Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rt2500pci.c
Go to the documentation of this file.
1 /*
2  Copyright (C) 2004 - 2009 Ivo van Doorn <[email protected]>
3  <http://rt2x00.serialmonkey.com>
4 
5  This program is free software; you can redistribute it and/or modify
6  it under the terms of the GNU General Public License as published by
7  the Free Software Foundation; either version 2 of the License, or
8  (at your option) any later version.
9 
10  This program is distributed in the hope that it will be useful,
11  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  GNU General Public License for more details.
14 
15  You should have received a copy of the GNU General Public License
16  along with this program; if not, write to the
17  Free Software Foundation, Inc.,
18  59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22  Module: rt2500pci
23  Abstract: rt2500pci device specific routines.
24  Supported chipsets: RT2560.
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35 
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2500pci.h"
39 
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attampt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54  rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56  rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 
58 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59  const unsigned int word, const u8 value)
60 {
61  u32 reg;
62 
63  mutex_lock(&rt2x00dev->csr_mutex);
64 
65  /*
66  * Wait until the BBP becomes available, afterwards we
67  * can safely write the new data into the register.
68  */
69  if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70  reg = 0;
71  rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72  rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
75 
76  rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77  }
78 
79  mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81 
82 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83  const unsigned int word, u8 *value)
84 {
85  u32 reg;
86 
87  mutex_lock(&rt2x00dev->csr_mutex);
88 
89  /*
90  * Wait until the BBP becomes available, afterwards we
91  * can safely write the read request into the register.
92  * After the data has been written, we wait until hardware
93  * returns the correct value, if at any time the register
94  * doesn't become available in time, reg will be 0xffffffff
95  * which means we return 0xff to the caller.
96  */
97  if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98  reg = 0;
99  rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
102 
103  rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 
105  WAIT_FOR_BBP(rt2x00dev, &reg);
106  }
107 
108  *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 
110  mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112 
113 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
114  const unsigned int word, const u32 value)
115 {
116  u32 reg;
117 
118  mutex_lock(&rt2x00dev->csr_mutex);
119 
120  /*
121  * Wait until the RF becomes available, afterwards we
122  * can safely write the new data into the register.
123  */
124  if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125  reg = 0;
126  rt2x00_set_field32(&reg, RFCSR_VALUE, value);
129  rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130 
131  rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132  rt2x00_rf_write(rt2x00dev, word, value);
133  }
134 
135  mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137 
138 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140  struct rt2x00_dev *rt2x00dev = eeprom->data;
141  u32 reg;
142 
143  rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144 
147  eeprom->reg_data_clock =
149  eeprom->reg_chip_select =
151 }
152 
153 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155  struct rt2x00_dev *rt2x00dev = eeprom->data;
156  u32 reg = 0;
157 
161  !!eeprom->reg_data_clock);
163  !!eeprom->reg_chip_select);
164 
165  rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167 
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2500pci_rt2x00debug = {
170  .owner = THIS_MODULE,
171  .csr = {
172  .read = rt2x00pci_register_read,
173  .write = rt2x00pci_register_write,
174  .flags = RT2X00DEBUGFS_OFFSET,
175  .word_base = CSR_REG_BASE,
176  .word_size = sizeof(u32),
177  .word_count = CSR_REG_SIZE / sizeof(u32),
178  },
179  .eeprom = {
180  .read = rt2x00_eeprom_read,
181  .write = rt2x00_eeprom_write,
182  .word_base = EEPROM_BASE,
183  .word_size = sizeof(u16),
184  .word_count = EEPROM_SIZE / sizeof(u16),
185  },
186  .bbp = {
187  .read = rt2500pci_bbp_read,
188  .write = rt2500pci_bbp_write,
189  .word_base = BBP_BASE,
190  .word_size = sizeof(u8),
191  .word_count = BBP_SIZE / sizeof(u8),
192  },
193  .rf = {
194  .read = rt2x00_rf_read,
195  .write = rt2500pci_rf_write,
196  .word_base = RF_BASE,
197  .word_size = sizeof(u32),
198  .word_count = RF_SIZE / sizeof(u32),
199  },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202 
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205  u32 reg;
206 
207  rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208  return rt2x00_get_field32(reg, GPIOCSR_VAL0);
209 }
210 
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
214 {
215  struct rt2x00_led *led =
216  container_of(led_cdev, struct rt2x00_led, led_dev);
217  unsigned int enabled = brightness != LED_OFF;
218  u32 reg;
219 
220  rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221 
222  if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223  rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224  else if (led->type == LED_TYPE_ACTIVITY)
225  rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 
227  rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229 
230 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231  unsigned long *delay_on,
232  unsigned long *delay_off)
233 {
234  struct rt2x00_led *led =
235  container_of(led_cdev, struct rt2x00_led, led_dev);
236  u32 reg;
237 
238  rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239  rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240  rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241  rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242 
243  return 0;
244 }
245 
246 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247  struct rt2x00_led *led,
248  enum led_type type)
249 {
250  led->rt2x00dev = rt2x00dev;
251  led->type = type;
252  led->led_dev.brightness_set = rt2500pci_brightness_set;
253  led->led_dev.blink_set = rt2500pci_blink_set;
254  led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257 
258 /*
259  * Configuration handlers.
260  */
261 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262  const unsigned int filter_flags)
263 {
264  u32 reg;
265 
266  /*
267  * Start configuration steps.
268  * Note that the version error will always be dropped
269  * and broadcast frames will always be accepted since
270  * there is no filter for it at this time.
271  */
272  rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
274  !(filter_flags & FIF_FCSFAIL));
276  !(filter_flags & FIF_PLCPFAIL));
278  !(filter_flags & FIF_CONTROL));
280  !(filter_flags & FIF_PROMISC_IN_BSS));
282  !(filter_flags & FIF_PROMISC_IN_BSS) &&
283  !rt2x00dev->intf_ap_count);
286  !(filter_flags & FIF_ALLMULTI));
288  rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289 }
290 
291 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292  struct rt2x00_intf *intf,
293  struct rt2x00intf_conf *conf,
294  const unsigned int flags)
295 {
296  struct data_queue *queue = rt2x00dev->bcn;
297  unsigned int bcn_preload;
298  u32 reg;
299 
300  if (flags & CONFIG_UPDATE_TYPE) {
301  /*
302  * Enable beacon config
303  */
304  bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
305  rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306  rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
308  rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309 
310  /*
311  * Enable synchronisation.
312  */
313  rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314  rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315  rt2x00pci_register_write(rt2x00dev, CSR14, reg);
316  }
317 
318  if (flags & CONFIG_UPDATE_MAC)
319  rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
320  conf->mac, sizeof(conf->mac));
321 
322  if (flags & CONFIG_UPDATE_BSSID)
323  rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
324  conf->bssid, sizeof(conf->bssid));
325 }
326 
327 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
328  struct rt2x00lib_erp *erp,
329  u32 changed)
330 {
331  int preamble_mask;
332  u32 reg;
333 
334  /*
335  * When short preamble is enabled, we should set bit 0x08
336  */
337  if (changed & BSS_CHANGED_ERP_PREAMBLE) {
338  preamble_mask = erp->short_preamble << 3;
339 
340  rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
345  rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346 
347  rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348  rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349  rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
351  GET_DURATION(ACK_SIZE, 10));
352  rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
353 
354  rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
355  rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
356  rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
358  GET_DURATION(ACK_SIZE, 20));
359  rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
360 
361  rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
362  rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
363  rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
365  GET_DURATION(ACK_SIZE, 55));
366  rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
367 
368  rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
369  rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
370  rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
372  GET_DURATION(ACK_SIZE, 110));
373  rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
374  }
375 
376  if (changed & BSS_CHANGED_BASIC_RATES)
377  rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
378 
379  if (changed & BSS_CHANGED_ERP_SLOT) {
380  rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
382  rt2x00pci_register_write(rt2x00dev, CSR11, reg);
383 
384  rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
385  rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
386  rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
387  rt2x00pci_register_write(rt2x00dev, CSR18, reg);
388 
389  rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
390  rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
391  rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
392  rt2x00pci_register_write(rt2x00dev, CSR19, reg);
393  }
394 
395  if (changed & BSS_CHANGED_BEACON_INT) {
396  rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
398  erp->beacon_int * 16);
400  erp->beacon_int * 16);
401  rt2x00pci_register_write(rt2x00dev, CSR12, reg);
402  }
403 
404 }
405 
406 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
407  struct antenna_setup *ant)
408 {
409  u32 reg;
410  u8 r14;
411  u8 r2;
412 
413  /*
414  * We should never come here because rt2x00lib is supposed
415  * to catch this and send us the correct antenna explicitely.
416  */
417  BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
418  ant->tx == ANTENNA_SW_DIVERSITY);
419 
420  rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
421  rt2500pci_bbp_read(rt2x00dev, 14, &r14);
422  rt2500pci_bbp_read(rt2x00dev, 2, &r2);
423 
424  /*
425  * Configure the TX antenna.
426  */
427  switch (ant->tx) {
428  case ANTENNA_A:
432  break;
433  case ANTENNA_B:
434  default:
438  break;
439  }
440 
441  /*
442  * Configure the RX antenna.
443  */
444  switch (ant->rx) {
445  case ANTENNA_A:
447  break;
448  case ANTENNA_B:
449  default:
451  break;
452  }
453 
454  /*
455  * RT2525E and RT5222 need to flip TX I/Q
456  */
457  if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
461 
462  /*
463  * RT2525E does not need RX I/Q Flip.
464  */
465  if (rt2x00_rf(rt2x00dev, RF2525E))
467  } else {
470  }
471 
472  rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
473  rt2500pci_bbp_write(rt2x00dev, 14, r14);
474  rt2500pci_bbp_write(rt2x00dev, 2, r2);
475 }
476 
477 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
478  struct rf_channel *rf, const int txpower)
479 {
480  u8 r70;
481 
482  /*
483  * Set TXpower.
484  */
486 
487  /*
488  * Switch on tuning bits.
489  * For RT2523 devices we do not need to update the R1 register.
490  */
491  if (!rt2x00_rf(rt2x00dev, RF2523))
492  rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
493  rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
494 
495  /*
496  * For RT2525 we should first set the channel to half band higher.
497  */
498  if (rt2x00_rf(rt2x00dev, RF2525)) {
499  static const u32 vals[] = {
500  0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
501  0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
502  0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
503  0x00080d2e, 0x00080d3a
504  };
505 
506  rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
507  rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
508  rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
509  if (rf->rf4)
510  rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
511  }
512 
513  rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
514  rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
515  rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
516  if (rf->rf4)
517  rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
518 
519  /*
520  * Channel 14 requires the Japan filter bit to be set.
521  */
522  r70 = 0x46;
524  rt2500pci_bbp_write(rt2x00dev, 70, r70);
525 
526  msleep(1);
527 
528  /*
529  * Switch off tuning bits.
530  * For RT2523 devices we do not need to update the R1 register.
531  */
532  if (!rt2x00_rf(rt2x00dev, RF2523)) {
533  rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
534  rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
535  }
536 
537  rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
538  rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
539 
540  /*
541  * Clear false CRC during channel switch.
542  */
543  rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
544 }
545 
546 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
547  const int txpower)
548 {
549  u32 rf3;
550 
551  rt2x00_rf_read(rt2x00dev, 3, &rf3);
553  rt2500pci_rf_write(rt2x00dev, 3, rf3);
554 }
555 
556 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
557  struct rt2x00lib_conf *libconf)
558 {
559  u32 reg;
560 
561  rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
563  libconf->conf->long_frame_max_tx_count);
565  libconf->conf->short_frame_max_tx_count);
566  rt2x00pci_register_write(rt2x00dev, CSR11, reg);
567 }
568 
569 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
570  struct rt2x00lib_conf *libconf)
571 {
572  enum dev_state state =
573  (libconf->conf->flags & IEEE80211_CONF_PS) ?
575  u32 reg;
576 
577  if (state == STATE_SLEEP) {
578  rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
580  (rt2x00dev->beacon_int - 20) * 16);
582  libconf->conf->listen_interval - 1);
583 
584  /* We must first disable autowake before it can be enabled */
586  rt2x00pci_register_write(rt2x00dev, CSR20, reg);
587 
589  rt2x00pci_register_write(rt2x00dev, CSR20, reg);
590  } else {
591  rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
593  rt2x00pci_register_write(rt2x00dev, CSR20, reg);
594  }
595 
596  rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
597 }
598 
599 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
600  struct rt2x00lib_conf *libconf,
601  const unsigned int flags)
602 {
603  if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
604  rt2500pci_config_channel(rt2x00dev, &libconf->rf,
605  libconf->conf->power_level);
606  if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
607  !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
608  rt2500pci_config_txpower(rt2x00dev,
609  libconf->conf->power_level);
611  rt2500pci_config_retry_limit(rt2x00dev, libconf);
612  if (flags & IEEE80211_CONF_CHANGE_PS)
613  rt2500pci_config_ps(rt2x00dev, libconf);
614 }
615 
616 /*
617  * Link tuning
618  */
619 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
620  struct link_qual *qual)
621 {
622  u32 reg;
623 
624  /*
625  * Update FCS error count from register.
626  */
627  rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
629 
630  /*
631  * Update False CCA count from register.
632  */
633  rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
635 }
636 
637 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
638  struct link_qual *qual, u8 vgc_level)
639 {
640  if (qual->vgc_level_reg != vgc_level) {
641  rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
642  qual->vgc_level = vgc_level;
643  qual->vgc_level_reg = vgc_level;
644  }
645 }
646 
647 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
648  struct link_qual *qual)
649 {
650  rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
651 }
652 
653 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
654  struct link_qual *qual, const u32 count)
655 {
656  /*
657  * To prevent collisions with MAC ASIC on chipsets
658  * up to version C the link tuning should halt after 20
659  * seconds while being associated.
660  */
661  if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
662  rt2x00dev->intf_associated && count > 20)
663  return;
664 
665  /*
666  * Chipset versions C and lower should directly continue
667  * to the dynamic CCA tuning. Chipset version D and higher
668  * should go straight to dynamic CCA tuning when they
669  * are not associated.
670  */
671  if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
672  !rt2x00dev->intf_associated)
673  goto dynamic_cca_tune;
674 
675  /*
676  * A too low RSSI will cause too much false CCA which will
677  * then corrupt the R17 tuning. To remidy this the tuning should
678  * be stopped (While making sure the R17 value will not exceed limits)
679  */
680  if (qual->rssi < -80 && count > 20) {
681  if (qual->vgc_level_reg >= 0x41)
682  rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
683  return;
684  }
685 
686  /*
687  * Special big-R17 for short distance
688  */
689  if (qual->rssi >= -58) {
690  rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
691  return;
692  }
693 
694  /*
695  * Special mid-R17 for middle distance
696  */
697  if (qual->rssi >= -74) {
698  rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
699  return;
700  }
701 
702  /*
703  * Leave short or middle distance condition, restore r17
704  * to the dynamic tuning range.
705  */
706  if (qual->vgc_level_reg >= 0x41) {
707  rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
708  return;
709  }
710 
711 dynamic_cca_tune:
712 
713  /*
714  * R17 is inside the dynamic tuning range,
715  * start tuning the link based on the false cca counter.
716  */
717  if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
718  rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
719  else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
720  rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
721 }
722 
723 /*
724  * Queue handlers.
725  */
726 static void rt2500pci_start_queue(struct data_queue *queue)
727 {
728  struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
729  u32 reg;
730 
731  switch (queue->qid) {
732  case QID_RX:
733  rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
735  rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
736  break;
737  case QID_BEACON:
738  rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
740  rt2x00_set_field32(&reg, CSR14_TBCN, 1);
742  rt2x00pci_register_write(rt2x00dev, CSR14, reg);
743  break;
744  default:
745  break;
746  }
747 }
748 
749 static void rt2500pci_kick_queue(struct data_queue *queue)
750 {
751  struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
752  u32 reg;
753 
754  switch (queue->qid) {
755  case QID_AC_VO:
756  rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
758  rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
759  break;
760  case QID_AC_VI:
761  rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
763  rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
764  break;
765  case QID_ATIM:
766  rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
768  rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
769  break;
770  default:
771  break;
772  }
773 }
774 
775 static void rt2500pci_stop_queue(struct data_queue *queue)
776 {
777  struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
778  u32 reg;
779 
780  switch (queue->qid) {
781  case QID_AC_VO:
782  case QID_AC_VI:
783  case QID_ATIM:
784  rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
786  rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
787  break;
788  case QID_RX:
789  rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
791  rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
792  break;
793  case QID_BEACON:
794  rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
796  rt2x00_set_field32(&reg, CSR14_TBCN, 0);
798  rt2x00pci_register_write(rt2x00dev, CSR14, reg);
799 
800  /*
801  * Wait for possibly running tbtt tasklets.
802  */
803  tasklet_kill(&rt2x00dev->tbtt_tasklet);
804  break;
805  default:
806  break;
807  }
808 }
809 
810 /*
811  * Initialization functions.
812  */
813 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
814 {
815  struct queue_entry_priv_pci *entry_priv = entry->priv_data;
816  u32 word;
817 
818  if (entry->queue->qid == QID_RX) {
819  rt2x00_desc_read(entry_priv->desc, 0, &word);
820 
821  return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
822  } else {
823  rt2x00_desc_read(entry_priv->desc, 0, &word);
824 
825  return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
827  }
828 }
829 
830 static void rt2500pci_clear_entry(struct queue_entry *entry)
831 {
832  struct queue_entry_priv_pci *entry_priv = entry->priv_data;
833  struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
834  u32 word;
835 
836  if (entry->queue->qid == QID_RX) {
837  rt2x00_desc_read(entry_priv->desc, 1, &word);
839  rt2x00_desc_write(entry_priv->desc, 1, word);
840 
841  rt2x00_desc_read(entry_priv->desc, 0, &word);
843  rt2x00_desc_write(entry_priv->desc, 0, word);
844  } else {
845  rt2x00_desc_read(entry_priv->desc, 0, &word);
846  rt2x00_set_field32(&word, TXD_W0_VALID, 0);
848  rt2x00_desc_write(entry_priv->desc, 0, word);
849  }
850 }
851 
852 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
853 {
854  struct queue_entry_priv_pci *entry_priv;
855  u32 reg;
856 
857  /*
858  * Initialize registers.
859  */
860  rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
861  rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
862  rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
863  rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
864  rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
865  rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
866 
867  entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
868  rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
870  entry_priv->desc_dma);
871  rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
872 
873  entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
874  rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
876  entry_priv->desc_dma);
877  rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
878 
879  entry_priv = rt2x00dev->atim->entries[0].priv_data;
880  rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
882  entry_priv->desc_dma);
883  rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
884 
885  entry_priv = rt2x00dev->bcn->entries[0].priv_data;
886  rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
888  entry_priv->desc_dma);
889  rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
890 
891  rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
892  rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
893  rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
894  rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
895 
896  entry_priv = rt2x00dev->rx->entries[0].priv_data;
897  rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
899  entry_priv->desc_dma);
900  rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
901 
902  return 0;
903 }
904 
905 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
906 {
907  u32 reg;
908 
909  rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
910  rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
911  rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
912  rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
913 
914  rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
918  rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
919 
920  rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
922  rt2x00dev->rx->data_size / 128);
923  rt2x00pci_register_write(rt2x00dev, CSR9, reg);
924 
925  /*
926  * Always use CWmin and CWmax set in descriptor.
927  */
928  rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
930  rt2x00pci_register_write(rt2x00dev, CSR11, reg);
931 
932  rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
935  rt2x00_set_field32(&reg, CSR14_TBCN, 0);
936  rt2x00_set_field32(&reg, CSR14_TCFP, 0);
941  rt2x00pci_register_write(rt2x00dev, CSR14, reg);
942 
943  rt2x00pci_register_write(rt2x00dev, CNT3, 0);
944 
945  rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
954  rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
955 
956  rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
961  rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
962 
963  rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
968  rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
969 
970  rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
975  rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
976 
977  rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
978  rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
980  rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
982  rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
984  rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
986  rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
987 
988  rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
996  rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
997 
998  rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
999 
1000  rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1001  rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1002 
1003  if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1004  return -EBUSY;
1005 
1006  rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
1007  rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
1008 
1009  rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
1010  rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1011  rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
1012 
1013  rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1020  rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1021 
1022  rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1023 
1024  rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1025 
1026  rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1030  rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1031 
1032  rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1035  rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1036 
1037  /*
1038  * We must clear the FCS and FIFO error count.
1039  * These registers are cleared on read,
1040  * so we may pass a useless variable to store the value.
1041  */
1042  rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1043  rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1044 
1045  return 0;
1046 }
1047 
1048 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1049 {
1050  unsigned int i;
1051  u8 value;
1052 
1053  for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1054  rt2500pci_bbp_read(rt2x00dev, 0, &value);
1055  if ((value != 0xff) && (value != 0x00))
1056  return 0;
1058  }
1059 
1060  ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1061  return -EACCES;
1062 }
1063 
1064 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1065 {
1066  unsigned int i;
1067  u16 eeprom;
1068  u8 reg_id;
1069  u8 value;
1070 
1071  if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1072  return -EACCES;
1073 
1074  rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1075  rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1076  rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1077  rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1078  rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1079  rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1080  rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1081  rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1082  rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1083  rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1084  rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1085  rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1086  rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1087  rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1088  rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1089  rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1090  rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1091  rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1092  rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1093  rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1094  rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1095  rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1096  rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1097  rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1098  rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1099  rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1100  rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1101  rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1102  rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1103  rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1104 
1105  for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1106  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1107 
1108  if (eeprom != 0xffff && eeprom != 0x0000) {
1109  reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1110  value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1111  rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1112  }
1113  }
1114 
1115  return 0;
1116 }
1117 
1118 /*
1119  * Device state switch handlers.
1120  */
1121 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1122  enum dev_state state)
1123 {
1124  int mask = (state == STATE_RADIO_IRQ_OFF);
1125  u32 reg;
1126  unsigned long flags;
1127 
1128  /*
1129  * When interrupts are being enabled, the interrupt registers
1130  * should clear the register to assure a clean state.
1131  */
1132  if (state == STATE_RADIO_IRQ_ON) {
1133  rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1134  rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1135  }
1136 
1137  /*
1138  * Only toggle the interrupts bits we are going to use.
1139  * Non-checked interrupt bits are disabled by default.
1140  */
1141  spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1142 
1143  rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1144  rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1148  rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1149  rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1150 
1151  spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1152 
1153  if (state == STATE_RADIO_IRQ_OFF) {
1154  /*
1155  * Ensure that all tasklets are finished.
1156  */
1157  tasklet_kill(&rt2x00dev->txstatus_tasklet);
1158  tasklet_kill(&rt2x00dev->rxdone_tasklet);
1159  tasklet_kill(&rt2x00dev->tbtt_tasklet);
1160  }
1161 }
1162 
1163 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1164 {
1165  /*
1166  * Initialize all registers.
1167  */
1168  if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1169  rt2500pci_init_registers(rt2x00dev) ||
1170  rt2500pci_init_bbp(rt2x00dev)))
1171  return -EIO;
1172 
1173  return 0;
1174 }
1175 
1176 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1177 {
1178  /*
1179  * Disable power
1180  */
1181  rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1182 }
1183 
1184 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1185  enum dev_state state)
1186 {
1187  u32 reg, reg2;
1188  unsigned int i;
1189  char put_to_sleep;
1190  char bbp_state;
1191  char rf_state;
1192 
1193  put_to_sleep = (state != STATE_AWAKE);
1194 
1195  rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1199  rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1200  rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1201 
1202  /*
1203  * Device is not guaranteed to be in the requested state yet.
1204  * We must wait until the register indicates that the
1205  * device has entered the correct state.
1206  */
1207  for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1208  rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1209  bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1210  rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1211  if (bbp_state == state && rf_state == state)
1212  return 0;
1213  rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1214  msleep(10);
1215  }
1216 
1217  return -EBUSY;
1218 }
1219 
1220 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1221  enum dev_state state)
1222 {
1223  int retval = 0;
1224 
1225  switch (state) {
1226  case STATE_RADIO_ON:
1227  retval = rt2500pci_enable_radio(rt2x00dev);
1228  break;
1229  case STATE_RADIO_OFF:
1230  rt2500pci_disable_radio(rt2x00dev);
1231  break;
1232  case STATE_RADIO_IRQ_ON:
1233  case STATE_RADIO_IRQ_OFF:
1234  rt2500pci_toggle_irq(rt2x00dev, state);
1235  break;
1236  case STATE_DEEP_SLEEP:
1237  case STATE_SLEEP:
1238  case STATE_STANDBY:
1239  case STATE_AWAKE:
1240  retval = rt2500pci_set_state(rt2x00dev, state);
1241  break;
1242  default:
1243  retval = -ENOTSUPP;
1244  break;
1245  }
1246 
1247  if (unlikely(retval))
1248  ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1249  state, retval);
1250 
1251  return retval;
1252 }
1253 
1254 /*
1255  * TX descriptor initialization
1256  */
1257 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1258  struct txentry_desc *txdesc)
1259 {
1260  struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1261  struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1262  __le32 *txd = entry_priv->desc;
1263  u32 word;
1264 
1265  /*
1266  * Start writing the descriptor words.
1267  */
1268  rt2x00_desc_read(txd, 1, &word);
1270  rt2x00_desc_write(txd, 1, word);
1271 
1272  rt2x00_desc_read(txd, 2, &word);
1274  rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1275  rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1276  rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1277  rt2x00_desc_write(txd, 2, word);
1278 
1279  rt2x00_desc_read(txd, 3, &word);
1280  rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1281  rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1283  txdesc->u.plcp.length_low);
1285  txdesc->u.plcp.length_high);
1286  rt2x00_desc_write(txd, 3, word);
1287 
1288  rt2x00_desc_read(txd, 10, &word);
1290  test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1291  rt2x00_desc_write(txd, 10, word);
1292 
1293  /*
1294  * Writing TXD word 0 must the last to prevent a race condition with
1295  * the device, whereby the device may take hold of the TXD before we
1296  * finished updating it.
1297  */
1298  rt2x00_desc_read(txd, 0, &word);
1300  rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1302  test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1304  test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1308  (txdesc->rate_mode == RATE_MODE_OFDM));
1310  rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1312  test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1315  rt2x00_desc_write(txd, 0, word);
1316 
1317  /*
1318  * Register descriptor details in skb frame descriptor.
1319  */
1320  skbdesc->desc = txd;
1321  skbdesc->desc_len = TXD_DESC_SIZE;
1322 }
1323 
1324 /*
1325  * TX data initialization
1326  */
1327 static void rt2500pci_write_beacon(struct queue_entry *entry,
1328  struct txentry_desc *txdesc)
1329 {
1330  struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1331  u32 reg;
1332 
1333  /*
1334  * Disable beaconing while we are reloading the beacon data,
1335  * otherwise we might be sending out invalid data.
1336  */
1337  rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1339  rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1340 
1341  rt2x00queue_map_txskb(entry);
1342 
1343  /*
1344  * Write the TX descriptor for the beacon.
1345  */
1346  rt2500pci_write_tx_desc(entry, txdesc);
1347 
1348  /*
1349  * Dump beacon to userspace through debugfs.
1350  */
1351  rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1352 
1353  /*
1354  * Enable beaconing again.
1355  */
1357  rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1358 }
1359 
1360 /*
1361  * RX control handlers
1362  */
1363 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1364  struct rxdone_entry_desc *rxdesc)
1365 {
1366  struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1367  u32 word0;
1368  u32 word2;
1369 
1370  rt2x00_desc_read(entry_priv->desc, 0, &word0);
1371  rt2x00_desc_read(entry_priv->desc, 2, &word2);
1372 
1374  rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1376  rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1377 
1378  /*
1379  * Obtain the status about this packet.
1380  * When frame was received with an OFDM bitrate,
1381  * the signal is the PLCP value. If it was received with
1382  * a CCK bitrate the signal is the rate in 100kbit/s.
1383  */
1384  rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1385  rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1386  entry->queue->rt2x00dev->rssi_offset;
1387  rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1388 
1389  if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1390  rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1391  else
1392  rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1393  if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1394  rxdesc->dev_flags |= RXDONE_MY_BSS;
1395 }
1396 
1397 /*
1398  * Interrupt functions.
1399  */
1400 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1401  const enum data_queue_qid queue_idx)
1402 {
1403  struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1404  struct queue_entry_priv_pci *entry_priv;
1405  struct queue_entry *entry;
1406  struct txdone_entry_desc txdesc;
1407  u32 word;
1408 
1409  while (!rt2x00queue_empty(queue)) {
1410  entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1411  entry_priv = entry->priv_data;
1412  rt2x00_desc_read(entry_priv->desc, 0, &word);
1413 
1414  if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1416  break;
1417 
1418  /*
1419  * Obtain the status about this packet.
1420  */
1421  txdesc.flags = 0;
1422  switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1423  case 0: /* Success */
1424  case 1: /* Success with retry */
1425  __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1426  break;
1427  case 2: /* Failure, excessive retries */
1429  /* Don't break, this is a failed frame! */
1430  default: /* Failure */
1431  __set_bit(TXDONE_FAILURE, &txdesc.flags);
1432  }
1433  txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1434 
1435  rt2x00lib_txdone(entry, &txdesc);
1436  }
1437 }
1438 
1439 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1440  struct rt2x00_field32 irq_field)
1441 {
1442  u32 reg;
1443 
1444  /*
1445  * Enable a single interrupt. The interrupt mask register
1446  * access needs locking.
1447  */
1448  spin_lock_irq(&rt2x00dev->irqmask_lock);
1449 
1450  rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1451  rt2x00_set_field32(&reg, irq_field, 0);
1452  rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1453 
1454  spin_unlock_irq(&rt2x00dev->irqmask_lock);
1455 }
1456 
1457 static void rt2500pci_txstatus_tasklet(unsigned long data)
1458 {
1459  struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1460  u32 reg;
1461 
1462  /*
1463  * Handle all tx queues.
1464  */
1465  rt2500pci_txdone(rt2x00dev, QID_ATIM);
1466  rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1467  rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1468 
1469  /*
1470  * Enable all TXDONE interrupts again.
1471  */
1472  if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1473  spin_lock_irq(&rt2x00dev->irqmask_lock);
1474 
1475  rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1479  rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1480 
1481  spin_unlock_irq(&rt2x00dev->irqmask_lock);
1482  }
1483 }
1484 
1485 static void rt2500pci_tbtt_tasklet(unsigned long data)
1486 {
1487  struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1488  rt2x00lib_beacondone(rt2x00dev);
1489  if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1490  rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1491 }
1492 
1493 static void rt2500pci_rxdone_tasklet(unsigned long data)
1494 {
1495  struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1496  if (rt2x00pci_rxdone(rt2x00dev))
1497  tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1498  else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1499  rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1500 }
1501 
1502 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1503 {
1504  struct rt2x00_dev *rt2x00dev = dev_instance;
1505  u32 reg, mask;
1506 
1507  /*
1508  * Get the interrupt sources & saved to local variable.
1509  * Write register value back to clear pending interrupts.
1510  */
1511  rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1512  rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1513 
1514  if (!reg)
1515  return IRQ_NONE;
1516 
1517  if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1518  return IRQ_HANDLED;
1519 
1520  mask = reg;
1521 
1522  /*
1523  * Schedule tasklets for interrupt handling.
1524  */
1526  tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1527 
1528  if (rt2x00_get_field32(reg, CSR7_RXDONE))
1529  tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1530 
1534  tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1535  /*
1536  * Mask out all txdone interrupts.
1537  */
1541  }
1542 
1543  /*
1544  * Disable all interrupts for which a tasklet was scheduled right now,
1545  * the tasklet will reenable the appropriate interrupts.
1546  */
1547  spin_lock(&rt2x00dev->irqmask_lock);
1548 
1549  rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1550  reg |= mask;
1551  rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1552 
1553  spin_unlock(&rt2x00dev->irqmask_lock);
1554 
1555  return IRQ_HANDLED;
1556 }
1557 
1558 /*
1559  * Device probe functions.
1560  */
1561 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1562 {
1563  struct eeprom_93cx6 eeprom;
1564  u32 reg;
1565  u16 word;
1566  u8 *mac;
1567 
1568  rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1569 
1570  eeprom.data = rt2x00dev;
1571  eeprom.register_read = rt2500pci_eepromregister_read;
1572  eeprom.register_write = rt2500pci_eepromregister_write;
1573  eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1575  eeprom.reg_data_in = 0;
1576  eeprom.reg_data_out = 0;
1577  eeprom.reg_data_clock = 0;
1578  eeprom.reg_chip_select = 0;
1579 
1580  eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1581  EEPROM_SIZE / sizeof(u16));
1582 
1583  /*
1584  * Start validation of the data that has been read.
1585  */
1586  mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1587  if (!is_valid_ether_addr(mac)) {
1588  eth_random_addr(mac);
1589  EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1590  }
1591 
1592  rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1593  if (word == 0xffff) {
1604  rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1605  EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1606  }
1607 
1608  rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1609  if (word == 0xffff) {
1613  rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1614  EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1615  }
1616 
1617  rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1618  if (word == 0xffff) {
1621  rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1622  EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1623  }
1624 
1625  return 0;
1626 }
1627 
1628 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1629 {
1630  u32 reg;
1631  u16 value;
1632  u16 eeprom;
1633 
1634  /*
1635  * Read EEPROM word for configuration.
1636  */
1637  rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1638 
1639  /*
1640  * Identify RF chipset.
1641  */
1642  value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1643  rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1644  rt2x00_set_chip(rt2x00dev, RT2560, value,
1646 
1647  if (!rt2x00_rf(rt2x00dev, RF2522) &&
1648  !rt2x00_rf(rt2x00dev, RF2523) &&
1649  !rt2x00_rf(rt2x00dev, RF2524) &&
1650  !rt2x00_rf(rt2x00dev, RF2525) &&
1651  !rt2x00_rf(rt2x00dev, RF2525E) &&
1652  !rt2x00_rf(rt2x00dev, RF5222)) {
1653  ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1654  return -ENODEV;
1655  }
1656 
1657  /*
1658  * Identify default antenna configuration.
1659  */
1660  rt2x00dev->default_ant.tx =
1662  rt2x00dev->default_ant.rx =
1664 
1665  /*
1666  * Store led mode, for correct led behaviour.
1667  */
1668 #ifdef CONFIG_RT2X00_LIB_LEDS
1670 
1671  rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1672  if (value == LED_MODE_TXRX_ACTIVITY ||
1673  value == LED_MODE_DEFAULT ||
1674  value == LED_MODE_ASUS)
1675  rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1677 #endif /* CONFIG_RT2X00_LIB_LEDS */
1678 
1679  /*
1680  * Detect if this device has an hardware controlled radio.
1681  */
1684 
1685  /*
1686  * Check if the BBP tuning should be enabled.
1687  */
1688  rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1691 
1692  /*
1693  * Read the RSSI <-> dBm offset information.
1694  */
1695  rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1696  rt2x00dev->rssi_offset =
1698 
1699  return 0;
1700 }
1701 
1702 /*
1703  * RF value list for RF2522
1704  * Supports: 2.4 GHz
1705  */
1706 static const struct rf_channel rf_vals_bg_2522[] = {
1707  { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1708  { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1709  { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1710  { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1711  { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1712  { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1713  { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1714  { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1715  { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1716  { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1717  { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1718  { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1719  { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1720  { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1721 };
1722 
1723 /*
1724  * RF value list for RF2523
1725  * Supports: 2.4 GHz
1726  */
1727 static const struct rf_channel rf_vals_bg_2523[] = {
1728  { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1729  { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1730  { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1731  { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1732  { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1733  { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1734  { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1735  { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1736  { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1737  { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1738  { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1739  { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1740  { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1741  { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1742 };
1743 
1744 /*
1745  * RF value list for RF2524
1746  * Supports: 2.4 GHz
1747  */
1748 static const struct rf_channel rf_vals_bg_2524[] = {
1749  { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1750  { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1751  { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1752  { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1753  { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1754  { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1755  { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1756  { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1757  { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1758  { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1759  { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1760  { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1761  { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1762  { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1763 };
1764 
1765 /*
1766  * RF value list for RF2525
1767  * Supports: 2.4 GHz
1768  */
1769 static const struct rf_channel rf_vals_bg_2525[] = {
1770  { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1771  { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1772  { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1773  { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1774  { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1775  { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1776  { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1777  { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1778  { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1779  { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1780  { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1781  { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1782  { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1783  { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1784 };
1785 
1786 /*
1787  * RF value list for RF2525e
1788  * Supports: 2.4 GHz
1789  */
1790 static const struct rf_channel rf_vals_bg_2525e[] = {
1791  { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1792  { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1793  { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1794  { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1795  { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1796  { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1797  { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1798  { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1799  { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1800  { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1801  { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1802  { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1803  { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1804  { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1805 };
1806 
1807 /*
1808  * RF value list for RF5222
1809  * Supports: 2.4 GHz & 5.2 GHz
1810  */
1811 static const struct rf_channel rf_vals_5222[] = {
1812  { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1813  { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1814  { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1815  { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1816  { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1817  { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1818  { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1819  { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1820  { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1821  { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1822  { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1823  { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1824  { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1825  { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1826 
1827  /* 802.11 UNI / HyperLan 2 */
1828  { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1829  { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1830  { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1831  { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1832  { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1833  { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1834  { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1835  { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1836 
1837  /* 802.11 HyperLan 2 */
1838  { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1839  { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1840  { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1841  { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1842  { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1843  { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1844  { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1845  { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1846  { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1847  { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1848 
1849  /* 802.11 UNII */
1850  { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1851  { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1852  { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1853  { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1854  { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1855 };
1856 
1857 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1858 {
1859  struct hw_mode_spec *spec = &rt2x00dev->spec;
1860  struct channel_info *info;
1861  char *tx_power;
1862  unsigned int i;
1863 
1864  /*
1865  * Initialize all hw fields.
1866  */
1867  rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1871 
1872  SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1873  SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1874  rt2x00_eeprom_addr(rt2x00dev,
1876 
1877  /*
1878  * Initialize hw_mode information.
1879  */
1882 
1883  if (rt2x00_rf(rt2x00dev, RF2522)) {
1884  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1885  spec->channels = rf_vals_bg_2522;
1886  } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1887  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1888  spec->channels = rf_vals_bg_2523;
1889  } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1890  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1891  spec->channels = rf_vals_bg_2524;
1892  } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1893  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1894  spec->channels = rf_vals_bg_2525;
1895  } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1896  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1897  spec->channels = rf_vals_bg_2525e;
1898  } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1900  spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1901  spec->channels = rf_vals_5222;
1902  }
1903 
1904  /*
1905  * Create channel information array
1906  */
1907  info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1908  if (!info)
1909  return -ENOMEM;
1910 
1911  spec->channels_info = info;
1912 
1913  tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1914  for (i = 0; i < 14; i++) {
1915  info[i].max_power = MAX_TXPOWER;
1916  info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1917  }
1918 
1919  if (spec->num_channels > 14) {
1920  for (i = 14; i < spec->num_channels; i++) {
1921  info[i].max_power = MAX_TXPOWER;
1923  }
1924  }
1925 
1926  return 0;
1927 }
1928 
1929 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1930 {
1931  int retval;
1932  u32 reg;
1933 
1934  /*
1935  * Allocate eeprom data.
1936  */
1937  retval = rt2500pci_validate_eeprom(rt2x00dev);
1938  if (retval)
1939  return retval;
1940 
1941  retval = rt2500pci_init_eeprom(rt2x00dev);
1942  if (retval)
1943  return retval;
1944 
1945  /*
1946  * Enable rfkill polling by setting GPIO direction of the
1947  * rfkill switch GPIO pin correctly.
1948  */
1949  rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
1950  rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1951  rt2x00pci_register_write(rt2x00dev, GPIOCSR, reg);
1952 
1953  /*
1954  * Initialize hw specifications.
1955  */
1956  retval = rt2500pci_probe_hw_mode(rt2x00dev);
1957  if (retval)
1958  return retval;
1959 
1960  /*
1961  * This device requires the atim queue and DMA-mapped skbs.
1962  */
1963  __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1964  __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1965  __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1966 
1967  /*
1968  * Set the rssi offset.
1969  */
1970  rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1971 
1972  return 0;
1973 }
1974 
1975 /*
1976  * IEEE80211 stack callback functions.
1977  */
1978 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1979  struct ieee80211_vif *vif)
1980 {
1981  struct rt2x00_dev *rt2x00dev = hw->priv;
1982  u64 tsf;
1983  u32 reg;
1984 
1985  rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1986  tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1987  rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1989 
1990  return tsf;
1991 }
1992 
1993 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1994 {
1995  struct rt2x00_dev *rt2x00dev = hw->priv;
1996  u32 reg;
1997 
1998  rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
2000 }
2001 
2002 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2003  .tx = rt2x00mac_tx,
2004  .start = rt2x00mac_start,
2005  .stop = rt2x00mac_stop,
2006  .add_interface = rt2x00mac_add_interface,
2007  .remove_interface = rt2x00mac_remove_interface,
2008  .config = rt2x00mac_config,
2009  .configure_filter = rt2x00mac_configure_filter,
2010  .sw_scan_start = rt2x00mac_sw_scan_start,
2011  .sw_scan_complete = rt2x00mac_sw_scan_complete,
2012  .get_stats = rt2x00mac_get_stats,
2013  .bss_info_changed = rt2x00mac_bss_info_changed,
2014  .conf_tx = rt2x00mac_conf_tx,
2015  .get_tsf = rt2500pci_get_tsf,
2016  .tx_last_beacon = rt2500pci_tx_last_beacon,
2017  .rfkill_poll = rt2x00mac_rfkill_poll,
2018  .flush = rt2x00mac_flush,
2019  .set_antenna = rt2x00mac_set_antenna,
2020  .get_antenna = rt2x00mac_get_antenna,
2021  .get_ringparam = rt2x00mac_get_ringparam,
2022  .tx_frames_pending = rt2x00mac_tx_frames_pending,
2023 };
2024 
2025 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2026  .irq_handler = rt2500pci_interrupt,
2027  .txstatus_tasklet = rt2500pci_txstatus_tasklet,
2028  .tbtt_tasklet = rt2500pci_tbtt_tasklet,
2029  .rxdone_tasklet = rt2500pci_rxdone_tasklet,
2030  .probe_hw = rt2500pci_probe_hw,
2031  .initialize = rt2x00pci_initialize,
2032  .uninitialize = rt2x00pci_uninitialize,
2033  .get_entry_state = rt2500pci_get_entry_state,
2034  .clear_entry = rt2500pci_clear_entry,
2035  .set_device_state = rt2500pci_set_device_state,
2036  .rfkill_poll = rt2500pci_rfkill_poll,
2037  .link_stats = rt2500pci_link_stats,
2038  .reset_tuner = rt2500pci_reset_tuner,
2039  .link_tuner = rt2500pci_link_tuner,
2040  .start_queue = rt2500pci_start_queue,
2041  .kick_queue = rt2500pci_kick_queue,
2042  .stop_queue = rt2500pci_stop_queue,
2043  .flush_queue = rt2x00pci_flush_queue,
2044  .write_tx_desc = rt2500pci_write_tx_desc,
2045  .write_beacon = rt2500pci_write_beacon,
2046  .fill_rxdone = rt2500pci_fill_rxdone,
2047  .config_filter = rt2500pci_config_filter,
2048  .config_intf = rt2500pci_config_intf,
2049  .config_erp = rt2500pci_config_erp,
2050  .config_ant = rt2500pci_config_ant,
2051  .config = rt2500pci_config,
2052 };
2053 
2054 static const struct data_queue_desc rt2500pci_queue_rx = {
2055  .entry_num = 32,
2056  .data_size = DATA_FRAME_SIZE,
2057  .desc_size = RXD_DESC_SIZE,
2058  .priv_size = sizeof(struct queue_entry_priv_pci),
2059 };
2060 
2061 static const struct data_queue_desc rt2500pci_queue_tx = {
2062  .entry_num = 32,
2063  .data_size = DATA_FRAME_SIZE,
2064  .desc_size = TXD_DESC_SIZE,
2065  .priv_size = sizeof(struct queue_entry_priv_pci),
2066 };
2067 
2068 static const struct data_queue_desc rt2500pci_queue_bcn = {
2069  .entry_num = 1,
2070  .data_size = MGMT_FRAME_SIZE,
2071  .desc_size = TXD_DESC_SIZE,
2072  .priv_size = sizeof(struct queue_entry_priv_pci),
2073 };
2074 
2075 static const struct data_queue_desc rt2500pci_queue_atim = {
2076  .entry_num = 8,
2077  .data_size = DATA_FRAME_SIZE,
2078  .desc_size = TXD_DESC_SIZE,
2079  .priv_size = sizeof(struct queue_entry_priv_pci),
2080 };
2081 
2082 static const struct rt2x00_ops rt2500pci_ops = {
2083  .name = KBUILD_MODNAME,
2084  .max_ap_intf = 1,
2085  .eeprom_size = EEPROM_SIZE,
2086  .rf_size = RF_SIZE,
2087  .tx_queues = NUM_TX_QUEUES,
2088  .extra_tx_headroom = 0,
2089  .rx = &rt2500pci_queue_rx,
2090  .tx = &rt2500pci_queue_tx,
2091  .bcn = &rt2500pci_queue_bcn,
2092  .atim = &rt2500pci_queue_atim,
2093  .lib = &rt2500pci_rt2x00_ops,
2094  .hw = &rt2500pci_mac80211_ops,
2095 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2096  .debugfs = &rt2500pci_rt2x00debug,
2097 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2098 };
2099 
2100 /*
2101  * RT2500pci module information.
2102  */
2103 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2104  { PCI_DEVICE(0x1814, 0x0201) },
2105  { 0, }
2106 };
2107 
2110 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2111 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2112 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2113 MODULE_LICENSE("GPL");
2114 
2115 static int rt2500pci_probe(struct pci_dev *pci_dev,
2116  const struct pci_device_id *id)
2117 {
2118  return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2119 }
2120 
2121 static struct pci_driver rt2500pci_driver = {
2122  .name = KBUILD_MODNAME,
2123  .id_table = rt2500pci_device_table,
2124  .probe = rt2500pci_probe,
2125  .remove = __devexit_p(rt2x00pci_remove),
2126  .suspend = rt2x00pci_suspend,
2127  .resume = rt2x00pci_resume,
2128 };
2129 
2130 module_pci_driver(rt2500pci_driver);