb);
876  copy = size_goal;
877  }
878 
879  if (copy > size)
880  copy = size;
881 
882  i = skb_shinfo(skb)->nr_frags;
883  can_coalesce = skb_can_coalesce(skb, i, page, offset);
884  if (!can_coalesce && i >= MAX_SKB_FRAGS) {
885  tcp_mark_push(tp, skb);
886  goto new_segment;
887  }
888  if (!sk_wmem_schedule(sk, copy))
889  goto wait_for_memory;
890 
891  if (can_coalesce) {
892  skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
893  } else {
894  get_page(page);
895  skb_fill_page_desc(skb, i, page, offset, copy);
896  }
897 
898  skb->len += copy;
899  skb->data_len += copy;
900  skb->truesize += copy;
901  sk->sk_wmem_queued += copy;
902  sk_mem_charge(sk, copy);
904  tp->write_seq += copy;
905  TCP_SKB_CB(skb)->end_seq += copy;
906  skb_shinfo(skb)->gso_segs = 0;
907 
908  if (!copied)
909  TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
910 
911  copied += copy;
912  offset += copy;
913  if (!(size -= copy))
914  goto out;
915 
916  if (skb->len < size_goal || (flags & MSG_OOB))
917  continue;
918 
919  if (forced_push(tp)) {
920  tcp_mark_push(tp, skb);
922  } else if (skb == tcp_send_head(sk))
923  tcp_push_one(sk, mss_now);
924  continue;
925 
926 wait_for_sndbuf:
927  set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
928 wait_for_memory:
929  tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
930 
931  if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
932  goto do_error;
933 
934  mss_now = tcp_send_mss(sk, &size_goal, flags);
935  }
936 
937 out:
938  if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
939  tcp_push(sk, flags, mss_now, tp->nonagle);
940  return copied;
941 
942 do_error:
943  if (copied)
944  goto out;
945 out_err:
946  return sk_stream_error(sk, flags, err);
947 }
948 
949 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
950  size_t size, int flags)
951 {
952  ssize_t res;
953 
954  if (!(sk->sk_route_caps & NETIF_F_SG) ||
956  return sock_no_sendpage(sk->sk_socket, page, offset, size,
957  flags);
958 
959  lock_sock(sk);
960  res = do_tcp_sendpages(sk, page, offset, size, flags);
961  release_sock(sk);
962  return res;
963 }
965 
966 static inline int select_size(const struct sock *sk, bool sg)
967 {
968  const struct tcp_sock *tp = tcp_sk(sk);
969  int tmp = tp->mss_cache;
970 
971  if (sg) {
972  if (sk_can_gso(sk)) {
973  /* Small frames wont use a full page:
974  * Payload will immediately follow tcp header.
975  */
976  tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
977  } else {
978  int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
979 
980  if (tmp >= pgbreak &&
981  tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
982  tmp = pgbreak;
983  }
984  }
985 
986  return tmp;
987 }
988 
990 {
991  if (tp->fastopen_req != NULL) {
992  kfree(tp->fastopen_req);
993  tp->fastopen_req = NULL;
994  }
995 }
996 
997 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
998 {
999  struct tcp_sock *tp = tcp_sk(sk);
1000  int err, flags;
1001 
1002  if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1003  return -EOPNOTSUPP;
1004  if (tp->fastopen_req != NULL)
1005  return -EALREADY; /* Another Fast Open is in progress */
1006 
1007  tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008  sk->sk_allocation);
1009  if (unlikely(tp->fastopen_req == NULL))
1010  return -ENOBUFS;
1011  tp->fastopen_req->data = msg;
1012 
1013  flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1014  err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1015  msg->msg_namelen, flags);
1016  *size = tp->fastopen_req->copied;
1018  return err;
1019 }
1020 
1021 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1022  size_t size)
1023 {
1024  struct iovec *iov;
1025  struct tcp_sock *tp = tcp_sk(sk);
1026  struct sk_buff *skb;
1027  int iovlen, flags, err, copied = 0;
1028  int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1029  bool sg;
1030  long timeo;
1031 
1032  lock_sock(sk);
1033 
1034  flags = msg->msg_flags;
1035  if (flags & MSG_FASTOPEN) {
1036  err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1037  if (err == -EINPROGRESS && copied_syn > 0)
1038  goto out;
1039  else if (err)
1040  goto out_err;
1041  offset = copied_syn;
1042  }
1043 
1044  timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1045 
1046  /* Wait for a connection to finish. One exception is TCP Fast Open
1047  * (passive side) where data is allowed to be sent before a connection
1048  * is fully established.
1049  */
1050  if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1051  !tcp_passive_fastopen(sk)) {
1052  if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1053  goto do_error;
1054  }
1055 
1056  if (unlikely(tp->repair)) {
1057  if (tp->repair_queue == TCP_RECV_QUEUE) {
1058  copied = tcp_send_rcvq(sk, msg, size);
1059  goto out;
1060  }
1061 
1062  err = -EINVAL;
1063  if (tp->repair_queue == TCP_NO_QUEUE)
1064  goto out_err;
1065 
1066  /* 'common' sending to sendq */
1067  }
1068 
1069  /* This should be in poll */
1070  clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1071 
1072  mss_now = tcp_send_mss(sk, &size_goal, flags);
1073 
1074  /* Ok commence sending. */
1075  iovlen = msg->msg_iovlen;
1076  iov = msg->msg_iov;
1077  copied = 0;
1078 
1079  err = -EPIPE;
1080  if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1081  goto out_err;
1082 
1083  sg = !!(sk->sk_route_caps & NETIF_F_SG);
1084 
1085  while (--iovlen >= 0) {
1086  size_t seglen = iov->iov_len;
1087  unsigned char __user *from = iov->iov_base;
1088 
1089  iov++;
1090  if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1091  if (offset >= seglen) {
1092  offset -= seglen;
1093  continue;
1094  }
1095  seglen -= offset;
1096  from += offset;
1097  offset = 0;
1098  }
1099 
1100  while (seglen > 0) {
1101  int copy = 0;
1102  int max = size_goal;
1103 
1104  skb = tcp_write_queue_tail(sk);
1105  if (tcp_send_head(sk)) {
1106  if (skb->ip_summed == CHECKSUM_NONE)
1107  max = mss_now;
1108  copy = max - skb->len;
1109  }
1110 
1111  if (copy <= 0) {
1112 new_segment:
1113  /* Allocate new segment. If the interface is SG,
1114  * allocate skb fitting to single page.
1115  */
1116  if (!sk_stream_memory_free(sk))
1117  goto wait_for_sndbuf;
1118 
1119  skb = sk_stream_alloc_skb(sk,
1120  select_size(sk, sg),
1121  sk->sk_allocation);
1122  if (!skb)
1123  goto wait_for_memory;
1124 
1125  /*
1126  * Check whether we can use HW checksum.
1127  */
1128  if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1129  skb->ip_summed = CHECKSUM_PARTIAL;
1130 
1131  skb_entail(sk, skb);
1132  copy = size_goal;
1133  max = size_goal;
1134  }
1135 
1136  /* Try to append data to the end of skb. */
1137  if (copy > seglen)
1138  copy = seglen;
1139 
1140  /* Where to copy to? */
1141  if (skb_availroom(skb) > 0) {
1142  /* We have some space in skb head. Superb! */
1143  copy = min_t(int, copy, skb_availroom(skb));
1144  err = skb_add_data_nocache(sk, skb, from, copy);
1145  if (err)
1146  goto do_fault;
1147  } else {
1148  bool merge = true;
1149  int i = skb_shinfo(skb)->nr_frags;
1150  struct page_frag *pfrag = sk_page_frag(sk);
1151 
1152  if (!sk_page_frag_refill(sk, pfrag))
1153  goto wait_for_memory;
1154 
1155  if (!skb_can_coalesce(skb, i, pfrag->page,
1156  pfrag->offset)) {
1157  if (i == MAX_SKB_FRAGS || !sg) {
1158  tcp_mark_push(tp, skb);
1159  goto new_segment;
1160  }
1161  merge = false;
1162  }
1163 
1164  copy = min_t(int, copy, pfrag->size - pfrag->offset);
1165 
1166  if (!sk_wmem_schedule(sk, copy))
1167  goto wait_for_memory;
1168 
1169  err = skb_copy_to_page_nocache(sk, from, skb,
1170  pfrag->page,
1171  pfrag->offset,
1172  copy);
1173  if (err)
1174  goto do_error;
1175 
1176  /* Update the skb. */
1177  if (merge) {
1178  skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1179  } else {
1180  skb_fill_page_desc(skb, i, pfrag->page,
1181  pfrag->offset, copy);
1182  get_page(pfrag->page);
1183  }
1184  pfrag->offset += copy;
1185  }
1186 
1187  if (!copied)
1188  TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1189 
1190  tp->write_seq += copy;
1191  TCP_SKB_CB(skb)->end_seq += copy;
1192  skb_shinfo(skb)->gso_segs = 0;
1193 
1194  from += copy;
1195  copied += copy;
1196  if ((seglen -= copy) == 0 && iovlen == 0)
1197  goto out;
1198 
1199  if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1200  continue;
1201 
1202  if (forced_push(tp)) {
1203  tcp_mark_push(tp, skb);
1205  } else if (skb == tcp_send_head(sk))
1206  tcp_push_one(sk, mss_now);
1207  continue;
1208 
1209 wait_for_sndbuf:
1210  set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1211 wait_for_memory:
1212  if (copied)
1213  tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1214 
1215  if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1216  goto do_error;
1217 
1218  mss_now = tcp_send_mss(sk, &size_goal, flags);
1219  }
1220  }
1221 
1222 out:
1223  if (copied)
1224  tcp_push(sk, flags, mss_now, tp->nonagle);
1225  release_sock(sk);
1226  return copied + copied_syn;
1227 
1228 do_fault:
1229  if (!skb->len) {
1230  tcp_unlink_write_queue(skb, sk);
1231  /* It is the one place in all of TCP, except connection
1232  * reset, where we can be unlinking the send_head.
1233  */
1234  tcp_check_send_head(sk, skb);
1235  sk_wmem_free_skb(sk, skb);
1236  }
1237 
1238 do_error:
1239  if (copied + copied_syn)
1240  goto out;
1241 out_err:
1242  err = sk_stream_error(sk, flags, err);
1243  release_sock(sk);
1244  return err;
1245 }
1247 
1248 /*
1249  * Handle reading urgent data. BSD has very simple semantics for
1250  * this, no blocking and very strange errors 8)
1251  */
1252 
1253 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1254 {
1255  struct tcp_sock *tp = tcp_sk(sk);
1256 
1257  /* No URG data to read. */
1258  if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1259  tp->urg_data == TCP_URG_READ)
1260  return -EINVAL; /* Yes this is right ! */
1261 
1262  if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1263  return -ENOTCONN;
1264 
1265  if (tp->urg_data & TCP_URG_VALID) {
1266  int err = 0;
1267  char c = tp->urg_data;
1268 
1269  if (!(flags & MSG_PEEK))
1270  tp->urg_data = TCP_URG_READ;
1271 
1272  /* Read urgent data. */
1273  msg->msg_flags |= MSG_OOB;
1274 
1275  if (len > 0) {
1276  if (!(flags & MSG_TRUNC))
1277  err = memcpy_toiovec(msg->msg_iov, &c, 1);
1278  len = 1;
1279  } else
1280  msg->msg_flags |= MSG_TRUNC;
1281 
1282  return err ? -EFAULT : len;
1283  }
1284 
1285  if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1286  return 0;
1287 
1288  /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1289  * the available implementations agree in this case:
1290  * this call should never block, independent of the
1291  * blocking state of the socket.
1292  * Mike <[email protected]>
1293  */
1294  return -EAGAIN;
1295 }
1296 
1297 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1298 {
1299  struct sk_buff *skb;
1300  int copied = 0, err = 0;
1301 
1302  /* XXX -- need to support SO_PEEK_OFF */
1303 
1304  skb_queue_walk(&sk->sk_write_queue, skb) {
1305  err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1306  if (err)
1307  break;
1308 
1309  copied += skb->len;
1310  }
1311 
1312  return err ?: copied;
1313 }
1314 
1315 /* Clean up the receive buffer for full frames taken by the user,
1316  * then send an ACK if necessary. COPIED is the number of bytes
1317  * tcp_recvmsg has given to the user so far, it speeds up the
1318  * calculation of whether or not we must ACK for the sake of
1319  * a window update.
1320  */
1321 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1322 {
1323  struct tcp_sock *tp = tcp_sk(sk);
1324  bool time_to_ack = false;
1325 
1326  struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1327 
1328  WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1329  "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1330  tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1331 
1332  if (inet_csk_ack_scheduled(sk)) {
1333  const struct inet_connection_sock *icsk = inet_csk(sk);
1334  /* Delayed ACKs frequently hit locked sockets during bulk
1335  * receive. */
1336  if (icsk->icsk_ack.blocked ||
1337  /* Once-per-two-segments ACK was not sent by tcp_input.c */
1338  tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1339  /*
1340  * If this read emptied read buffer, we send ACK, if
1341  * connection is not bidirectional, user drained
1342  * receive buffer and there was a small segment
1343  * in queue.
1344  */
1345  (copied > 0 &&
1346  ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1347  ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1348  !icsk->icsk_ack.pingpong)) &&
1349  !atomic_read(&sk->sk_rmem_alloc)))
1350  time_to_ack = true;
1351  }
1352 
1353  /* We send an ACK if we can now advertise a non-zero window
1354  * which has been raised "significantly".
1355  *
1356  * Even if window raised up to infinity, do not send window open ACK
1357  * in states, where we will not receive more. It is useless.
1358  */
1359  if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1360  __u32 rcv_window_now = tcp_receive_window(tp);
1361 
1362  /* Optimize, __tcp_select_window() is not cheap. */
1363  if (2*rcv_window_now <= tp->window_clamp) {
1364  __u32 new_window = __tcp_select_window(sk);
1365 
1366  /* Send ACK now, if this read freed lots of space
1367  * in our buffer. Certainly, new_window is new window.
1368  * We can advertise it now, if it is not less than current one.
1369  * "Lots" means "at least twice" here.
1370  */
1371  if (new_window && new_window >= 2 * rcv_window_now)
1372  time_to_ack = true;
1373  }
1374  }
1375  if (time_to_ack)
1376  tcp_send_ack(sk);
1377 }
1378 
1379 static void tcp_prequeue_process(struct sock *sk)
1380 {
1381  struct sk_buff *skb;
1382  struct tcp_sock *tp = tcp_sk(sk);
1383 
1385 
1386  /* RX process wants to run with disabled BHs, though it is not
1387  * necessary */
1388  local_bh_disable();
1389  while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1390  sk_backlog_rcv(sk, skb);
1391  local_bh_enable();
1392 
1393  /* Clear memory counter. */
1394  tp->ucopy.memory = 0;
1395 }
1396 
1397 #ifdef CONFIG_NET_DMA
1398 static void tcp_service_net_dma(struct sock *sk, bool wait)
1399 {
1401  dma_cookie_t last_issued;
1402  struct tcp_sock *tp = tcp_sk(sk);
1403 
1404  if (!tp->ucopy.dma_chan)
1405  return;
1406 
1407  last_issued = tp->ucopy.dma_cookie;
1408  dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1409 
1410  do {
1411  if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1412  last_issued, &done,
1413  &used) == DMA_SUCCESS) {
1414  /* Safe to free early-copied skbs now */
1415  __skb_queue_purge(&sk->sk_async_wait_queue);
1416  break;
1417  } else {
1418  struct sk_buff *skb;
1419  while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1420  (dma_async_is_complete(skb->dma_cookie, done,
1421  used) == DMA_SUCCESS)) {
1422  __skb_dequeue(&sk->sk_async_wait_queue);
1423  kfree_skb(skb);
1424  }
1425  }
1426  } while (wait);
1427 }
1428 #endif
1429 
1430 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1431 {
1432  struct sk_buff *skb;
1433  u32 offset;
1434 
1435  skb_queue_walk(&sk->sk_receive_queue, skb) {
1436  offset = seq - TCP_SKB_CB(skb)->seq;
1437  if (tcp_hdr(skb)->syn)
1438  offset--;
1439  if (offset < skb->len || tcp_hdr(skb)->fin) {
1440  *off = offset;
1441  return skb;
1442  }
1443  }
1444  return NULL;
1445 }
1446 
1447 /*
1448  * This routine provides an alternative to tcp_recvmsg() for routines
1449  * that would like to handle copying from skbuffs directly in 'sendfile'
1450  * fashion.
1451  * Note:
1452  * - It is assumed that the socket was locked by the caller.
1453  * - The routine does not block.
1454  * - At present, there is no support for reading OOB data
1455  * or for 'peeking' the socket using this routine
1456  * (although both would be easy to implement).
1457  */
1459  sk_read_actor_t recv_actor)
1460 {
1461  struct sk_buff *skb;
1462  struct tcp_sock *tp = tcp_sk(sk);
1463  u32 seq = tp->copied_seq;
1464  u32 offset;
1465  int copied = 0;
1466 
1467  if (sk->sk_state == TCP_LISTEN)
1468  return -ENOTCONN;
1469  while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1470  if (offset < skb->len) {
1471  int used;
1472  size_t len;
1473 
1474  len = skb->len - offset;
1475  /* Stop reading if we hit a patch of urgent data */
1476  if (tp->urg_data) {
1477  u32 urg_offset = tp->urg_seq - seq;
1478  if (urg_offset < len)
1479  len = urg_offset;
1480  if (!len)
1481  break;
1482  }
1483  used = recv_actor(desc, skb, offset, len);
1484  if (used < 0) {
1485  if (!copied)
1486  copied = used;
1487  break;
1488  } else if (used <= len) {
1489  seq += used;
1490  copied += used;
1491  offset += used;
1492  }
1493  /*
1494  * If recv_actor drops the lock (e.g. TCP splice
1495  * receive) the skb pointer might be invalid when
1496  * getting here: tcp_collapse might have deleted it
1497  * while aggregating skbs from the socket queue.
1498  */
1499  skb = tcp_recv_skb(sk, seq-1, &offset);
1500  if (!skb || (offset+1 != skb->len))
1501  break;
1502  }
1503  if (tcp_hdr(skb)->fin) {
1504  sk_eat_skb(sk, skb, false);
1505  ++seq;
1506  break;
1507  }
1508  sk_eat_skb(sk, skb, false);
1509  if (!desc->count)
1510  break;
1511  tp->copied_seq = seq;
1512  }
1513  tp->copied_seq = seq;
1514 
1516 
1517  /* Clean up data we have read: This will do ACK frames. */
1518  if (copied > 0)
1519  tcp_cleanup_rbuf(sk, copied);
1520  return copied;
1521 }
1523 
1524 /*
1525  * This routine copies from a sock struct into the user buffer.
1526  *
1527  * Technical note: in 2.3 we work on _locked_ socket, so that
1528  * tricks with *seq access order and skb->users are not required.
1529  * Probably, code can be easily improved even more.
1530  */
1531 
1532 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1533  size_t len, int nonblock, int flags, int *addr_len)
1534 {
1535  struct tcp_sock *tp = tcp_sk(sk);
1536  int copied = 0;
1537  u32 peek_seq;
1538  u32 *seq;
1539  unsigned long used;
1540  int err;
1541  int target; /* Read at least this many bytes */
1542  long timeo;
1543  struct task_struct *user_recv = NULL;
1544  bool copied_early = false;
1545  struct sk_buff *skb;
1546  u32 urg_hole = 0;
1547 
1548  lock_sock(sk);
1549 
1550  err = -ENOTCONN;
1551  if (sk->sk_state == TCP_LISTEN)
1552  goto out;
1553 
1554  timeo = sock_rcvtimeo(sk, nonblock);
1555 
1556  /* Urgent data needs to be handled specially. */
1557  if (flags & MSG_OOB)
1558  goto recv_urg;
1559 
1560  if (unlikely(tp->repair)) {
1561  err = -EPERM;
1562  if (!(flags & MSG_PEEK))
1563  goto out;
1564 
1565  if (tp->repair_queue == TCP_SEND_QUEUE)
1566  goto recv_sndq;
1567 
1568  err = -EINVAL;
1569  if (tp->repair_queue == TCP_NO_QUEUE)
1570  goto out;
1571 
1572  /* 'common' recv queue MSG_PEEK-ing */
1573  }
1574 
1575  seq = &tp->copied_seq;
1576  if (flags & MSG_PEEK) {
1577  peek_seq = tp->copied_seq;
1578  seq = &peek_seq;
1579  }
1580 
1581  target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1582 
1583 #ifdef CONFIG_NET_DMA
1584  tp->ucopy.dma_chan = NULL;
1585  preempt_disable();
1586  skb = skb_peek_tail(&sk->sk_receive_queue);
1587  {
1588  int available = 0;
1589 
1590  if (skb)
1591  available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1592  if ((available < target) &&
1593  (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1597  tp->ucopy.pinned_list =
1598  dma_pin_iovec_pages(msg->msg_iov, len);
1599  } else {
1601  }
1602  }
1603 #endif
1604 
1605  do {
1606  u32 offset;
1607 
1608  /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1609  if (tp->urg_data && tp->urg_seq == *seq) {
1610  if (copied)
1611  break;
1612  if (signal_pending(current)) {
1613  copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1614  break;
1615  }
1616  }
1617 
1618  /* Next get a buffer. */
1619 
1620  skb_queue_walk(&sk->sk_receive_queue, skb) {
1621  /* Now that we have two receive queues this
1622  * shouldn't happen.
1623  */
1624  if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1625  "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1626  *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1627  flags))
1628  break;
1629 
1630  offset = *seq - TCP_SKB_CB(skb)->seq;
1631  if (tcp_hdr(skb)->syn)
1632  offset--;
1633  if (offset < skb->len)
1634  goto found_ok_skb;
1635  if (tcp_hdr(skb)->fin)
1636  goto found_fin_ok;
1637  WARN(!(flags & MSG_PEEK),
1638  "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1639  *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1640  }
1641 
1642  /* Well, if we have backlog, try to process it now yet. */
1643 
1644  if (copied >= target && !sk->sk_backlog.tail)
1645  break;
1646 
1647  if (copied) {
1648  if (sk->sk_err ||
1649  sk->sk_state == TCP_CLOSE ||
1650  (sk->sk_shutdown & RCV_SHUTDOWN) ||
1651  !timeo ||
1652  signal_pending(current))
1653  break;
1654  } else {
1655  if (sock_flag(sk, SOCK_DONE))
1656  break;
1657 
1658  if (sk->sk_err) {
1659  copied = sock_error(sk);
1660  break;
1661  }
1662 
1663  if (sk->sk_shutdown & RCV_SHUTDOWN)
1664  break;
1665 
1666  if (sk->sk_state == TCP_CLOSE) {
1667  if (!sock_flag(sk, SOCK_DONE)) {
1668  /* This occurs when user tries to read
1669  * from never connected socket.
1670  */
1671  copied = -ENOTCONN;
1672  break;
1673  }
1674  break;
1675  }
1676 
1677  if (!timeo) {
1678  copied = -EAGAIN;
1679  break;
1680  }
1681 
1682  if (signal_pending(current)) {
1683  copied = sock_intr_errno(timeo);
1684  break;
1685  }
1686  }
1687 
1688  tcp_cleanup_rbuf(sk, copied);
1689 
1690  if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1691  /* Install new reader */
1692  if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1693  user_recv = current;
1694  tp->ucopy.task = user_recv;
1695  tp->ucopy.iov = msg->msg_iov;
1696  }
1697 
1698  tp->ucopy.len = len;
1699 
1700  WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1701  !(flags & (MSG_PEEK | MSG_TRUNC)));
1702 
1703  /* Ugly... If prequeue is not empty, we have to
1704  * process it before releasing socket, otherwise
1705  * order will be broken at second iteration.
1706  * More elegant solution is required!!!
1707  *
1708  * Look: we have the following (pseudo)queues:
1709  *
1710  * 1. packets in flight
1711  * 2. backlog
1712  * 3. prequeue
1713  * 4. receive_queue
1714  *
1715  * Each queue can be processed only if the next ones
1716  * are empty. At this point we have empty receive_queue.
1717  * But prequeue _can_ be not empty after 2nd iteration,
1718  * when we jumped to start of loop because backlog
1719  * processing added something to receive_queue.
1720  * We cannot release_sock(), because backlog contains
1721  * packets arrived _after_ prequeued ones.
1722  *
1723  * Shortly, algorithm is clear --- to process all
1724  * the queues in order. We could make it more directly,
1725  * requeueing packets from backlog to prequeue, if
1726  * is not empty. It is more elegant, but eats cycles,
1727  * unfortunately.
1728  */
1729  if (!skb_queue_empty(&tp->ucopy.prequeue))
1730  goto do_prequeue;
1731 
1732  /* __ Set realtime policy in scheduler __ */
1733  }
1734 
1735 #ifdef CONFIG_NET_DMA
1736  if (tp->ucopy.dma_chan) {
1737  if (tp->rcv_wnd == 0 &&
1738  !skb_queue_empty(&sk->sk_async_wait_queue)) {
1739  tcp_service_net_dma(sk, true);
1740  tcp_cleanup_rbuf(sk, copied);
1741  } else
1742  dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1743  }
1744 #endif
1745  if (copied >= target) {
1746  /* Do not sleep, just process backlog. */
1747  release_sock(sk);
1748  lock_sock(sk);
1749  } else
1750  sk_wait_data(sk, &timeo);
1751 
1752 #ifdef CONFIG_NET_DMA
1753  tcp_service_net_dma(sk, false); /* Don't block */
1754  tp->ucopy.wakeup = 0;
1755 #endif
1756 
1757  if (user_recv) {
1758  int chunk;
1759 
1760  /* __ Restore normal policy in scheduler __ */
1761 
1762  if ((chunk = len - tp->ucopy.len) != 0) {
1764  len -= chunk;
1765  copied += chunk;
1766  }
1767 
1768  if (tp->rcv_nxt == tp->copied_seq &&
1769  !skb_queue_empty(&tp->ucopy.prequeue)) {
1770 do_prequeue:
1771  tcp_prequeue_process(sk);
1772 
1773  if ((chunk = len - tp->ucopy.len) != 0) {
1775  len -= chunk;
1776  copied += chunk;
1777  }
1778  }
1779  }
1780  if ((flags & MSG_PEEK) &&
1781  (peek_seq - copied - urg_hole != tp->copied_seq)) {
1782  net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1783  current->comm,
1784  task_pid_nr(current));
1785  peek_seq = tp->copied_seq;
1786  }
1787  continue;
1788 
1789  found_ok_skb:
1790  /* Ok so how much can we use? */
1791  used = skb->len - offset;
1792  if (len < used)
1793  used = len;
1794 
1795  /* Do we have urgent data here? */
1796  if (tp->urg_data) {
1797  u32 urg_offset = tp->urg_seq - *seq;
1798  if (urg_offset < used) {
1799  if (!urg_offset) {
1800  if (!sock_flag(sk, SOCK_URGINLINE)) {
1801  ++*seq;
1802  urg_hole++;
1803  offset++;
1804  used--;
1805  if (!used)
1806  goto skip_copy;
1807  }
1808  } else
1809  used = urg_offset;
1810  }
1811  }
1812 
1813  if (!(flags & MSG_TRUNC)) {
1814 #ifdef CONFIG_NET_DMA
1815  if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1816  tp->ucopy.dma_chan = net_dma_find_channel();
1817 
1818  if (tp->ucopy.dma_chan) {
1819  tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1820  tp->ucopy.dma_chan, skb, offset,
1821  msg->msg_iov, used,
1822  tp->ucopy.pinned_list);
1823 
1824  if (tp->ucopy.dma_cookie < 0) {
1825 
1826  pr_alert("%s: dma_cookie < 0\n",
1827  __func__);
1828 
1829  /* Exception. Bailout! */
1830  if (!copied)
1831  copied = -EFAULT;
1832  break;
1833  }
1834 
1835  dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1836 
1837  if ((offset + used) == skb->len)
1838  copied_early = true;
1839 
1840  } else
1841 #endif
1842  {
1843  err = skb_copy_datagram_iovec(skb, offset,
1844  msg->msg_iov, used);
1845  if (err) {
1846  /* Exception. Bailout! */
1847  if (!copied)
1848  copied = -EFAULT;
1849  break;
1850  }
1851  }
1852  }
1853 
1854  *seq += used;
1855  copied += used;
1856  len -= used;
1857 
1859 
1860 skip_copy:
1861  if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1862  tp->urg_data = 0;
1863  tcp_fast_path_check(sk);
1864  }
1865  if (used + offset < skb->len)
1866  continue;
1867 
1868  if (tcp_hdr(skb)->fin)
1869  goto found_fin_ok;
1870  if (!(flags & MSG_PEEK)) {
1871  sk_eat_skb(sk, skb, copied_early);
1872  copied_early = false;
1873  }
1874  continue;
1875 
1876  found_fin_ok:
1877  /* Process the FIN. */
1878  ++*seq;
1879  if (!(flags & MSG_PEEK)) {
1880  sk_eat_skb(sk, skb, copied_early);
1881  copied_early = false;
1882  }
1883  break;
1884  } while (len > 0);
1885 
1886  if (user_recv) {
1887  if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1888  int chunk;
1889 
1890  tp->ucopy.len = copied > 0 ? len : 0;
1891 
1892  tcp_prequeue_process(sk);
1893 
1894  if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1896  len -= chunk;
1897  copied += chunk;
1898  }
1899  }
1900 
1901  tp->ucopy.task = NULL;
1902  tp->ucopy.len = 0;
1903  }
1904 
1905 #ifdef CONFIG_NET_DMA
1906  tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1907  tp->ucopy.dma_chan = NULL;
1908 
1909  if (tp->ucopy.pinned_list) {
1910  dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1911  tp->ucopy.pinned_list = NULL;
1912  }
1913 #endif
1914 
1915  /* According to UNIX98, msg_name/msg_namelen are ignored
1916  * on connected socket. I was just happy when found this 8) --ANK
1917  */
1918 
1919  /* Clean up data we have read: This will do ACK frames. */
1920  tcp_cleanup_rbuf(sk, copied);
1921 
1922  release_sock(sk);
1923  return copied;
1924 
1925 out:
1926  release_sock(sk);
1927  return err;
1928 
1929 recv_urg:
1930  err = tcp_recv_urg(sk, msg, len, flags);
1931  goto out;
1932 
1933 recv_sndq:
1934  err = tcp_peek_sndq(sk, msg, len);
1935  goto out;
1936 }
1938 
1939 void tcp_set_state(struct sock *sk, int state)
1940 {
1941  int oldstate = sk->sk_state;
1942 
1943  switch (state) {
1944  case TCP_ESTABLISHED:
1945  if (oldstate != TCP_ESTABLISHED)
1946  TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1947  break;
1948 
1949  case TCP_CLOSE:
1950  if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1951  TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1952 
1953  sk->sk_prot->unhash(sk);
1954  if (inet_csk(sk)->icsk_bind_hash &&
1956  inet_put_port(sk);
1957  /* fall through */
1958  default:
1959  if (oldstate == TCP_ESTABLISHED)
1960  TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1961  }
1962 
1963  /* Change state AFTER socket is unhashed to avoid closed
1964  * socket sitting in hash tables.
1965  */
1966  sk->sk_state = state;
1967 
1968 #ifdef STATE_TRACE
1969  SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1970 #endif
1971 }
1973 
1974 /*
1975  * State processing on a close. This implements the state shift for
1976  * sending our FIN frame. Note that we only send a FIN for some
1977  * states. A shutdown() may have already sent the FIN, or we may be
1978  * closed.
1979  */
1980 
1981 static const unsigned char new_state[16] = {
1982  /* current state: new state: action: */
1983  /* (Invalid) */ TCP_CLOSE,
1984  /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1985  /* TCP_SYN_SENT */ TCP_CLOSE,
1986  /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1987  /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1988  /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1989  /* TCP_TIME_WAIT */ TCP_CLOSE,
1990  /* TCP_CLOSE */ TCP_CLOSE,
1991  /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1992  /* TCP_LAST_ACK */ TCP_LAST_ACK,
1993  /* TCP_LISTEN */ TCP_CLOSE,
1994  /* TCP_CLOSING */ TCP_CLOSING,
1995 };
1996 
1997 static int tcp_close_state(struct sock *sk)
1998 {
1999  int next = (int)new_state[sk->sk_state];
2000  int ns = next & TCP_STATE_MASK;
2001 
2002  tcp_set_state(sk, ns);
2003 
2004  return next & TCP_ACTION_FIN;
2005 }
2006 
2007 /*
2008  * Shutdown the sending side of a connection. Much like close except
2009  * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2010  */
2011 
2012 void tcp_shutdown(struct sock *sk, int how)
2013 {
2014  /* We need to grab some memory, and put together a FIN,
2015  * and then put it into the queue to be sent.
2016  * Tim MacKenzie([email protected]) 4 Dec '92.
2017  */
2018  if (!(how & SEND_SHUTDOWN))
2019  return;
2020 
2021  /* If we've already sent a FIN, or it's a closed state, skip this. */
2022  if ((1 << sk->sk_state) &
2025  /* Clear out any half completed packets. FIN if needed. */
2026  if (tcp_close_state(sk))
2027  tcp_send_fin(sk);
2028  }
2029 }
2031 
2032 bool tcp_check_oom(struct sock *sk, int shift)
2033 {
2034  bool too_many_orphans, out_of_socket_memory;
2035 
2036  too_many_orphans = tcp_too_many_orphans(sk, shift);
2037  out_of_socket_memory = tcp_out_of_memory(sk);
2038 
2039  if (too_many_orphans)
2040  net_info_ratelimited("too many orphaned sockets\n");
2041  if (out_of_socket_memory)
2042  net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2043  return too_many_orphans || out_of_socket_memory;
2044 }
2045 
2046 void tcp_close(struct sock *sk, long timeout)
2047 {
2048  struct sk_buff *skb;
2049  int data_was_unread = 0;
2050  int state;
2051 
2052  lock_sock(sk);
2053  sk->sk_shutdown = SHUTDOWN_MASK;
2054 
2055  if (sk->sk_state == TCP_LISTEN) {
2056  tcp_set_state(sk, TCP_CLOSE);
2057 
2058  /* Special case. */
2060 
2061  goto adjudge_to_death;
2062  }
2063 
2064  /* We need to flush the recv. buffs. We do this only on the
2065  * descriptor close, not protocol-sourced closes, because the
2066  * reader process may not have drained the data yet!
2067  */
2068  while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2069  u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2070  tcp_hdr(skb)->fin;
2071  data_was_unread += len;
2072  __kfree_skb(skb);
2073  }
2074 
2075  sk_mem_reclaim(sk);
2076 
2077  /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2078  if (sk->sk_state == TCP_CLOSE)
2079  goto adjudge_to_death;
2080 
2081  /* As outlined in RFC 2525, section 2.17, we send a RST here because
2082  * data was lost. To witness the awful effects of the old behavior of
2083  * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2084  * GET in an FTP client, suspend the process, wait for the client to
2085  * advertise a zero window, then kill -9 the FTP client, wheee...
2086  * Note: timeout is always zero in such a case.
2087  */
2088  if (unlikely(tcp_sk(sk)->repair)) {
2089  sk->sk_prot->disconnect(sk, 0);
2090  } else if (data_was_unread) {
2091  /* Unread data was tossed, zap the connection. */
2093  tcp_set_state(sk, TCP_CLOSE);
2095  } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2096  /* Check zero linger _after_ checking for unread data. */
2097  sk->sk_prot->disconnect(sk, 0);
2099  } else if (tcp_close_state(sk)) {
2100  /* We FIN if the application ate all the data before
2101  * zapping the connection.
2102  */
2103 
2104  /* RED-PEN. Formally speaking, we have broken TCP state
2105  * machine. State transitions:
2106  *
2107  * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2108  * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2109  * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2110  *
2111  * are legal only when FIN has been sent (i.e. in window),
2112  * rather than queued out of window. Purists blame.
2113  *
2114  * F.e. "RFC state" is ESTABLISHED,
2115  * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2116  *
2117  * The visible declinations are that sometimes
2118  * we enter time-wait state, when it is not required really
2119  * (harmless), do not send active resets, when they are
2120  * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2121  * they look as CLOSING or LAST_ACK for Linux)
2122  * Probably, I missed some more holelets.
2123  * --ANK
2124  * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2125  * in a single packet! (May consider it later but will
2126  * probably need API support or TCP_CORK SYN-ACK until
2127  * data is written and socket is closed.)
2128  */
2129  tcp_send_fin(sk);
2130  }
2131 
2132  sk_stream_wait_close(sk, timeout);
2133 
2134 adjudge_to_death:
2135  state = sk->sk_state;
2136  sock_hold(sk);
2137  sock_orphan(sk);
2138 
2139  /* It is the last release_sock in its life. It will remove backlog. */
2140  release_sock(sk);
2141 
2142 
2143  /* Now socket is owned by kernel and we acquire BH lock
2144  to finish close. No need to check for user refs.
2145  */
2146  local_bh_disable();
2147  bh_lock_sock(sk);
2149 
2150  percpu_counter_inc(sk->sk_prot->orphan_count);
2151 
2152  /* Have we already been destroyed by a softirq or backlog? */
2153  if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2154  goto out;
2155 
2156  /* This is a (useful) BSD violating of the RFC. There is a
2157  * problem with TCP as specified in that the other end could
2158  * keep a socket open forever with no application left this end.
2159  * We use a 3 minute timeout (about the same as BSD) then kill
2160  * our end. If they send after that then tough - BUT: long enough
2161  * that we won't make the old 4*rto = almost no time - whoops
2162  * reset mistake.
2163  *
2164  * Nope, it was not mistake. It is really desired behaviour
2165  * f.e. on http servers, when such sockets are useless, but
2166  * consume significant resources. Let's do it with special
2167  * linger2 option. --ANK
2168  */
2169 
2170  if (sk->sk_state == TCP_FIN_WAIT2) {
2171  struct tcp_sock *tp = tcp_sk(sk);
2172  if (tp->linger2 < 0) {
2173  tcp_set_state(sk, TCP_CLOSE);
2175  NET_INC_STATS_BH(sock_net(sk),
2177  } else {
2178  const int tmo = tcp_fin_time(sk);
2179 
2180  if (tmo > TCP_TIMEWAIT_LEN) {
2182  tmo - TCP_TIMEWAIT_LEN);
2183  } else {
2184  tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2185  goto out;
2186  }
2187  }
2188  }
2189  if (sk->sk_state != TCP_CLOSE) {
2190  sk_mem_reclaim(sk);
2191  if (tcp_check_oom(sk, 0)) {
2192  tcp_set_state(sk, TCP_CLOSE);
2194  NET_INC_STATS_BH(sock_net(sk),
2196  }
2197  }
2198 
2199  if (sk->sk_state == TCP_CLOSE) {
2200  struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2201  /* We could get here with a non-NULL req if the socket is
2202  * aborted (e.g., closed with unread data) before 3WHS
2203  * finishes.
2204  */
2205  if (req != NULL)
2206  reqsk_fastopen_remove(sk, req, false);
2208  }
2209  /* Otherwise, socket is reprieved until protocol close. */
2210 
2211 out:
2212  bh_unlock_sock(sk);
2213  local_bh_enable();
2214  sock_put(sk);
2215 }
2217 
2218 /* These states need RST on ABORT according to RFC793 */
2219 
2220 static inline bool tcp_need_reset(int state)
2221 {
2222  return (1 << state) &
2225 }
2226 
2227 int tcp_disconnect(struct sock *sk, int flags)
2228 {
2229  struct inet_sock *inet = inet_sk(sk);
2230  struct inet_connection_sock *icsk = inet_csk(sk);
2231  struct tcp_sock *tp = tcp_sk(sk);
2232  int err = 0;
2233  int old_state = sk->sk_state;
2234 
2235  if (old_state != TCP_CLOSE)
2236  tcp_set_state(sk, TCP_CLOSE);
2237 
2238  /* ABORT function of RFC793 */
2239  if (old_state == TCP_LISTEN) {
2241  } else if (unlikely(tp->repair)) {
2242  sk->sk_err = ECONNABORTED;
2243  } else if (tcp_need_reset(old_state) ||
2244  (tp->snd_nxt != tp->write_seq &&
2245  (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2246  /* The last check adjusts for discrepancy of Linux wrt. RFC
2247  * states
2248  */
2249  tcp_send_active_reset(sk, gfp_any());
2250  sk->sk_err = ECONNRESET;
2251  } else if (old_state == TCP_SYN_SENT)
2252  sk->sk_err = ECONNRESET;
2253 
2254  tcp_clear_xmit_timers(sk);
2255  __skb_queue_purge(&sk->sk_receive_queue);
2256  tcp_write_queue_purge(sk);
2257  __skb_queue_purge(&tp->out_of_order_queue);
2258 #ifdef CONFIG_NET_DMA
2259  __skb_queue_purge(&sk->sk_async_wait_queue);
2260 #endif
2261 
2262  inet->inet_dport = 0;
2263 
2264  if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2265  inet_reset_saddr(sk);
2266 
2267  sk->sk_shutdown = 0;
2268  sock_reset_flag(sk, SOCK_DONE);
2269  tp->srtt = 0;
2270  if ((tp->write_seq += tp->max_window + 2) == 0)
2271  tp->write_seq = 1;
2272  icsk->icsk_backoff = 0;
2273  tp->snd_cwnd = 2;
2274  icsk->icsk_probes_out = 0;
2275  tp->packets_out = 0;
2277  tp->snd_cwnd_cnt = 0;
2278  tp->bytes_acked = 0;
2279  tp->window_clamp = 0;
2280  tcp_set_ca_state(sk, TCP_CA_Open);
2281  tcp_clear_retrans(tp);
2282  inet_csk_delack_init(sk);
2283  tcp_init_send_head(sk);
2284  memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2285  __sk_dst_reset(sk);
2286 
2287  WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2288 
2289  sk->sk_error_report(sk);
2290  return err;
2291 }
2293 
2294 void tcp_sock_destruct(struct sock *sk)
2295 {
2296  inet_sock_destruct(sk);
2297 
2298  kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2299 }
2300 
2301 static inline bool tcp_can_repair_sock(const struct sock *sk)
2302 {
2303  return capable(CAP_NET_ADMIN) &&
2304  ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2305 }
2306 
2307 static int tcp_repair_options_est(struct tcp_sock *tp,
2308  struct tcp_repair_opt __user *optbuf, unsigned int len)
2309 {
2310  struct tcp_repair_opt opt;
2311 
2312  while (len >= sizeof(opt)) {
2313  if (copy_from_user(&opt, optbuf, sizeof(opt)))
2314  return -EFAULT;
2315 
2316  optbuf++;
2317  len -= sizeof(opt);
2318 
2319  switch (opt.opt_code) {
2320  case TCPOPT_MSS:
2321  tp->rx_opt.mss_clamp = opt.opt_val;
2322  break;
2323  case TCPOPT_WINDOW:
2324  {
2325  u16 snd_wscale = opt.opt_val & 0xFFFF;
2326  u16 rcv_wscale = opt.opt_val >> 16;
2327 
2328  if (snd_wscale > 14 || rcv_wscale > 14)
2329  return -EFBIG;
2330 
2331  tp->rx_opt.snd_wscale = snd_wscale;
2332  tp->rx_opt.rcv_wscale = rcv_wscale;
2333  tp->rx_opt.wscale_ok = 1;
2334  }
2335  break;
2336  case TCPOPT_SACK_PERM:
2337  if (opt.opt_val != 0)
2338  return -EINVAL;
2339 
2340  tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2341  if (sysctl_tcp_fack)
2342  tcp_enable_fack(tp);
2343  break;
2344  case TCPOPT_TIMESTAMP:
2345  if (opt.opt_val != 0)
2346  return -EINVAL;
2347 
2348  tp->rx_opt.tstamp_ok = 1;
2349  break;
2350  }
2351  }
2352 
2353  return 0;
2354 }
2355 
2356 /*
2357  * Socket option code for TCP.
2358  */
2359 static int do_tcp_setsockopt(struct sock *sk, int level,
2360  int optname, char __user *optval, unsigned int optlen)
2361 {
2362  struct tcp_sock *tp = tcp_sk(sk);
2363  struct inet_connection_sock *icsk = inet_csk(sk);
2364  int val;
2365  int err = 0;
2366 
2367  /* These are data/string values, all the others are ints */
2368  switch (optname) {
2369  case TCP_CONGESTION: {
2370  char name[TCP_CA_NAME_MAX];
2371 
2372  if (optlen < 1)
2373  return -EINVAL;
2374 
2375  val = strncpy_from_user(name, optval,
2376  min_t(long, TCP_CA_NAME_MAX-1, optlen));
2377  if (val < 0)
2378  return -EFAULT;
2379  name[val] = 0;
2380 
2381  lock_sock(sk);
2382  err = tcp_set_congestion_control(sk, name);
2383  release_sock(sk);
2384  return err;
2385  }
2386  case TCP_COOKIE_TRANSACTIONS: {
2387  struct tcp_cookie_transactions ctd;
2388  struct tcp_cookie_values *cvp = NULL;
2389 
2390  if (sizeof(ctd) > optlen)
2391  return -EINVAL;
2392  if (copy_from_user(&ctd, optval, sizeof(ctd)))
2393  return -EFAULT;
2394 
2395  if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2396  ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2397  return -EINVAL;
2398 
2399  if (ctd.tcpct_cookie_desired == 0) {
2400  /* default to global value */
2401  } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2402  ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2403  ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2404  return -EINVAL;
2405  }
2406 
2407  if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2408  /* Supercedes all other values */
2409  lock_sock(sk);
2410  if (tp->cookie_values != NULL) {
2411  kref_put(&tp->cookie_values->kref,
2412  tcp_cookie_values_release);
2413  tp->cookie_values = NULL;
2414  }
2415  tp->rx_opt.cookie_in_always = 0; /* false */
2416  tp->rx_opt.cookie_out_never = 1; /* true */
2417  release_sock(sk);
2418  return err;
2419  }
2420 
2421  /* Allocate ancillary memory before locking.
2422  */
2423  if (ctd.tcpct_used > 0 ||
2424  (tp->cookie_values == NULL &&
2425  (sysctl_tcp_cookie_size > 0 ||
2426  ctd.tcpct_cookie_desired > 0 ||
2427  ctd.tcpct_s_data_desired > 0))) {
2428  cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2429  GFP_KERNEL);
2430  if (cvp == NULL)
2431  return -ENOMEM;
2432 
2433  kref_init(&cvp->kref);
2434  }
2435  lock_sock(sk);
2436  tp->rx_opt.cookie_in_always =
2437  (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2438  tp->rx_opt.cookie_out_never = 0; /* false */
2439 
2440  if (tp->cookie_values != NULL) {
2441  if (cvp != NULL) {
2442  /* Changed values are recorded by a changed
2443  * pointer, ensuring the cookie will differ,
2444  * without separately hashing each value later.
2445  */
2446  kref_put(&tp->cookie_values->kref,
2447  tcp_cookie_values_release);
2448  } else {
2449  cvp = tp->cookie_values;
2450  }
2451  }
2452 
2453  if (cvp != NULL) {
2454  cvp->cookie_desired = ctd.tcpct_cookie_desired;
2455 
2456  if (ctd.tcpct_used > 0) {
2457  memcpy(cvp->s_data_payload, ctd.tcpct_value,
2458  ctd.tcpct_used);
2459  cvp->s_data_desired = ctd.tcpct_used;
2460  cvp->s_data_constant = 1; /* true */
2461  } else {
2462  /* No constant payload data. */
2463  cvp->s_data_desired = ctd.tcpct_s_data_desired;
2464  cvp->s_data_constant = 0; /* false */
2465  }
2466 
2467  tp->cookie_values = cvp;
2468  }
2469  release_sock(sk);
2470  return err;
2471  }
2472  default:
2473  /* fallthru */
2474  break;
2475  }
2476 
2477  if (optlen < sizeof(int))
2478  return -EINVAL;
2479 
2480  if (get_user(val, (int __user *)optval))
2481  return -EFAULT;
2482 
2483  lock_sock(sk);
2484 
2485  switch (optname) {
2486  case TCP_MAXSEG:
2487  /* Values greater than interface MTU won't take effect. However
2488  * at the point when this call is done we typically don't yet
2489  * know which interface is going to be used */
2490  if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2491  err = -EINVAL;
2492  break;
2493  }
2494  tp->rx_opt.user_mss = val;
2495  break;
2496 
2497  case TCP_NODELAY:
2498  if (val) {
2499  /* TCP_NODELAY is weaker than TCP_CORK, so that
2500  * this option on corked socket is remembered, but
2501  * it is not activated until cork is cleared.
2502  *
2503  * However, when TCP_NODELAY is set we make
2504  * an explicit push, which overrides even TCP_CORK
2505  * for currently queued segments.
2506  */
2508  tcp_push_pending_frames(sk);
2509  } else {
2510  tp->nonagle &= ~TCP_NAGLE_OFF;
2511  }
2512  break;
2513 
2515  if (val < 0 || val > 1)
2516  err = -EINVAL;
2517  else
2518  tp->thin_lto = val;
2519  break;
2520 
2521  case TCP_THIN_DUPACK:
2522  if (val < 0 || val > 1)
2523  err = -EINVAL;
2524  else
2525  tp->thin_dupack = val;
2526  if (tp->thin_dupack)
2527  tcp_disable_early_retrans(tp);
2528  break;
2529 
2530  case TCP_REPAIR:
2531  if (!tcp_can_repair_sock(sk))
2532  err = -EPERM;
2533  else if (val == 1) {
2534  tp->repair = 1;
2535  sk->sk_reuse = SK_FORCE_REUSE;
2536  tp->repair_queue = TCP_NO_QUEUE;
2537  } else if (val == 0) {
2538  tp->repair = 0;
2539  sk->sk_reuse = SK_NO_REUSE;
2541  } else
2542  err = -EINVAL;
2543 
2544  break;
2545 
2546  case TCP_REPAIR_QUEUE:
2547  if (!tp->repair)
2548  err = -EPERM;
2549  else if (val < TCP_QUEUES_NR)
2550  tp->repair_queue = val;
2551  else
2552  err = -EINVAL;
2553  break;
2554 
2555  case TCP_QUEUE_SEQ:
2556  if (sk->sk_state != TCP_CLOSE)
2557  err = -EPERM;
2558  else if (tp->repair_queue == TCP_SEND_QUEUE)
2559  tp->write_seq = val;
2560  else if (tp->repair_queue == TCP_RECV_QUEUE)
2561  tp->rcv_nxt = val;
2562  else
2563  err = -EINVAL;
2564  break;
2565 
2566  case TCP_REPAIR_OPTIONS:
2567  if (!tp->repair)
2568  err = -EINVAL;
2569  else if (sk->sk_state == TCP_ESTABLISHED)
2570  err = tcp_repair_options_est(tp,
2571  (struct tcp_repair_opt __user *)optval,
2572  optlen);
2573  else
2574  err = -EPERM;
2575  break;
2576 
2577  case TCP_CORK:
2578  /* When set indicates to always queue non-full frames.
2579  * Later the user clears this option and we transmit
2580  * any pending partial frames in the queue. This is
2581  * meant to be used alongside sendfile() to get properly
2582  * filled frames when the user (for example) must write
2583  * out headers with a write() call first and then use
2584  * sendfile to send out the data parts.
2585  *
2586  * TCP_CORK can be set together with TCP_NODELAY and it is
2587  * stronger than TCP_NODELAY.
2588  */
2589  if (val) {
2590  tp->nonagle |= TCP_NAGLE_CORK;
2591  } else {
2592  tp->nonagle &= ~TCP_NAGLE_CORK;
2593  if (tp->nonagle&TCP_NAGLE_OFF)
2594  tp->nonagle |= TCP_NAGLE_PUSH;
2595  tcp_push_pending_frames(sk);
2596  }
2597  break;
2598 
2599  case TCP_KEEPIDLE:
2600  if (val < 1 || val > MAX_TCP_KEEPIDLE)
2601  err = -EINVAL;
2602  else {
2603  tp->keepalive_time = val * HZ;
2604  if (sock_flag(sk, SOCK_KEEPOPEN) &&
2605  !((1 << sk->sk_state) &
2606  (TCPF_CLOSE | TCPF_LISTEN))) {
2607  u32 elapsed = keepalive_time_elapsed(tp);
2608  if (tp->keepalive_time > elapsed)
2609  elapsed = tp->keepalive_time - elapsed;
2610  else
2611  elapsed = 0;
2612  inet_csk_reset_keepalive_timer(sk, elapsed);
2613  }
2614  }
2615  break;
2616  case TCP_KEEPINTVL:
2617  if (val < 1 || val > MAX_TCP_KEEPINTVL)
2618  err = -EINVAL;
2619  else
2620  tp->keepalive_intvl = val * HZ;
2621  break;
2622  case TCP_KEEPCNT:
2623  if (val < 1 || val > MAX_TCP_KEEPCNT)
2624  err = -EINVAL;
2625  else
2626  tp->keepalive_probes = val;
2627  break;
2628  case TCP_SYNCNT:
2629  if (val < 1 || val > MAX_TCP_SYNCNT)
2630  err = -EINVAL;
2631  else
2632  icsk->icsk_syn_retries = val;
2633  break;
2634 
2635  case TCP_LINGER2:
2636  if (val < 0)
2637  tp->linger2 = -1;
2638  else if (val > sysctl_tcp_fin_timeout / HZ)
2639  tp->linger2 = 0;
2640  else
2641  tp->linger2 = val * HZ;
2642  break;
2643 
2644  case TCP_DEFER_ACCEPT:
2645  /* Translate value in seconds to number of retransmits */
2646  icsk->icsk_accept_queue.rskq_defer_accept =
2647  secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2648  TCP_RTO_MAX / HZ);
2649  break;
2650 
2651  case TCP_WINDOW_CLAMP:
2652  if (!val) {
2653  if (sk->sk_state != TCP_CLOSE) {
2654  err = -EINVAL;
2655  break;
2656  }
2657  tp->window_clamp = 0;
2658  } else
2659  tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2660  SOCK_MIN_RCVBUF / 2 : val;
2661  break;
2662 
2663  case TCP_QUICKACK:
2664  if (!val) {
2665  icsk->icsk_ack.pingpong = 1;
2666  } else {
2667  icsk->icsk_ack.pingpong = 0;
2668  if ((1 << sk->sk_state) &
2670  inet_csk_ack_scheduled(sk)) {
2671  icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2672  tcp_cleanup_rbuf(sk, 1);
2673  if (!(val & 1))
2674  icsk->icsk_ack.pingpong = 1;
2675  }
2676  }
2677  break;
2678 
2679 #ifdef CONFIG_TCP_MD5SIG
2680  case TCP_MD5SIG:
2681  /* Read the IP->Key mappings from userspace */
2682  err = tp->af_specific->md5_parse(sk, optval, optlen);
2683  break;
2684 #endif
2685  case TCP_USER_TIMEOUT:
2686  /* Cap the max timeout in ms TCP will retry/retrans
2687  * before giving up and aborting (ETIMEDOUT) a connection.
2688  */
2689  if (val < 0)
2690  err = -EINVAL;
2691  else
2692  icsk->icsk_user_timeout = msecs_to_jiffies(val);
2693  break;
2694 
2695  case TCP_FASTOPEN:
2696  if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2697  TCPF_LISTEN)))
2698  err = fastopen_init_queue(sk, val);
2699  else
2700  err = -EINVAL;
2701  break;
2702  default:
2703  err = -ENOPROTOOPT;
2704  break;
2705  }
2706 
2707  release_sock(sk);
2708  return err;
2709 }
2710 
2711 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2712  unsigned int optlen)
2713 {
2714  const struct inet_connection_sock *icsk = inet_csk(sk);
2715 
2716  if (level != SOL_TCP)
2717  return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2718  optval, optlen);
2719  return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2720 }
2722 
2723 #ifdef CONFIG_COMPAT
2724 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2725  char __user *optval, unsigned int optlen)
2726 {
2727  if (level != SOL_TCP)
2728  return inet_csk_compat_setsockopt(sk, level, optname,
2729  optval, optlen);
2730  return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2731 }
2733 #endif
2734 
2735 /* Return information about state of tcp endpoint in API format. */
2736 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2737 {
2738  const struct tcp_sock *tp = tcp_sk(sk);
2739  const struct inet_connection_sock *icsk = inet_csk(sk);
2740  u32 now = tcp_time_stamp;
2741 
2742  memset(info, 0, sizeof(*info));
2743 
2744  info->tcpi_state = sk->sk_state;
2745  info->tcpi_ca_state = icsk->icsk_ca_state;
2746  info->tcpi_retransmits = icsk->icsk_retransmits;
2747  info->tcpi_probes = icsk->icsk_probes_out;
2748  info->tcpi_backoff = icsk->icsk_backoff;
2749 
2750  if (tp->rx_opt.tstamp_ok)
2752  if (tcp_is_sack(tp))
2753  info->tcpi_options |= TCPI_OPT_SACK;
2754  if (tp->rx_opt.wscale_ok) {
2755  info->tcpi_options |= TCPI_OPT_WSCALE;
2756  info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2757  info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2758  }
2759 
2760  if (tp->ecn_flags & TCP_ECN_OK)
2761  info->tcpi_options |= TCPI_OPT_ECN;
2762  if (tp->ecn_flags & TCP_ECN_SEEN)
2764  if (tp->syn_data_acked)
2766 
2767  info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2768  info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2769  info->tcpi_snd_mss = tp->mss_cache;
2770  info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2771 
2772  if (sk->sk_state == TCP_LISTEN) {
2773  info->tcpi_unacked = sk->sk_ack_backlog;
2774  info->tcpi_sacked = sk->sk_max_ack_backlog;
2775  } else {
2776  info->tcpi_unacked = tp->packets_out;
2777  info->tcpi_sacked = tp->sacked_out;
2778  }
2779  info->tcpi_lost = tp->lost_out;
2780  info->tcpi_retrans = tp->retrans_out;
2781  info->tcpi_fackets = tp->fackets_out;
2782 
2783  info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2784  info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2785  info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2786 
2787  info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2788  info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2789  info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2790  info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2791  info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2792  info->tcpi_snd_cwnd = tp->snd_cwnd;
2793  info->tcpi_advmss = tp->advmss;
2794  info->tcpi_reordering = tp->reordering;
2795 
2796  info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2797  info->tcpi_rcv_space = tp->rcvq_space.space;
2798 
2799  info->tcpi_total_retrans = tp->total_retrans;
2800 }
2802 
2803 static int do_tcp_getsockopt(struct sock *sk, int level,
2804  int optname, char __user *optval, int __user *optlen)
2805 {
2806  struct inet_connection_sock *icsk = inet_csk(sk);
2807  struct tcp_sock *tp = tcp_sk(sk);
2808  int val, len;
2809 
2810  if (get_user(len, optlen))
2811  return -EFAULT;
2812 
2813  len = min_t(unsigned int, len, sizeof(int));
2814 
2815  if (len < 0)
2816  return -EINVAL;
2817 
2818  switch (optname) {
2819  case TCP_MAXSEG:
2820  val = tp->mss_cache;
2821  if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2822  val = tp->rx_opt.user_mss;
2823  if (tp->repair)
2824  val = tp->rx_opt.mss_clamp;
2825  break;
2826  case TCP_NODELAY:
2827  val = !!(tp->nonagle&TCP_NAGLE_OFF);
2828  break;
2829  case TCP_CORK:
2830  val = !!(tp->nonagle&TCP_NAGLE_CORK);
2831  break;
2832  case TCP_KEEPIDLE:
2833  val = keepalive_time_when(tp) / HZ;
2834  break;
2835  case TCP_KEEPINTVL:
2836  val = keepalive_intvl_when(tp) / HZ;
2837  break;
2838  case TCP_KEEPCNT:
2839  val = keepalive_probes(tp);
2840  break;
2841  case TCP_SYNCNT:
2842  val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2843  break;
2844  case TCP_LINGER2:
2845  val = tp->linger2;
2846  if (val >= 0)
2847  val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2848  break;
2849  case TCP_DEFER_ACCEPT:
2850  val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2851  TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2852  break;
2853  case TCP_WINDOW_CLAMP:
2854  val = tp->window_clamp;
2855  break;
2856  case TCP_INFO: {
2857  struct tcp_info info;
2858 
2859  if (get_user(len, optlen))
2860  return -EFAULT;
2861 
2862  tcp_get_info(sk, &info);
2863 
2864  len = min_t(unsigned int, len, sizeof(info));
2865  if (put_user(len, optlen))
2866  return -EFAULT;
2867  if (copy_to_user(optval, &info, len))
2868  return -EFAULT;
2869  return 0;
2870  }
2871  case TCP_QUICKACK:
2872  val = !icsk->icsk_ack.pingpong;
2873  break;
2874 
2875  case TCP_CONGESTION:
2876  if (get_user(len, optlen))
2877  return -EFAULT;
2878  len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2879  if (put_user(len, optlen))
2880  return -EFAULT;
2881  if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2882  return -EFAULT;
2883  return 0;
2884 
2885  case TCP_COOKIE_TRANSACTIONS: {
2886  struct tcp_cookie_transactions ctd;
2887  struct tcp_cookie_values *cvp = tp->cookie_values;
2888 
2889  if (get_user(len, optlen))
2890  return -EFAULT;
2891  if (len < sizeof(ctd))
2892  return -EINVAL;
2893 
2894  memset(&ctd, 0, sizeof(ctd));
2895  ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2897  | (tp->rx_opt.cookie_out_never ?
2898  TCP_COOKIE_OUT_NEVER : 0);
2899 
2900  if (cvp != NULL) {
2901  ctd.tcpct_flags |= (cvp->s_data_in ?
2902  TCP_S_DATA_IN : 0)
2903  | (cvp->s_data_out ?
2904  TCP_S_DATA_OUT : 0);
2905 
2906  ctd.tcpct_cookie_desired = cvp->cookie_desired;
2907  ctd.tcpct_s_data_desired = cvp->s_data_desired;
2908 
2909  memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2910  cvp->cookie_pair_size);
2911  ctd.tcpct_used = cvp->cookie_pair_size;
2912  }
2913 
2914  if (put_user(sizeof(ctd), optlen))
2915  return -EFAULT;
2916  if (copy_to_user(optval, &ctd, sizeof(ctd)))
2917  return -EFAULT;
2918  return 0;
2919  }
2921  val = tp->thin_lto;
2922  break;
2923  case TCP_THIN_DUPACK:
2924  val = tp->thin_dupack;
2925  break;
2926 
2927  case TCP_REPAIR:
2928  val = tp->repair;
2929  break;
2930 
2931  case TCP_REPAIR_QUEUE:
2932  if (tp->repair)
2933  val = tp->repair_queue;
2934  else
2935  return -EINVAL;
2936  break;
2937 
2938  case TCP_QUEUE_SEQ:
2939  if (tp->repair_queue == TCP_SEND_QUEUE)
2940  val = tp->write_seq;
2941  else if (tp->repair_queue == TCP_RECV_QUEUE)
2942  val = tp->rcv_nxt;
2943  else
2944  return -EINVAL;
2945  break;
2946 
2947  case TCP_USER_TIMEOUT:
2948  val = jiffies_to_msecs(icsk->icsk_user_timeout);
2949  break;
2950  default:
2951  return -ENOPROTOOPT;
2952  }
2953 
2954  if (put_user(len, optlen))
2955  return -EFAULT;
2956  if (copy_to_user(optval, &val, len))
2957  return -EFAULT;
2958  return 0;
2959 }
2960 
2961 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2962  int __user *optlen)
2963 {
2964  struct inet_connection_sock *icsk = inet_csk(sk);
2965 
2966  if (level != SOL_TCP)
2967  return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2968  optval, optlen);
2969  return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2970 }
2972 
2973 #ifdef CONFIG_COMPAT
2974 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2975  char __user *optval, int __user *optlen)
2976 {
2977  if (level != SOL_TCP)
2978  return inet_csk_compat_getsockopt(sk, level, optname,
2979  optval, optlen);
2980  return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2981 }
2983 #endif
2984 
2985 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2987 {
2988  struct sk_buff *segs = ERR_PTR(-EINVAL);
2989  struct tcphdr *th;
2990  unsigned int thlen;
2991  unsigned int seq;
2992  __be32 delta;
2993  unsigned int oldlen;
2994  unsigned int mss;
2995 
2996  if (!pskb_may_pull(skb, sizeof(*th)))
2997  goto out;
2998 
2999  th = tcp_hdr(skb);
3000  thlen = th->doff * 4;
3001  if (thlen < sizeof(*th))
3002  goto out;
3003 
3004  if (!pskb_may_pull(skb, thlen))
3005  goto out;
3006 
3007  oldlen = (u16)~skb->len;
3008  __skb_pull(skb, thlen);
3009 
3010  mss = skb_shinfo(skb)->gso_size;
3011  if (unlikely(skb->len <= mss))
3012  goto out;
3013 
3014  if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3015  /* Packet is from an untrusted source, reset gso_segs. */
3016  int type = skb_shinfo(skb)->gso_type;
3017 
3018  if (unlikely(type &
3019  ~(SKB_GSO_TCPV4 |
3020  SKB_GSO_DODGY |
3021  SKB_GSO_TCP_ECN |
3022  SKB_GSO_TCPV6 |
3023  0) ||
3024  !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3025  goto out;
3026 
3027  skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3028 
3029  segs = NULL;
3030  goto out;
3031  }
3032 
3033  segs = skb_segment(skb, features);
3034  if (IS_ERR(segs))
3035  goto out;
3036 
3037  delta = htonl(oldlen + (thlen + mss));
3038 
3039  skb = segs;
3040  th = tcp_hdr(skb);
3041  seq = ntohl(th->seq);
3042 
3043  do {
3044  th->fin = th->psh = 0;
3045 
3046  th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3047  (__force u32)delta));
3048  if (skb->ip_summed != CHECKSUM_PARTIAL)
3049  th->check =
3050  csum_fold(csum_partial(skb_transport_header(skb),
3051  thlen, skb->csum));
3052 
3053  seq += mss;
3054  skb = skb->next;
3055  th = tcp_hdr(skb);
3056 
3057  th->seq = htonl(seq);
3058  th->cwr = 0;
3059  } while (skb->next);
3060 
3061  delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3062  skb->data_len);
3063  th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3064  (__force u32)delta));
3065  if (skb->ip_summed != CHECKSUM_PARTIAL)
3066  th->check = csum_fold(csum_partial(skb_transport_header(skb),
3067  thlen, skb->csum));
3068 
3069 out:
3070  return segs;
3071 }
3073 
3074 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3075 {
3076  struct sk_buff **pp = NULL;
3077  struct sk_buff *p;
3078  struct tcphdr *th;
3079  struct tcphdr *th2;
3080  unsigned int len;
3081  unsigned int thlen;
3082  __be32 flags;
3083  unsigned int mss = 1;
3084  unsigned int hlen;
3085  unsigned int off;
3086  int flush = 1;
3087  int i;
3088 
3089  off = skb_gro_offset(skb);
3090  hlen = off + sizeof(*th);
3091  th = skb_gro_header_fast(skb, off);
3092  if (skb_gro_header_hard(skb, hlen)) {
3093  th = skb_gro_header_slow(skb, hlen, off);
3094  if (unlikely(!th))
3095  goto out;
3096  }
3097 
3098  thlen = th->doff * 4;
3099  if (thlen < sizeof(*th))
3100  goto out;
3101 
3102  hlen = off + thlen;
3103  if (skb_gro_header_hard(skb, hlen)) {
3104  th = skb_gro_header_slow(skb, hlen, off);
3105  if (unlikely(!th))
3106  goto out;
3107  }
3108 
3109  skb_gro_pull(skb, thlen);
3110 
3111  len = skb_gro_len(skb);
3112  flags = tcp_flag_word(th);
3113 
3114  for (; (p = *head); head = &p->next) {
3115  if (!NAPI_GRO_CB(p)->same_flow)
3116  continue;
3117 
3118  th2 = tcp_hdr(p);
3119 
3120  if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3121  NAPI_GRO_CB(p)->same_flow = 0;
3122  continue;
3123  }
3124 
3125  goto found;
3126  }
3127 
3128  goto out_check_final;
3129 
3130 found:
3131  flush = NAPI_GRO_CB(p)->flush;
3132  flush |= (__force int)(flags & TCP_FLAG_CWR);
3133  flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3134  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3135  flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3136  for (i = sizeof(*th); i < thlen; i += 4)
3137  flush |= *(u32 *)((u8 *)th + i) ^
3138  *(u32 *)((u8 *)th2 + i);
3139 
3140  mss = skb_shinfo(p)->gso_size;
3141 
3142  flush |= (len - 1) >= mss;
3143  flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3144 
3145  if (flush || skb_gro_receive(head, skb)) {
3146  mss = 1;
3147  goto out_check_final;
3148  }
3149 
3150  p = *head;
3151  th2 = tcp_hdr(p);
3152  tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3153 
3154 out_check_final:
3155  flush = len < mss;
3156  flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3158  TCP_FLAG_FIN));
3159 
3160  if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3161  pp = head;
3162 
3163 out:
3164  NAPI_GRO_CB(skb)->flush |= flush;
3165 
3166  return pp;
3167 }
3169 
3170 int tcp_gro_complete(struct sk_buff *skb)
3171 {
3172  struct tcphdr *th = tcp_hdr(skb);
3173 
3174  skb->csum_start = skb_transport_header(skb) - skb->head;
3175  skb->csum_offset = offsetof(struct tcphdr, check);
3176  skb->ip_summed = CHECKSUM_PARTIAL;
3177 
3178  skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3179 
3180  if (th->cwr)
3181  skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3182 
3183  return 0;
3184 }
3186 
3187 #ifdef CONFIG_TCP_MD5SIG
3188 static unsigned long tcp_md5sig_users;
3190 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3191 
3192 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3193 {
3194  int cpu;
3195 
3196  for_each_possible_cpu(cpu) {
3197  struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3198 
3199  if (p->md5_desc.tfm)
3200  crypto_free_hash(p->md5_desc.tfm);
3201  }
3202  free_percpu(pool);
3203 }
3204 
3205 void tcp_free_md5sig_pool(void)
3206 {
3207  struct tcp_md5sig_pool __percpu *pool = NULL;
3208 
3209  spin_lock_bh(&tcp_md5sig_pool_lock);
3210  if (--tcp_md5sig_users == 0) {
3211  pool = tcp_md5sig_pool;
3212  tcp_md5sig_pool = NULL;
3213  }
3214  spin_unlock_bh(&tcp_md5sig_pool_lock);
3215  if (pool)
3216  __tcp_free_md5sig_pool(pool);
3217 }
3219 
3220 static struct tcp_md5sig_pool __percpu *
3221 __tcp_alloc_md5sig_pool(struct sock *sk)
3222 {
3223  int cpu;
3224  struct tcp_md5sig_pool __percpu *pool;
3225 
3226  pool = alloc_percpu(struct tcp_md5sig_pool);
3227  if (!pool)
3228  return NULL;
3229 
3230  for_each_possible_cpu(cpu) {
3231  struct crypto_hash *hash;
3232 
3233  hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3234  if (!hash || IS_ERR(hash))
3235  goto out_free;
3236 
3237  per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3238  }
3239  return pool;
3240 out_free:
3241  __tcp_free_md5sig_pool(pool);
3242  return NULL;
3243 }
3244 
3245 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3246 {
3247  struct tcp_md5sig_pool __percpu *pool;
3248  bool alloc = false;
3249 
3250 retry:
3251  spin_lock_bh(&tcp_md5sig_pool_lock);
3252  pool = tcp_md5sig_pool;
3253  if (tcp_md5sig_users++ == 0) {
3254  alloc = true;
3255  spin_unlock_bh(&tcp_md5sig_pool_lock);
3256  } else if (!pool) {
3257  tcp_md5sig_users--;
3258  spin_unlock_bh(&tcp_md5sig_pool_lock);
3259  cpu_relax();
3260  goto retry;
3261  } else
3262  spin_unlock_bh(&tcp_md5sig_pool_lock);
3263 
3264  if (alloc) {
3265  /* we cannot hold spinlock here because this may sleep. */
3266  struct tcp_md5sig_pool __percpu *p;
3267 
3268  p = __tcp_alloc_md5sig_pool(sk);
3269  spin_lock_bh(&tcp_md5sig_pool_lock);
3270  if (!p) {
3271  tcp_md5sig_users--;
3272  spin_unlock_bh(&tcp_md5sig_pool_lock);
3273  return NULL;
3274  }
3275  pool = tcp_md5sig_pool;
3276  if (pool) {
3277  /* oops, it has already been assigned. */
3278  spin_unlock_bh(&tcp_md5sig_pool_lock);
3279  __tcp_free_md5sig_pool(p);
3280  } else {
3281  tcp_md5sig_pool = pool = p;
3282  spin_unlock_bh(&tcp_md5sig_pool_lock);
3283  }
3284  }
3285  return pool;
3286 }
3288 
3289 
3297 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3298 {
3299  struct tcp_md5sig_pool __percpu *p;
3300 
3301  local_bh_disable();
3302 
3303  spin_lock(&tcp_md5sig_pool_lock);
3304  p = tcp_md5sig_pool;
3305  if (p)
3306  tcp_md5sig_users++;
3307  spin_unlock(&tcp_md5sig_pool_lock);
3308 
3309  if (p)
3310  return this_cpu_ptr(p);
3311 
3312  local_bh_enable();
3313  return NULL;
3314 }
3316 
3317 void tcp_put_md5sig_pool(void)
3318 {
3319  local_bh_enable();
3321 }
3323 
3324 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3325  const struct tcphdr *th)
3326 {
3327  struct scatterlist sg;
3328  struct tcphdr hdr;
3329  int err;
3330 
3331  /* We are not allowed to change tcphdr, make a local copy */
3332  memcpy(&hdr, th, sizeof(hdr));
3333  hdr.check = 0;
3334 
3335  /* options aren't included in the hash */
3336  sg_init_one(&sg, &hdr, sizeof(hdr));
3337  err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3338  return err;
3339 }
3341 
3342 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3343  const struct sk_buff *skb, unsigned int header_len)
3344 {
3345  struct scatterlist sg;
3346  const struct tcphdr *tp = tcp_hdr(skb);
3347  struct hash_desc *desc = &hp->md5_desc;
3348  unsigned int i;
3349  const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3350  skb_headlen(skb) - header_len : 0;
3351  const struct skb_shared_info *shi = skb_shinfo(skb);
3352  struct sk_buff *frag_iter;
3353 
3354  sg_init_table(&sg, 1);
3355 
3356  sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3357  if (crypto_hash_update(desc, &sg, head_data_len))
3358  return 1;
3359 
3360  for (i = 0; i < shi->nr_frags; ++i) {
3361  const struct skb_frag_struct *f = &shi->frags[i];
3362  struct page *page = skb_frag_page(f);
3363  sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3364  if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3365  return 1;
3366  }
3367 
3368  skb_walk_frags(skb, frag_iter)
3369  if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3370  return 1;
3371 
3372  return 0;
3373 }
3375 
3376 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3377 {
3378  struct scatterlist sg;
3379 
3380  sg_init_one(&sg, key->key, key->keylen);
3381  return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3382 }
3384 
3385 #endif
3386 
3387 /* Each Responder maintains up to two secret values concurrently for
3388  * efficient secret rollover. Each secret value has 4 states:
3389  *
3390  * Generating. (tcp_secret_generating != tcp_secret_primary)
3391  * Generates new Responder-Cookies, but not yet used for primary
3392  * verification. This is a short-term state, typically lasting only
3393  * one round trip time (RTT).
3394  *
3395  * Primary. (tcp_secret_generating == tcp_secret_primary)
3396  * Used both for generation and primary verification.
3397  *
3398  * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3399  * Used for verification, until the first failure that can be
3400  * verified by the newer Generating secret. At that time, this
3401  * cookie's state is changed to Secondary, and the Generating
3402  * cookie's state is changed to Primary. This is a short-term state,
3403  * typically lasting only one round trip time (RTT).
3404  *
3405  * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3406  * Used for secondary verification, after primary verification
3407  * failures. This state lasts no more than twice the Maximum Segment
3408  * Lifetime (2MSL). Then, the secret is discarded.
3409  */
3411  /* The secret is divided into two parts. The digest part is the
3412  * equivalent of previously hashing a secret and saving the state,
3413  * and serves as an initialization vector (IV). The message part
3414  * serves as the trailing secret.
3415  */
3417  unsigned long expires;
3418 };
3419 
3420 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3421 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3422 #define TCP_SECRET_LIFE (HZ * 600)
3423 
3424 static struct tcp_cookie_secret tcp_secret_one;
3425 static struct tcp_cookie_secret tcp_secret_two;
3426 
3427 /* Essentially a circular list, without dynamic allocation. */
3428 static struct tcp_cookie_secret *tcp_secret_generating;
3429 static struct tcp_cookie_secret *tcp_secret_primary;
3430 static struct tcp_cookie_secret *tcp_secret_retiring;
3431 static struct tcp_cookie_secret *tcp_secret_secondary;
3432 
3433 static DEFINE_SPINLOCK(tcp_secret_locker);
3434 
3435 /* Select a pseudo-random word in the cookie workspace.
3436  */
3437 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3438 {
3439  return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3440 }
3441 
3442 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3443  * Called in softirq context.
3444  * Returns: 0 for success.
3445  */
3447 {
3448  unsigned long jiffy = jiffies;
3449 
3450  if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3451  spin_lock_bh(&tcp_secret_locker);
3452  if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3453  /* refreshed by another */
3454  memcpy(bakery,
3455  &tcp_secret_generating->secrets[0],
3457  } else {
3458  /* still needs refreshing */
3460 
3461  /* The first time, paranoia assumes that the
3462  * randomization function isn't as strong. But,
3463  * this secret initialization is delayed until
3464  * the last possible moment (packet arrival).
3465  * Although that time is observable, it is
3466  * unpredictably variable. Mash in the most
3467  * volatile clock bits available, and expire the
3468  * secret extra quickly.
3469  */
3470  if (unlikely(tcp_secret_primary->expires ==
3471  tcp_secret_secondary->expires)) {
3472  struct timespec tv;
3473 
3474  getnstimeofday(&tv);
3475  bakery[COOKIE_DIGEST_WORDS+0] ^=
3476  (u32)tv.tv_nsec;
3477 
3478  tcp_secret_secondary->expires = jiffy
3479  + TCP_SECRET_1MSL
3480  + (0x0f & tcp_cookie_work(bakery, 0));
3481  } else {
3482  tcp_secret_secondary->expires = jiffy
3483  + TCP_SECRET_LIFE
3484  + (0xff & tcp_cookie_work(bakery, 1));
3485  tcp_secret_primary->expires = jiffy
3486  + TCP_SECRET_2MSL
3487  + (0x1f & tcp_cookie_work(bakery, 2));
3488  }
3489  memcpy(&tcp_secret_secondary->secrets[0],
3490  bakery, COOKIE_WORKSPACE_WORDS);
3491 
3492  rcu_assign_pointer(tcp_secret_generating,
3493  tcp_secret_secondary);
3494  rcu_assign_pointer(tcp_secret_retiring,
3495  tcp_secret_primary);
3496  /*
3497  * Neither call_rcu() nor synchronize_rcu() needed.
3498  * Retiring data is not freed. It is replaced after
3499  * further (locked) pointer updates, and a quiet time
3500  * (minimum 1MSL, maximum LIFE - 2MSL).
3501  */
3502  }
3503  spin_unlock_bh(&tcp_secret_locker);
3504  } else {
3505  rcu_read_lock_bh();
3506  memcpy(bakery,
3507  &rcu_dereference(tcp_secret_generating)->secrets[0],
3509  rcu_read_unlock_bh();
3510  }
3511  return 0;
3512 }
3514 
3515 void tcp_done(struct sock *sk)
3516 {
3517  struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3518 
3519  if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3520  TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3521 
3522  tcp_set_state(sk, TCP_CLOSE);
3523  tcp_clear_xmit_timers(sk);
3524  if (req != NULL)
3525  reqsk_fastopen_remove(sk, req, false);
3526 
3527  sk->sk_shutdown = SHUTDOWN_MASK;
3528 
3529  if (!sock_flag(sk, SOCK_DEAD))
3530  sk->sk_state_change(sk);
3531  else
3533 }
3535 
3536 extern struct tcp_congestion_ops tcp_reno;
3537 
3538 static __initdata unsigned long thash_entries;
3539 static int __init set_thash_entries(char *str)
3540 {
3541  ssize_t ret;
3542 
3543  if (!str)
3544  return 0;
3545 
3546  ret = kstrtoul(str, 0, &thash_entries);
3547  if (ret)
3548  return 0;
3549 
3550  return 1;
3551 }
3552 __setup("thash_entries=", set_thash_entries);
3553 
3554 void tcp_init_mem(struct net *net)
3555 {
3556  unsigned long limit = nr_free_buffer_pages() / 8;
3557  limit = max(limit, 128UL);
3558  net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3559  net->ipv4.sysctl_tcp_mem[1] = limit;
3560  net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3561 }
3562 
3563 void __init tcp_init(void)
3564 {
3565  struct sk_buff *skb = NULL;
3566  unsigned long limit;
3567  int max_rshare, max_wshare, cnt;
3568  unsigned int i;
3569  unsigned long jiffy = jiffies;
3570 
3571  BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3572 
3573  percpu_counter_init(&tcp_sockets_allocated, 0);
3574  percpu_counter_init(&tcp_orphan_count, 0);
3575  tcp_hashinfo.bind_bucket_cachep =
3576  kmem_cache_create("tcp_bind_bucket",
3577  sizeof(struct inet_bind_bucket), 0,
3579 
3580  /* Size and allocate the main established and bind bucket
3581  * hash tables.
3582  *
3583  * The methodology is similar to that of the buffer cache.
3584  */
3585  tcp_hashinfo.ehash =
3586  alloc_large_system_hash("TCP established",
3587  sizeof(struct inet_ehash_bucket),
3588  thash_entries,
3589  (totalram_pages >= 128 * 1024) ?
3590  13 : 15,
3591  0,
3592  NULL,
3593  &tcp_hashinfo.ehash_mask,
3594  0,
3595  thash_entries ? 0 : 512 * 1024);
3596  for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3597  INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3598  INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3599  }
3600  if (inet_ehash_locks_alloc(&tcp_hashinfo))
3601  panic("TCP: failed to alloc ehash_locks");
3602  tcp_hashinfo.bhash =
3603  alloc_large_system_hash("TCP bind",
3604  sizeof(struct inet_bind_hashbucket),
3605  tcp_hashinfo.ehash_mask + 1,
3606  (totalram_pages >= 128 * 1024) ?
3607  13 : 15,
3608  0,
3609  &tcp_hashinfo.bhash_size,
3610  NULL,
3611  0,
3612  64 * 1024);
3613  tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3614  for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3615  spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3616  INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3617  }
3618 
3619 
3620  cnt = tcp_hashinfo.ehash_mask + 1;
3621 
3622  tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3623  sysctl_tcp_max_orphans = cnt / 2;
3624  sysctl_max_syn_backlog = max(128, cnt / 256);
3625 
3627  /* Set per-socket limits to no more than 1/128 the pressure threshold */
3628  limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3629  max_wshare = min(4UL*1024*1024, limit);
3630  max_rshare = min(6UL*1024*1024, limit);
3631 
3633  sysctl_tcp_wmem[1] = 16*1024;
3634  sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3635 
3637  sysctl_tcp_rmem[1] = 87380;
3638  sysctl_tcp_rmem[2] = max(87380, max_rshare);
3639 
3640  pr_info("Hash tables configured (established %u bind %u)\n",
3641  tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3642 
3643  tcp_metrics_init();
3644 
3646 
3647  memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3648  memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3649  tcp_secret_one.expires = jiffy; /* past due */
3650  tcp_secret_two.expires = jiffy; /* past due */
3651  tcp_secret_generating = &tcp_secret_one;
3652  tcp_secret_primary = &tcp_secret_one;
3653  tcp_secret_retiring = &tcp_secret_two;
3654  tcp_secret_secondary = &tcp_secret_two;
3655  tcp_tasklet_init();
3656 }