Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sata_mv.c
Go to the documentation of this file.
1 /*
2  * sata_mv.c - Marvell SATA support
3  *
4  * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5  * Copyright 2005: EMC Corporation, all rights reserved.
6  * Copyright 2005 Red Hat, Inc. All rights reserved.
7  *
8  * Originally written by Brett Russ.
9  * Extensive overhaul and enhancement by Mark Lord <[email protected]>.
10  *
11  * Please ALWAYS copy [email protected] on emails.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  */
27 
28 /*
29  * sata_mv TODO list:
30  *
31  * --> Develop a low-power-consumption strategy, and implement it.
32  *
33  * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34  *
35  * --> [Experiment, Marvell value added] Is it possible to use target
36  * mode to cross-connect two Linux boxes with Marvell cards? If so,
37  * creating LibATA target mode support would be very interesting.
38  *
39  * Target mode, for those without docs, is the ability to directly
40  * connect two SATA ports.
41  */
42 
43 /*
44  * 80x1-B2 errata PCI#11:
45  *
46  * Users of the 6041/6081 Rev.B2 chips (current is C0)
47  * should be careful to insert those cards only onto PCI-X bus #0,
48  * and only in device slots 0..7, not higher. The chips may not
49  * work correctly otherwise (note: this is a pretty rare condition).
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <linux/of.h>
69 #include <linux/of_irq.h>
70 #include <scsi/scsi_host.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_device.h>
73 #include <linux/libata.h>
74 
75 #define DRV_NAME "sata_mv"
76 #define DRV_VERSION "1.28"
77 
78 /*
79  * module options
80  */
81 
82 #ifdef CONFIG_PCI
83 static int msi;
84 module_param(msi, int, S_IRUGO);
85 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
86 #endif
87 
88 static int irq_coalescing_io_count;
89 module_param(irq_coalescing_io_count, int, S_IRUGO);
90 MODULE_PARM_DESC(irq_coalescing_io_count,
91  "IRQ coalescing I/O count threshold (0..255)");
92 
93 static int irq_coalescing_usecs;
94 module_param(irq_coalescing_usecs, int, S_IRUGO);
95 MODULE_PARM_DESC(irq_coalescing_usecs,
96  "IRQ coalescing time threshold in usecs");
97 
98 enum {
99  /* BAR's are enumerated in terms of pci_resource_start() terms */
100  MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
101  MV_IO_BAR = 2, /* offset 0x18: IO space */
102  MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
103 
104  MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
105  MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
106 
107  /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
108  COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
109  MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
110  MAX_COAL_IO_COUNT = 255, /* completed I/O count */
111 
113 
114  /*
115  * Per-chip ("all ports") interrupt coalescing feature.
116  * This is only for GEN_II / GEN_IIE hardware.
117  *
118  * Coalescing defers the interrupt until either the IO_THRESHOLD
119  * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
120  */
121  COAL_REG_BASE = 0x18000,
123  ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
124 
127 
128  /*
129  * Registers for the (unused here) transaction coalescing feature:
130  */
133 
134  SATAHC0_REG_BASE = 0x20000,
135  FLASH_CTL = 0x1046c,
136  GPIO_PORT_CTL = 0x104f0,
137  RESET_CFG = 0x180d8,
138 
143 
146 
147  /* CRQB needs alignment on a 1KB boundary. Size == 1KB
148  * CRPB needs alignment on a 256B boundary. Size == 256B
149  * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
150  */
155 
156  /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
159  /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
160  MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
161 
162  /* Host Flags */
163  MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
164 
166 
168 
171 
173 
174  CRQB_FLAG_READ = (1 << 0),
176  CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
177  CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
178  CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
180  CRQB_CMD_CS = (0x2 << 11),
181  CRQB_CMD_LAST = (1 << 15),
182 
184  CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
185  CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
186 
187  EPRD_FLAG_END_OF_TBL = (1 << 31),
188 
189  /* PCI interface registers */
190 
191  MV_PCI_COMMAND = 0xc00,
192  MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
193  MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
194 
196  STOP_PCI_MASTER = (1 << 2),
197  PCI_MASTER_EMPTY = (1 << 3),
198  GLOB_SFT_RST = (1 << 4),
199 
200  MV_PCI_MODE = 0xd00,
202 
212 
213  PCI_IRQ_CAUSE = 0x1d58,
214  PCI_IRQ_MASK = 0x1d5c,
215  PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
216 
217  PCIE_IRQ_CAUSE = 0x1900,
218  PCIE_IRQ_MASK = 0x1910,
219  PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
220 
221  /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
226  ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
227  DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
228  HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
229  HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
230  DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
231  DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
232  PCI_ERR = (1 << 18),
233  TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
234  TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
235  PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
236  PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
237  ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
238  GPIO_INT = (1 << 22),
239  SELF_INT = (1 << 23),
240  TWSI_INT = (1 << 24),
241  HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
242  HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
243  HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
244 
245  /* SATAHC registers */
246  HC_CFG = 0x00,
247 
248  HC_IRQ_CAUSE = 0x14,
249  DMA_IRQ = (1 << 0), /* shift by port # */
250  HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
251  DEV_IRQ = (1 << 8), /* shift by port # */
252 
253  /*
254  * Per-HC (Host-Controller) interrupt coalescing feature.
255  * This is present on all chip generations.
256  *
257  * Coalescing defers the interrupt until either the IO_THRESHOLD
258  * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
259  */
262 
263  SOC_LED_CTRL = 0x2c,
264  SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
265  SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
266  /* with dev activity LED */
267 
268  /* Shadow block registers */
269  SHD_BLK = 0x100,
270  SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
271 
272  /* SATA registers */
273  SATA_STATUS = 0x300, /* ctrl, err regs follow status */
274  SATA_ACTIVE = 0x350,
275  FIS_IRQ_CAUSE = 0x364,
276  FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
277 
278  LTMODE = 0x30c, /* requires read-after-write */
279  LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
280 
281  PHY_MODE2 = 0x330,
282  PHY_MODE3 = 0x310,
283 
284  PHY_MODE4 = 0x314, /* requires read-after-write */
285  PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
286  PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
287  PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
288  PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
289 
290  SATA_IFCTL = 0x344,
291  SATA_TESTCTL = 0x348,
292  SATA_IFSTAT = 0x34c,
294 
295  FISCFG = 0x360,
296  FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
297  FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
298 
299  PHY_MODE9_GEN2 = 0x398,
300  PHY_MODE9_GEN1 = 0x39c,
301  PHYCFG_OFS = 0x3a0, /* only in 65n devices */
302 
303  MV5_PHY_MODE = 0x74,
304  MV5_LTMODE = 0x30,
305  MV5_PHY_CTL = 0x0C,
306  SATA_IFCFG = 0x050,
307 
309 
310  /* Port registers */
311  EDMA_CFG = 0,
312  EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
313  EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
314  EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
315  EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
316  EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
317  EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
318  EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
319 
322  EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
323  EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
324  EDMA_ERR_DEV = (1 << 2), /* device error */
325  EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
326  EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
327  EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
328  EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
329  EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
330  EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
331  EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
332  EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
333  EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
334  EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
335  EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
336 
337  EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
338  EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
339  EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
340  EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
341  EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
342 
343  EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
344 
345  EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
346  EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
347  EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
348  EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
349  EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
350  EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
351 
352  EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
353 
354  EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
355  EDMA_ERR_OVERRUN_5 = (1 << 5),
357 
362 
367  EDMA_ERR_SERR |
377 
389 
391  EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
392 
395 
398  EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
400 
401  EDMA_CMD = 0x28, /* EDMA command register */
402  EDMA_EN = (1 << 0), /* enable EDMA */
403  EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
404  EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
405 
406  EDMA_STATUS = 0x30, /* EDMA engine status */
407  EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
408  EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
409 
411  EDMA_ARB_CFG = 0x38,
412 
413  EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
414  EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
415 
416  BMDMA_CMD = 0x224, /* bmdma command register */
417  BMDMA_STATUS = 0x228, /* bmdma status register */
418  BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
419  BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
420 
421  /* Host private flags (hp_flags) */
422  MV_HP_FLAG_MSI = (1 << 0),
427  MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
428  MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
429  MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
430  MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
431  MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
432  MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
433  MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
434 
435  /* Port private flags (pp_flags) */
436  MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
437  MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
438  MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
439  MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
440  MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
441 };
442 
443 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
444 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
445 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
446 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
447 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
448 
449 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
450 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
451 
452 enum {
453  /* DMA boundary 0xffff is required by the s/g splitting
454  * we need on /length/ in mv_fill-sg().
455  */
457 
458  /* mask of register bits containing lower 32 bits
459  * of EDMA request queue DMA address
460  */
462 
463  /* ditto, for response queue */
465 };
466 
467 enum chip_type {
476 };
477 
478 /* Command ReQuest Block: 32B */
479 struct mv_crqb {
484 };
485 
486 struct mv_crqb_iie {
492 };
493 
494 /* Command ResPonse Block: 8B */
495 struct mv_crpb {
499 };
500 
501 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
502 struct mv_sg {
507 };
508 
509 /*
510  * We keep a local cache of a few frequently accessed port
511  * registers here, to avoid having to read them (very slow)
512  * when switching between EDMA and non-EDMA modes.
513  */
519 };
520 
521 struct mv_port_priv {
522  struct mv_crqb *crqb;
524  struct mv_crpb *crpb;
528 
529  unsigned int req_idx;
530  unsigned int resp_idx;
531 
534  unsigned int delayed_eh_pmp_map;
535 };
536 
540 };
541 
542 struct mv_host_priv {
544  unsigned int board_idx;
547  const struct mv_hw_ops *ops;
548  int n_ports;
549  void __iomem *base;
555 
556 #if defined(CONFIG_HAVE_CLK)
557  struct clk *clk;
558  struct clk **port_clks;
559 #endif
560  /*
561  * These consistent DMA memory pools give us guaranteed
562  * alignment for hardware-accessed data structures,
563  * and less memory waste in accomplishing the alignment.
564  */
568 };
569 
570 struct mv_hw_ops {
571  void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
572  unsigned int port);
573  void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
574  void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
575  void __iomem *mmio);
576  int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
577  unsigned int n_hc);
578  void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
579  void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
580 };
581 
582 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
583 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
584 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
585 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
586 static int mv_port_start(struct ata_port *ap);
587 static void mv_port_stop(struct ata_port *ap);
588 static int mv_qc_defer(struct ata_queued_cmd *qc);
589 static void mv_qc_prep(struct ata_queued_cmd *qc);
590 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
591 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
592 static int mv_hardreset(struct ata_link *link, unsigned int *class,
593  unsigned long deadline);
594 static void mv_eh_freeze(struct ata_port *ap);
595 static void mv_eh_thaw(struct ata_port *ap);
596 static void mv6_dev_config(struct ata_device *dev);
597 
598 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
599  unsigned int port);
600 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
601 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
602  void __iomem *mmio);
603 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
604  unsigned int n_hc);
605 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
606 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
607 
608 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
609  unsigned int port);
610 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
611 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
612  void __iomem *mmio);
613 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
614  unsigned int n_hc);
615 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
616 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
617  void __iomem *mmio);
618 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
619  void __iomem *mmio);
620 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
621  void __iomem *mmio, unsigned int n_hc);
622 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
623  void __iomem *mmio);
624 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
625 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
626  void __iomem *mmio, unsigned int port);
627 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
628 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
629  unsigned int port_no);
630 static int mv_stop_edma(struct ata_port *ap);
631 static int mv_stop_edma_engine(void __iomem *port_mmio);
632 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
633 
634 static void mv_pmp_select(struct ata_port *ap, int pmp);
635 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
636  unsigned long deadline);
637 static int mv_softreset(struct ata_link *link, unsigned int *class,
638  unsigned long deadline);
639 static void mv_pmp_error_handler(struct ata_port *ap);
640 static void mv_process_crpb_entries(struct ata_port *ap,
641  struct mv_port_priv *pp);
642 
643 static void mv_sff_irq_clear(struct ata_port *ap);
644 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
645 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
646 static void mv_bmdma_start(struct ata_queued_cmd *qc);
647 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
648 static u8 mv_bmdma_status(struct ata_port *ap);
649 static u8 mv_sff_check_status(struct ata_port *ap);
650 
651 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
652  * because we have to allow room for worst case splitting of
653  * PRDs for 64K boundaries in mv_fill_sg().
654  */
655 #ifdef CONFIG_PCI
656 static struct scsi_host_template mv5_sht = {
658  .sg_tablesize = MV_MAX_SG_CT / 2,
659  .dma_boundary = MV_DMA_BOUNDARY,
660 };
661 #endif
662 static struct scsi_host_template mv6_sht = {
664  .can_queue = MV_MAX_Q_DEPTH - 1,
665  .sg_tablesize = MV_MAX_SG_CT / 2,
666  .dma_boundary = MV_DMA_BOUNDARY,
667 };
668 
669 static struct ata_port_operations mv5_ops = {
670  .inherits = &ata_sff_port_ops,
671 
672  .lost_interrupt = ATA_OP_NULL,
673 
674  .qc_defer = mv_qc_defer,
675  .qc_prep = mv_qc_prep,
676  .qc_issue = mv_qc_issue,
677 
678  .freeze = mv_eh_freeze,
679  .thaw = mv_eh_thaw,
680  .hardreset = mv_hardreset,
681 
682  .scr_read = mv5_scr_read,
683  .scr_write = mv5_scr_write,
684 
685  .port_start = mv_port_start,
686  .port_stop = mv_port_stop,
687 };
688 
689 static struct ata_port_operations mv6_ops = {
690  .inherits = &ata_bmdma_port_ops,
691 
692  .lost_interrupt = ATA_OP_NULL,
693 
694  .qc_defer = mv_qc_defer,
695  .qc_prep = mv_qc_prep,
696  .qc_issue = mv_qc_issue,
697 
698  .dev_config = mv6_dev_config,
699 
700  .freeze = mv_eh_freeze,
701  .thaw = mv_eh_thaw,
702  .hardreset = mv_hardreset,
703  .softreset = mv_softreset,
704  .pmp_hardreset = mv_pmp_hardreset,
705  .pmp_softreset = mv_softreset,
706  .error_handler = mv_pmp_error_handler,
707 
708  .scr_read = mv_scr_read,
709  .scr_write = mv_scr_write,
710 
711  .sff_check_status = mv_sff_check_status,
712  .sff_irq_clear = mv_sff_irq_clear,
713  .check_atapi_dma = mv_check_atapi_dma,
714  .bmdma_setup = mv_bmdma_setup,
715  .bmdma_start = mv_bmdma_start,
716  .bmdma_stop = mv_bmdma_stop,
717  .bmdma_status = mv_bmdma_status,
718 
719  .port_start = mv_port_start,
720  .port_stop = mv_port_stop,
721 };
722 
723 static struct ata_port_operations mv_iie_ops = {
724  .inherits = &mv6_ops,
726  .qc_prep = mv_qc_prep_iie,
727 };
728 
729 static const struct ata_port_info mv_port_info[] = {
730  { /* chip_504x */
731  .flags = MV_GEN_I_FLAGS,
732  .pio_mask = ATA_PIO4,
733  .udma_mask = ATA_UDMA6,
734  .port_ops = &mv5_ops,
735  },
736  { /* chip_508x */
737  .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
738  .pio_mask = ATA_PIO4,
739  .udma_mask = ATA_UDMA6,
740  .port_ops = &mv5_ops,
741  },
742  { /* chip_5080 */
743  .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
744  .pio_mask = ATA_PIO4,
745  .udma_mask = ATA_UDMA6,
746  .port_ops = &mv5_ops,
747  },
748  { /* chip_604x */
749  .flags = MV_GEN_II_FLAGS,
750  .pio_mask = ATA_PIO4,
751  .udma_mask = ATA_UDMA6,
752  .port_ops = &mv6_ops,
753  },
754  { /* chip_608x */
755  .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
756  .pio_mask = ATA_PIO4,
757  .udma_mask = ATA_UDMA6,
758  .port_ops = &mv6_ops,
759  },
760  { /* chip_6042 */
761  .flags = MV_GEN_IIE_FLAGS,
762  .pio_mask = ATA_PIO4,
763  .udma_mask = ATA_UDMA6,
764  .port_ops = &mv_iie_ops,
765  },
766  { /* chip_7042 */
767  .flags = MV_GEN_IIE_FLAGS,
768  .pio_mask = ATA_PIO4,
769  .udma_mask = ATA_UDMA6,
770  .port_ops = &mv_iie_ops,
771  },
772  { /* chip_soc */
773  .flags = MV_GEN_IIE_FLAGS,
774  .pio_mask = ATA_PIO4,
775  .udma_mask = ATA_UDMA6,
776  .port_ops = &mv_iie_ops,
777  },
778 };
779 
780 static const struct pci_device_id mv_pci_tbl[] = {
781  { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
782  { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
783  { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
784  { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
785  /* RocketRAID 1720/174x have different identifiers */
786  { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
787  { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
788  { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
789 
790  { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
791  { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
792  { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
793  { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
794  { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
795 
796  { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
797 
798  /* Adaptec 1430SA */
799  { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
800 
801  /* Marvell 7042 support */
802  { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
803 
804  /* Highpoint RocketRAID PCIe series */
805  { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
806  { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
807 
808  { } /* terminate list */
809 };
810 
811 static const struct mv_hw_ops mv5xxx_ops = {
812  .phy_errata = mv5_phy_errata,
813  .enable_leds = mv5_enable_leds,
814  .read_preamp = mv5_read_preamp,
815  .reset_hc = mv5_reset_hc,
816  .reset_flash = mv5_reset_flash,
817  .reset_bus = mv5_reset_bus,
818 };
819 
820 static const struct mv_hw_ops mv6xxx_ops = {
821  .phy_errata = mv6_phy_errata,
822  .enable_leds = mv6_enable_leds,
823  .read_preamp = mv6_read_preamp,
824  .reset_hc = mv6_reset_hc,
825  .reset_flash = mv6_reset_flash,
826  .reset_bus = mv_reset_pci_bus,
827 };
828 
829 static const struct mv_hw_ops mv_soc_ops = {
830  .phy_errata = mv6_phy_errata,
831  .enable_leds = mv_soc_enable_leds,
832  .read_preamp = mv_soc_read_preamp,
833  .reset_hc = mv_soc_reset_hc,
834  .reset_flash = mv_soc_reset_flash,
835  .reset_bus = mv_soc_reset_bus,
836 };
837 
838 static const struct mv_hw_ops mv_soc_65n_ops = {
839  .phy_errata = mv_soc_65n_phy_errata,
840  .enable_leds = mv_soc_enable_leds,
841  .reset_hc = mv_soc_reset_hc,
842  .reset_flash = mv_soc_reset_flash,
843  .reset_bus = mv_soc_reset_bus,
844 };
845 
846 /*
847  * Functions
848  */
849 
850 static inline void writelfl(unsigned long data, void __iomem *addr)
851 {
852  writel(data, addr);
853  (void) readl(addr); /* flush to avoid PCI posted write */
854 }
855 
856 static inline unsigned int mv_hc_from_port(unsigned int port)
857 {
858  return port >> MV_PORT_HC_SHIFT;
859 }
860 
861 static inline unsigned int mv_hardport_from_port(unsigned int port)
862 {
863  return port & MV_PORT_MASK;
864 }
865 
866 /*
867  * Consolidate some rather tricky bit shift calculations.
868  * This is hot-path stuff, so not a function.
869  * Simple code, with two return values, so macro rather than inline.
870  *
871  * port is the sole input, in range 0..7.
872  * shift is one output, for use with main_irq_cause / main_irq_mask registers.
873  * hardport is the other output, in range 0..3.
874  *
875  * Note that port and hardport may be the same variable in some cases.
876  */
877 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
878 { \
879  shift = mv_hc_from_port(port) * HC_SHIFT; \
880  hardport = mv_hardport_from_port(port); \
881  shift += hardport * 2; \
882 }
883 
884 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
885 {
886  return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
887 }
888 
889 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
890  unsigned int port)
891 {
892  return mv_hc_base(base, mv_hc_from_port(port));
893 }
894 
895 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
896 {
897  return mv_hc_base_from_port(base, port) +
899  (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
900 }
901 
902 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
903 {
904  void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
905  unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
906 
907  return hc_mmio + ofs;
908 }
909 
910 static inline void __iomem *mv_host_base(struct ata_host *host)
911 {
912  struct mv_host_priv *hpriv = host->private_data;
913  return hpriv->base;
914 }
915 
916 static inline void __iomem *mv_ap_base(struct ata_port *ap)
917 {
918  return mv_port_base(mv_host_base(ap->host), ap->port_no);
919 }
920 
921 static inline int mv_get_hc_count(unsigned long port_flags)
922 {
923  return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
924 }
925 
936 static void mv_save_cached_regs(struct ata_port *ap)
937 {
938  void __iomem *port_mmio = mv_ap_base(ap);
939  struct mv_port_priv *pp = ap->private_data;
940 
941  pp->cached.fiscfg = readl(port_mmio + FISCFG);
942  pp->cached.ltmode = readl(port_mmio + LTMODE);
943  pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
944  pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
945 }
946 
956 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
957 {
958  if (new != *old) {
959  unsigned long laddr;
960  *old = new;
961  /*
962  * Workaround for 88SX60x1-B2 FEr SATA#13:
963  * Read-after-write is needed to prevent generating 64-bit
964  * write cycles on the PCI bus for SATA interface registers
965  * at offsets ending in 0x4 or 0xc.
966  *
967  * Looks like a lot of fuss, but it avoids an unnecessary
968  * +1 usec read-after-write delay for unaffected registers.
969  */
970  laddr = (long)addr & 0xffff;
971  if (laddr >= 0x300 && laddr <= 0x33c) {
972  laddr &= 0x000f;
973  if (laddr == 0x4 || laddr == 0xc) {
974  writelfl(new, addr); /* read after write */
975  return;
976  }
977  }
978  writel(new, addr); /* unaffected by the errata */
979  }
980 }
981 
982 static void mv_set_edma_ptrs(void __iomem *port_mmio,
983  struct mv_host_priv *hpriv,
984  struct mv_port_priv *pp)
985 {
986  u32 index;
987 
988  /*
989  * initialize request queue
990  */
991  pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
992  index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
993 
994  WARN_ON(pp->crqb_dma & 0x3ff);
995  writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
996  writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
997  port_mmio + EDMA_REQ_Q_IN_PTR);
998  writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
999 
1000  /*
1001  * initialize response queue
1002  */
1003  pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1004  index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1005 
1006  WARN_ON(pp->crpb_dma & 0xff);
1007  writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1008  writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1009  writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1010  port_mmio + EDMA_RSP_Q_OUT_PTR);
1011 }
1012 
1013 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1014 {
1015  /*
1016  * When writing to the main_irq_mask in hardware,
1017  * we must ensure exclusivity between the interrupt coalescing bits
1018  * and the corresponding individual port DONE_IRQ bits.
1019  *
1020  * Note that this register is really an "IRQ enable" register,
1021  * not an "IRQ mask" register as Marvell's naming might suggest.
1022  */
1024  mask &= ~DONE_IRQ_0_3;
1026  mask &= ~DONE_IRQ_4_7;
1027  writelfl(mask, hpriv->main_irq_mask_addr);
1028 }
1029 
1030 static void mv_set_main_irq_mask(struct ata_host *host,
1031  u32 disable_bits, u32 enable_bits)
1032 {
1033  struct mv_host_priv *hpriv = host->private_data;
1034  u32 old_mask, new_mask;
1035 
1036  old_mask = hpriv->main_irq_mask;
1037  new_mask = (old_mask & ~disable_bits) | enable_bits;
1038  if (new_mask != old_mask) {
1039  hpriv->main_irq_mask = new_mask;
1040  mv_write_main_irq_mask(new_mask, hpriv);
1041  }
1042 }
1043 
1044 static void mv_enable_port_irqs(struct ata_port *ap,
1045  unsigned int port_bits)
1046 {
1047  unsigned int shift, hardport, port = ap->port_no;
1048  u32 disable_bits, enable_bits;
1049 
1050  MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1051 
1052  disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1053  enable_bits = port_bits << shift;
1054  mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1055 }
1056 
1057 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1058  void __iomem *port_mmio,
1059  unsigned int port_irqs)
1060 {
1061  struct mv_host_priv *hpriv = ap->host->private_data;
1062  int hardport = mv_hardport_from_port(ap->port_no);
1063  void __iomem *hc_mmio = mv_hc_base_from_port(
1064  mv_host_base(ap->host), ap->port_no);
1065  u32 hc_irq_cause;
1066 
1067  /* clear EDMA event indicators, if any */
1068  writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1069 
1070  /* clear pending irq events */
1071  hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1072  writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1073 
1074  /* clear FIS IRQ Cause */
1075  if (IS_GEN_IIE(hpriv))
1076  writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1077 
1078  mv_enable_port_irqs(ap, port_irqs);
1079 }
1080 
1081 static void mv_set_irq_coalescing(struct ata_host *host,
1082  unsigned int count, unsigned int usecs)
1083 {
1084  struct mv_host_priv *hpriv = host->private_data;
1085  void __iomem *mmio = hpriv->base, *hc_mmio;
1086  u32 coal_enable = 0;
1087  unsigned long flags;
1088  unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1089  const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1091 
1092  /* Disable IRQ coalescing if either threshold is zero */
1093  if (!usecs || !count) {
1094  clks = count = 0;
1095  } else {
1096  /* Respect maximum limits of the hardware */
1097  clks = usecs * COAL_CLOCKS_PER_USEC;
1098  if (clks > MAX_COAL_TIME_THRESHOLD)
1099  clks = MAX_COAL_TIME_THRESHOLD;
1100  if (count > MAX_COAL_IO_COUNT)
1101  count = MAX_COAL_IO_COUNT;
1102  }
1103 
1104  spin_lock_irqsave(&host->lock, flags);
1105  mv_set_main_irq_mask(host, coal_disable, 0);
1106 
1107  if (is_dual_hc && !IS_GEN_I(hpriv)) {
1108  /*
1109  * GEN_II/GEN_IIE with dual host controllers:
1110  * one set of global thresholds for the entire chip.
1111  */
1112  writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1113  writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1114  /* clear leftover coal IRQ bit */
1116  if (count)
1117  coal_enable = ALL_PORTS_COAL_DONE;
1118  clks = count = 0; /* force clearing of regular regs below */
1119  }
1120 
1121  /*
1122  * All chips: independent thresholds for each HC on the chip.
1123  */
1124  hc_mmio = mv_hc_base_from_port(mmio, 0);
1125  writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1126  writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1127  writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1128  if (count)
1129  coal_enable |= PORTS_0_3_COAL_DONE;
1130  if (is_dual_hc) {
1131  hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1132  writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1133  writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1134  writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1135  if (count)
1136  coal_enable |= PORTS_4_7_COAL_DONE;
1137  }
1138 
1139  mv_set_main_irq_mask(host, 0, coal_enable);
1140  spin_unlock_irqrestore(&host->lock, flags);
1141 }
1142 
1154 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1155  struct mv_port_priv *pp, u8 protocol)
1156 {
1157  int want_ncq = (protocol == ATA_PROT_NCQ);
1158 
1159  if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1160  int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1161  if (want_ncq != using_ncq)
1162  mv_stop_edma(ap);
1163  }
1164  if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1165  struct mv_host_priv *hpriv = ap->host->private_data;
1166 
1167  mv_edma_cfg(ap, want_ncq, 1);
1168 
1169  mv_set_edma_ptrs(port_mmio, hpriv, pp);
1170  mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1171 
1172  writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1174  }
1175 }
1176 
1177 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1178 {
1179  void __iomem *port_mmio = mv_ap_base(ap);
1180  const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1181  const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1182  int i;
1183 
1184  /*
1185  * Wait for the EDMA engine to finish transactions in progress.
1186  * No idea what a good "timeout" value might be, but measurements
1187  * indicate that it often requires hundreds of microseconds
1188  * with two drives in-use. So we use the 15msec value above
1189  * as a rough guess at what even more drives might require.
1190  */
1191  for (i = 0; i < timeout; ++i) {
1192  u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1193  if ((edma_stat & empty_idle) == empty_idle)
1194  break;
1195  udelay(per_loop);
1196  }
1197  /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1198 }
1199 
1207 static int mv_stop_edma_engine(void __iomem *port_mmio)
1208 {
1209  int i;
1210 
1211  /* Disable eDMA. The disable bit auto clears. */
1212  writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1213 
1214  /* Wait for the chip to confirm eDMA is off. */
1215  for (i = 10000; i > 0; i--) {
1216  u32 reg = readl(port_mmio + EDMA_CMD);
1217  if (!(reg & EDMA_EN))
1218  return 0;
1219  udelay(10);
1220  }
1221  return -EIO;
1222 }
1223 
1224 static int mv_stop_edma(struct ata_port *ap)
1225 {
1226  void __iomem *port_mmio = mv_ap_base(ap);
1227  struct mv_port_priv *pp = ap->private_data;
1228  int err = 0;
1229 
1230  if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1231  return 0;
1232  pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1233  mv_wait_for_edma_empty_idle(ap);
1234  if (mv_stop_edma_engine(port_mmio)) {
1235  ata_port_err(ap, "Unable to stop eDMA\n");
1236  err = -EIO;
1237  }
1238  mv_edma_cfg(ap, 0, 0);
1239  return err;
1240 }
1241 
1242 #ifdef ATA_DEBUG
1243 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1244 {
1245  int b, w;
1246  for (b = 0; b < bytes; ) {
1247  DPRINTK("%p: ", start + b);
1248  for (w = 0; b < bytes && w < 4; w++) {
1249  printk("%08x ", readl(start + b));
1250  b += sizeof(u32);
1251  }
1252  printk("\n");
1253  }
1254 }
1255 #endif
1256 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1257 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1258 {
1259 #ifdef ATA_DEBUG
1260  int b, w;
1261  u32 dw;
1262  for (b = 0; b < bytes; ) {
1263  DPRINTK("%02x: ", b);
1264  for (w = 0; b < bytes && w < 4; w++) {
1265  (void) pci_read_config_dword(pdev, b, &dw);
1266  printk("%08x ", dw);
1267  b += sizeof(u32);
1268  }
1269  printk("\n");
1270  }
1271 #endif
1272 }
1273 #endif
1274 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1275  struct pci_dev *pdev)
1276 {
1277 #ifdef ATA_DEBUG
1278  void __iomem *hc_base = mv_hc_base(mmio_base,
1279  port >> MV_PORT_HC_SHIFT);
1280  void __iomem *port_base;
1281  int start_port, num_ports, p, start_hc, num_hcs, hc;
1282 
1283  if (0 > port) {
1284  start_hc = start_port = 0;
1285  num_ports = 8; /* shld be benign for 4 port devs */
1286  num_hcs = 2;
1287  } else {
1288  start_hc = port >> MV_PORT_HC_SHIFT;
1289  start_port = port;
1290  num_ports = num_hcs = 1;
1291  }
1292  DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1293  num_ports > 1 ? num_ports - 1 : start_port);
1294 
1295  if (NULL != pdev) {
1296  DPRINTK("PCI config space regs:\n");
1297  mv_dump_pci_cfg(pdev, 0x68);
1298  }
1299  DPRINTK("PCI regs:\n");
1300  mv_dump_mem(mmio_base+0xc00, 0x3c);
1301  mv_dump_mem(mmio_base+0xd00, 0x34);
1302  mv_dump_mem(mmio_base+0xf00, 0x4);
1303  mv_dump_mem(mmio_base+0x1d00, 0x6c);
1304  for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1305  hc_base = mv_hc_base(mmio_base, hc);
1306  DPRINTK("HC regs (HC %i):\n", hc);
1307  mv_dump_mem(hc_base, 0x1c);
1308  }
1309  for (p = start_port; p < start_port + num_ports; p++) {
1310  port_base = mv_port_base(mmio_base, p);
1311  DPRINTK("EDMA regs (port %i):\n", p);
1312  mv_dump_mem(port_base, 0x54);
1313  DPRINTK("SATA regs (port %i):\n", p);
1314  mv_dump_mem(port_base+0x300, 0x60);
1315  }
1316 #endif
1317 }
1318 
1319 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1320 {
1321  unsigned int ofs;
1322 
1323  switch (sc_reg_in) {
1324  case SCR_STATUS:
1325  case SCR_CONTROL:
1326  case SCR_ERROR:
1327  ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1328  break;
1329  case SCR_ACTIVE:
1330  ofs = SATA_ACTIVE; /* active is not with the others */
1331  break;
1332  default:
1333  ofs = 0xffffffffU;
1334  break;
1335  }
1336  return ofs;
1337 }
1338 
1339 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1340 {
1341  unsigned int ofs = mv_scr_offset(sc_reg_in);
1342 
1343  if (ofs != 0xffffffffU) {
1344  *val = readl(mv_ap_base(link->ap) + ofs);
1345  return 0;
1346  } else
1347  return -EINVAL;
1348 }
1349 
1350 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1351 {
1352  unsigned int ofs = mv_scr_offset(sc_reg_in);
1353 
1354  if (ofs != 0xffffffffU) {
1355  void __iomem *addr = mv_ap_base(link->ap) + ofs;
1356  if (sc_reg_in == SCR_CONTROL) {
1357  /*
1358  * Workaround for 88SX60x1 FEr SATA#26:
1359  *
1360  * COMRESETs have to take care not to accidentally
1361  * put the drive to sleep when writing SCR_CONTROL.
1362  * Setting bits 12..15 prevents this problem.
1363  *
1364  * So if we see an outbound COMMRESET, set those bits.
1365  * Ditto for the followup write that clears the reset.
1366  *
1367  * The proprietary driver does this for
1368  * all chip versions, and so do we.
1369  */
1370  if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1371  val |= 0xf000;
1372  }
1373  writelfl(val, addr);
1374  return 0;
1375  } else
1376  return -EINVAL;
1377 }
1378 
1379 static void mv6_dev_config(struct ata_device *adev)
1380 {
1381  /*
1382  * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1383  *
1384  * Gen-II does not support NCQ over a port multiplier
1385  * (no FIS-based switching).
1386  */
1387  if (adev->flags & ATA_DFLAG_NCQ) {
1388  if (sata_pmp_attached(adev->link->ap)) {
1389  adev->flags &= ~ATA_DFLAG_NCQ;
1390  ata_dev_info(adev,
1391  "NCQ disabled for command-based switching\n");
1392  }
1393  }
1394 }
1395 
1396 static int mv_qc_defer(struct ata_queued_cmd *qc)
1397 {
1398  struct ata_link *link = qc->dev->link;
1399  struct ata_port *ap = link->ap;
1400  struct mv_port_priv *pp = ap->private_data;
1401 
1402  /*
1403  * Don't allow new commands if we're in a delayed EH state
1404  * for NCQ and/or FIS-based switching.
1405  */
1406  if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1407  return ATA_DEFER_PORT;
1408 
1409  /* PIO commands need exclusive link: no other commands [DMA or PIO]
1410  * can run concurrently.
1411  * set excl_link when we want to send a PIO command in DMA mode
1412  * or a non-NCQ command in NCQ mode.
1413  * When we receive a command from that link, and there are no
1414  * outstanding commands, mark a flag to clear excl_link and let
1415  * the command go through.
1416  */
1417  if (unlikely(ap->excl_link)) {
1418  if (link == ap->excl_link) {
1419  if (ap->nr_active_links)
1420  return ATA_DEFER_PORT;
1422  return 0;
1423  } else
1424  return ATA_DEFER_PORT;
1425  }
1426 
1427  /*
1428  * If the port is completely idle, then allow the new qc.
1429  */
1430  if (ap->nr_active_links == 0)
1431  return 0;
1432 
1433  /*
1434  * The port is operating in host queuing mode (EDMA) with NCQ
1435  * enabled, allow multiple NCQ commands. EDMA also allows
1436  * queueing multiple DMA commands but libata core currently
1437  * doesn't allow it.
1438  */
1439  if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1440  (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1441  if (ata_is_ncq(qc->tf.protocol))
1442  return 0;
1443  else {
1444  ap->excl_link = link;
1445  return ATA_DEFER_PORT;
1446  }
1447  }
1448 
1449  return ATA_DEFER_PORT;
1450 }
1451 
1452 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1453 {
1454  struct mv_port_priv *pp = ap->private_data;
1455  void __iomem *port_mmio;
1456 
1457  u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1458  u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1459  u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1460 
1461  ltmode = *old_ltmode & ~LTMODE_BIT8;
1462  haltcond = *old_haltcond | EDMA_ERR_DEV;
1463 
1464  if (want_fbs) {
1465  fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1466  ltmode = *old_ltmode | LTMODE_BIT8;
1467  if (want_ncq)
1468  haltcond &= ~EDMA_ERR_DEV;
1469  else
1470  fiscfg |= FISCFG_WAIT_DEV_ERR;
1471  } else {
1472  fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1473  }
1474 
1475  port_mmio = mv_ap_base(ap);
1476  mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1477  mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1478  mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1479 }
1480 
1481 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1482 {
1483  struct mv_host_priv *hpriv = ap->host->private_data;
1484  u32 old, new;
1485 
1486  /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1487  old = readl(hpriv->base + GPIO_PORT_CTL);
1488  if (want_ncq)
1489  new = old | (1 << 22);
1490  else
1491  new = old & ~(1 << 22);
1492  if (new != old)
1493  writel(new, hpriv->base + GPIO_PORT_CTL);
1494 }
1495 
1508 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1509 {
1510  struct mv_port_priv *pp = ap->private_data;
1511  u32 new, *old = &pp->cached.unknown_rsvd;
1512 
1513  if (enable_bmdma)
1514  new = *old | 1;
1515  else
1516  new = *old & ~1;
1517  mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1518 }
1519 
1520 /*
1521  * SOC chips have an issue whereby the HDD LEDs don't always blink
1522  * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1523  * of the SOC takes care of it, generating a steady blink rate when
1524  * any drive on the chip is active.
1525  *
1526  * Unfortunately, the blink mode is a global hardware setting for the SOC,
1527  * so we must use it whenever at least one port on the SOC has NCQ enabled.
1528  *
1529  * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1530  * LED operation works then, and provides better (more accurate) feedback.
1531  *
1532  * Note that this code assumes that an SOC never has more than one HC onboard.
1533  */
1534 static void mv_soc_led_blink_enable(struct ata_port *ap)
1535 {
1536  struct ata_host *host = ap->host;
1537  struct mv_host_priv *hpriv = host->private_data;
1538  void __iomem *hc_mmio;
1539  u32 led_ctrl;
1540 
1541  if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1542  return;
1544  hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1545  led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1546  writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1547 }
1548 
1549 static void mv_soc_led_blink_disable(struct ata_port *ap)
1550 {
1551  struct ata_host *host = ap->host;
1552  struct mv_host_priv *hpriv = host->private_data;
1553  void __iomem *hc_mmio;
1554  u32 led_ctrl;
1555  unsigned int port;
1556 
1557  if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1558  return;
1559 
1560  /* disable led-blink only if no ports are using NCQ */
1561  for (port = 0; port < hpriv->n_ports; port++) {
1562  struct ata_port *this_ap = host->ports[port];
1563  struct mv_port_priv *pp = this_ap->private_data;
1564 
1565  if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1566  return;
1567  }
1568 
1570  hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1571  led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1572  writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1573 }
1574 
1575 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1576 {
1577  u32 cfg;
1578  struct mv_port_priv *pp = ap->private_data;
1579  struct mv_host_priv *hpriv = ap->host->private_data;
1580  void __iomem *port_mmio = mv_ap_base(ap);
1581 
1582  /* set up non-NCQ EDMA configuration */
1583  cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1584  pp->pp_flags &=
1586 
1587  if (IS_GEN_I(hpriv))
1588  cfg |= (1 << 8); /* enab config burst size mask */
1589 
1590  else if (IS_GEN_II(hpriv)) {
1592  mv_60x1_errata_sata25(ap, want_ncq);
1593 
1594  } else if (IS_GEN_IIE(hpriv)) {
1595  int want_fbs = sata_pmp_attached(ap);
1596  /*
1597  * Possible future enhancement:
1598  *
1599  * The chip can use FBS with non-NCQ, if we allow it,
1600  * But first we need to have the error handling in place
1601  * for this mode (datasheet section 7.3.15.4.2.3).
1602  * So disallow non-NCQ FBS for now.
1603  */
1604  want_fbs &= want_ncq;
1605 
1606  mv_config_fbs(ap, want_ncq, want_fbs);
1607 
1608  if (want_fbs) {
1609  pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1610  cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1611  }
1612 
1613  cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1614  if (want_edma) {
1615  cfg |= (1 << 22); /* enab 4-entry host queue cache */
1616  if (!IS_SOC(hpriv))
1617  cfg |= (1 << 18); /* enab early completion */
1618  }
1619  if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1620  cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1621  mv_bmdma_enable_iie(ap, !want_edma);
1622 
1623  if (IS_SOC(hpriv)) {
1624  if (want_ncq)
1625  mv_soc_led_blink_enable(ap);
1626  else
1627  mv_soc_led_blink_disable(ap);
1628  }
1629  }
1630 
1631  if (want_ncq) {
1632  cfg |= EDMA_CFG_NCQ;
1633  pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1634  }
1635 
1636  writelfl(cfg, port_mmio + EDMA_CFG);
1637 }
1638 
1639 static void mv_port_free_dma_mem(struct ata_port *ap)
1640 {
1641  struct mv_host_priv *hpriv = ap->host->private_data;
1642  struct mv_port_priv *pp = ap->private_data;
1643  int tag;
1644 
1645  if (pp->crqb) {
1646  dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1647  pp->crqb = NULL;
1648  }
1649  if (pp->crpb) {
1650  dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1651  pp->crpb = NULL;
1652  }
1653  /*
1654  * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1655  * For later hardware, we have one unique sg_tbl per NCQ tag.
1656  */
1657  for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1658  if (pp->sg_tbl[tag]) {
1659  if (tag == 0 || !IS_GEN_I(hpriv))
1660  dma_pool_free(hpriv->sg_tbl_pool,
1661  pp->sg_tbl[tag],
1662  pp->sg_tbl_dma[tag]);
1663  pp->sg_tbl[tag] = NULL;
1664  }
1665  }
1666 }
1667 
1678 static int mv_port_start(struct ata_port *ap)
1679 {
1680  struct device *dev = ap->host->dev;
1681  struct mv_host_priv *hpriv = ap->host->private_data;
1682  struct mv_port_priv *pp;
1683  unsigned long flags;
1684  int tag;
1685 
1686  pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1687  if (!pp)
1688  return -ENOMEM;
1689  ap->private_data = pp;
1690 
1691  pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1692  if (!pp->crqb)
1693  return -ENOMEM;
1694  memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1695 
1696  pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1697  if (!pp->crpb)
1698  goto out_port_free_dma_mem;
1699  memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1700 
1701  /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1702  if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1703  ap->flags |= ATA_FLAG_AN;
1704  /*
1705  * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1706  * For later hardware, we need one unique sg_tbl per NCQ tag.
1707  */
1708  for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1709  if (tag == 0 || !IS_GEN_I(hpriv)) {
1710  pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1711  GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1712  if (!pp->sg_tbl[tag])
1713  goto out_port_free_dma_mem;
1714  } else {
1715  pp->sg_tbl[tag] = pp->sg_tbl[0];
1716  pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1717  }
1718  }
1719 
1720  spin_lock_irqsave(ap->lock, flags);
1721  mv_save_cached_regs(ap);
1722  mv_edma_cfg(ap, 0, 0);
1723  spin_unlock_irqrestore(ap->lock, flags);
1724 
1725  return 0;
1726 
1727 out_port_free_dma_mem:
1728  mv_port_free_dma_mem(ap);
1729  return -ENOMEM;
1730 }
1731 
1741 static void mv_port_stop(struct ata_port *ap)
1742 {
1743  unsigned long flags;
1744 
1745  spin_lock_irqsave(ap->lock, flags);
1746  mv_stop_edma(ap);
1747  mv_enable_port_irqs(ap, 0);
1748  spin_unlock_irqrestore(ap->lock, flags);
1749  mv_port_free_dma_mem(ap);
1750 }
1751 
1761 static void mv_fill_sg(struct ata_queued_cmd *qc)
1762 {
1763  struct mv_port_priv *pp = qc->ap->private_data;
1764  struct scatterlist *sg;
1765  struct mv_sg *mv_sg, *last_sg = NULL;
1766  unsigned int si;
1767 
1768  mv_sg = pp->sg_tbl[qc->tag];
1769  for_each_sg(qc->sg, sg, qc->n_elem, si) {
1770  dma_addr_t addr = sg_dma_address(sg);
1771  u32 sg_len = sg_dma_len(sg);
1772 
1773  while (sg_len) {
1774  u32 offset = addr & 0xffff;
1775  u32 len = sg_len;
1776 
1777  if (offset + len > 0x10000)
1778  len = 0x10000 - offset;
1779 
1780  mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1781  mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1782  mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1783  mv_sg->reserved = 0;
1784 
1785  sg_len -= len;
1786  addr += len;
1787 
1788  last_sg = mv_sg;
1789  mv_sg++;
1790  }
1791  }
1792 
1793  if (likely(last_sg))
1795  mb(); /* ensure data structure is visible to the chipset */
1796 }
1797 
1798 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1799 {
1800  u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1801  (last ? CRQB_CMD_LAST : 0);
1802  *cmdw = cpu_to_le16(tmp);
1803 }
1804 
1813 static void mv_sff_irq_clear(struct ata_port *ap)
1814 {
1815  mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1816 }
1817 
1829 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1830 {
1831  struct scsi_cmnd *scmd = qc->scsicmd;
1832 
1833  if (scmd) {
1834  switch (scmd->cmnd[0]) {
1835  case READ_6:
1836  case READ_10:
1837  case READ_12:
1838  case WRITE_6:
1839  case WRITE_10:
1840  case WRITE_12:
1841  case GPCMD_READ_CD:
1843  case GPCMD_SEND_CUE_SHEET:
1844  return 0; /* DMA is safe */
1845  }
1846  }
1847  return -EOPNOTSUPP; /* use PIO instead */
1848 }
1849 
1857 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1858 {
1859  struct ata_port *ap = qc->ap;
1860  void __iomem *port_mmio = mv_ap_base(ap);
1861  struct mv_port_priv *pp = ap->private_data;
1862 
1863  mv_fill_sg(qc);
1864 
1865  /* clear all DMA cmd bits */
1866  writel(0, port_mmio + BMDMA_CMD);
1867 
1868  /* load PRD table addr. */
1869  writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1870  port_mmio + BMDMA_PRD_HIGH);
1871  writelfl(pp->sg_tbl_dma[qc->tag],
1872  port_mmio + BMDMA_PRD_LOW);
1873 
1874  /* issue r/w command */
1875  ap->ops->sff_exec_command(ap, &qc->tf);
1876 }
1877 
1885 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1886 {
1887  struct ata_port *ap = qc->ap;
1888  void __iomem *port_mmio = mv_ap_base(ap);
1889  unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1890  u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1891 
1892  /* start host DMA transaction */
1893  writelfl(cmd, port_mmio + BMDMA_CMD);
1894 }
1895 
1905 static void mv_bmdma_stop_ap(struct ata_port *ap)
1906 {
1907  void __iomem *port_mmio = mv_ap_base(ap);
1908  u32 cmd;
1909 
1910  /* clear start/stop bit */
1911  cmd = readl(port_mmio + BMDMA_CMD);
1912  if (cmd & ATA_DMA_START) {
1913  cmd &= ~ATA_DMA_START;
1914  writelfl(cmd, port_mmio + BMDMA_CMD);
1915 
1916  /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1917  ata_sff_dma_pause(ap);
1918  }
1919 }
1920 
1921 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1922 {
1923  mv_bmdma_stop_ap(qc->ap);
1924 }
1925 
1935 static u8 mv_bmdma_status(struct ata_port *ap)
1936 {
1937  void __iomem *port_mmio = mv_ap_base(ap);
1938  u32 reg, status;
1939 
1940  /*
1941  * Other bits are valid only if ATA_DMA_ACTIVE==0,
1942  * and the ATA_DMA_INTR bit doesn't exist.
1943  */
1944  reg = readl(port_mmio + BMDMA_STATUS);
1945  if (reg & ATA_DMA_ACTIVE)
1946  status = ATA_DMA_ACTIVE;
1947  else if (reg & ATA_DMA_ERR)
1948  status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1949  else {
1950  /*
1951  * Just because DMA_ACTIVE is 0 (DMA completed),
1952  * this does _not_ mean the device is "done".
1953  * So we should not yet be signalling ATA_DMA_INTR
1954  * in some cases. Eg. DSM/TRIM, and perhaps others.
1955  */
1956  mv_bmdma_stop_ap(ap);
1957  if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1958  status = 0;
1959  else
1960  status = ATA_DMA_INTR;
1961  }
1962  return status;
1963 }
1964 
1965 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1966 {
1967  struct ata_taskfile *tf = &qc->tf;
1968  /*
1969  * Workaround for 88SX60x1 FEr SATA#24.
1970  *
1971  * Chip may corrupt WRITEs if multi_count >= 4kB.
1972  * Note that READs are unaffected.
1973  *
1974  * It's not clear if this errata really means "4K bytes",
1975  * or if it always happens for multi_count > 7
1976  * regardless of device sector_size.
1977  *
1978  * So, for safety, any write with multi_count > 7
1979  * gets converted here into a regular PIO write instead:
1980  */
1981  if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1982  if (qc->dev->multi_count > 7) {
1983  switch (tf->command) {
1984  case ATA_CMD_WRITE_MULTI:
1985  tf->command = ATA_CMD_PIO_WRITE;
1986  break;
1988  tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1989  /* fall through */
1992  break;
1993  }
1994  }
1995  }
1996 }
1997 
2010 static void mv_qc_prep(struct ata_queued_cmd *qc)
2011 {
2012  struct ata_port *ap = qc->ap;
2013  struct mv_port_priv *pp = ap->private_data;
2014  __le16 *cw;
2015  struct ata_taskfile *tf = &qc->tf;
2016  u16 flags = 0;
2017  unsigned in_index;
2018 
2019  switch (tf->protocol) {
2020  case ATA_PROT_DMA:
2021  if (tf->command == ATA_CMD_DSM)
2022  return;
2023  /* fall-thru */
2024  case ATA_PROT_NCQ:
2025  break; /* continue below */
2026  case ATA_PROT_PIO:
2027  mv_rw_multi_errata_sata24(qc);
2028  return;
2029  default:
2030  return;
2031  }
2032 
2033  /* Fill in command request block
2034  */
2035  if (!(tf->flags & ATA_TFLAG_WRITE))
2036  flags |= CRQB_FLAG_READ;
2037  WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2038  flags |= qc->tag << CRQB_TAG_SHIFT;
2039  flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2040 
2041  /* get current queue index from software */
2042  in_index = pp->req_idx;
2043 
2044  pp->crqb[in_index].sg_addr =
2045  cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2046  pp->crqb[in_index].sg_addr_hi =
2047  cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2048  pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2049 
2050  cw = &pp->crqb[in_index].ata_cmd[0];
2051 
2052  /* Sadly, the CRQB cannot accommodate all registers--there are
2053  * only 11 bytes...so we must pick and choose required
2054  * registers based on the command. So, we drop feature and
2055  * hob_feature for [RW] DMA commands, but they are needed for
2056  * NCQ. NCQ will drop hob_nsect, which is not needed there
2057  * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2058  */
2059  switch (tf->command) {
2060  case ATA_CMD_READ:
2061  case ATA_CMD_READ_EXT:
2062  case ATA_CMD_WRITE:
2063  case ATA_CMD_WRITE_EXT:
2064  case ATA_CMD_WRITE_FUA_EXT:
2065  mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2066  break;
2067  case ATA_CMD_FPDMA_READ:
2068  case ATA_CMD_FPDMA_WRITE:
2069  mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2070  mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2071  break;
2072  default:
2073  /* The only other commands EDMA supports in non-queued and
2074  * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2075  * of which are defined/used by Linux. If we get here, this
2076  * driver needs work.
2077  *
2078  * FIXME: modify libata to give qc_prep a return value and
2079  * return error here.
2080  */
2081  BUG_ON(tf->command);
2082  break;
2083  }
2084  mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2085  mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2086  mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2087  mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2088  mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2089  mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2090  mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2091  mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2092  mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2093 
2094  if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2095  return;
2096  mv_fill_sg(qc);
2097 }
2098 
2111 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2112 {
2113  struct ata_port *ap = qc->ap;
2114  struct mv_port_priv *pp = ap->private_data;
2115  struct mv_crqb_iie *crqb;
2116  struct ata_taskfile *tf = &qc->tf;
2117  unsigned in_index;
2118  u32 flags = 0;
2119 
2120  if ((tf->protocol != ATA_PROT_DMA) &&
2121  (tf->protocol != ATA_PROT_NCQ))
2122  return;
2123  if (tf->command == ATA_CMD_DSM)
2124  return; /* use bmdma for this */
2125 
2126  /* Fill in Gen IIE command request block */
2127  if (!(tf->flags & ATA_TFLAG_WRITE))
2128  flags |= CRQB_FLAG_READ;
2129 
2130  WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2131  flags |= qc->tag << CRQB_TAG_SHIFT;
2132  flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2133  flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2134 
2135  /* get current queue index from software */
2136  in_index = pp->req_idx;
2137 
2138  crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2139  crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2140  crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2141  crqb->flags = cpu_to_le32(flags);
2142 
2143  crqb->ata_cmd[0] = cpu_to_le32(
2144  (tf->command << 16) |
2145  (tf->feature << 24)
2146  );
2147  crqb->ata_cmd[1] = cpu_to_le32(
2148  (tf->lbal << 0) |
2149  (tf->lbam << 8) |
2150  (tf->lbah << 16) |
2151  (tf->device << 24)
2152  );
2153  crqb->ata_cmd[2] = cpu_to_le32(
2154  (tf->hob_lbal << 0) |
2155  (tf->hob_lbam << 8) |
2156  (tf->hob_lbah << 16) |
2157  (tf->hob_feature << 24)
2158  );
2159  crqb->ata_cmd[3] = cpu_to_le32(
2160  (tf->nsect << 0) |
2161  (tf->hob_nsect << 8)
2162  );
2163 
2164  if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2165  return;
2166  mv_fill_sg(qc);
2167 }
2168 
2182 static u8 mv_sff_check_status(struct ata_port *ap)
2183 {
2184  u8 stat = ioread8(ap->ioaddr.status_addr);
2185  struct mv_port_priv *pp = ap->private_data;
2186 
2187  if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2188  if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2190  else
2191  stat = ATA_BUSY;
2192  }
2193  return stat;
2194 }
2195 
2201 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2202 {
2203  void __iomem *port_mmio = mv_ap_base(ap);
2204  u32 ifctl, old_ifctl, ifstat;
2205  int i, timeout = 200, final_word = nwords - 1;
2206 
2207  /* Initiate FIS transmission mode */
2208  old_ifctl = readl(port_mmio + SATA_IFCTL);
2209  ifctl = 0x100 | (old_ifctl & 0xf);
2210  writelfl(ifctl, port_mmio + SATA_IFCTL);
2211 
2212  /* Send all words of the FIS except for the final word */
2213  for (i = 0; i < final_word; ++i)
2214  writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2215 
2216  /* Flag end-of-transmission, and then send the final word */
2217  writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2218  writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2219 
2220  /*
2221  * Wait for FIS transmission to complete.
2222  * This typically takes just a single iteration.
2223  */
2224  do {
2225  ifstat = readl(port_mmio + SATA_IFSTAT);
2226  } while (!(ifstat & 0x1000) && --timeout);
2227 
2228  /* Restore original port configuration */
2229  writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2230 
2231  /* See if it worked */
2232  if ((ifstat & 0x3000) != 0x1000) {
2233  ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2234  __func__, ifstat);
2235  return AC_ERR_OTHER;
2236  }
2237  return 0;
2238 }
2239 
2257 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2258 {
2259  struct ata_port *ap = qc->ap;
2260  struct mv_port_priv *pp = ap->private_data;
2261  struct ata_link *link = qc->dev->link;
2262  u32 fis[5];
2263  int err = 0;
2264 
2265  ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2266  err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2267  if (err)
2268  return err;
2269 
2270  switch (qc->tf.protocol) {
2271  case ATAPI_PROT_PIO:
2273  /* fall through */
2274  case ATAPI_PROT_NODATA:
2276  break;
2277  case ATA_PROT_PIO:
2279  if (qc->tf.flags & ATA_TFLAG_WRITE)
2281  else
2282  ap->hsm_task_state = HSM_ST;
2283  break;
2284  default:
2286  break;
2287  }
2288 
2289  if (qc->tf.flags & ATA_TFLAG_POLLING)
2290  ata_sff_queue_pio_task(link, 0);
2291  return 0;
2292 }
2293 
2306 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2307 {
2308  static int limit_warnings = 10;
2309  struct ata_port *ap = qc->ap;
2310  void __iomem *port_mmio = mv_ap_base(ap);
2311  struct mv_port_priv *pp = ap->private_data;
2312  u32 in_index;
2313  unsigned int port_irqs;
2314 
2315  pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2316 
2317  switch (qc->tf.protocol) {
2318  case ATA_PROT_DMA:
2319  if (qc->tf.command == ATA_CMD_DSM) {
2320  if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2321  return AC_ERR_OTHER;
2322  break; /* use bmdma for this */
2323  }
2324  /* fall thru */
2325  case ATA_PROT_NCQ:
2326  mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2327  pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2328  in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2329 
2330  /* Write the request in pointer to kick the EDMA to life */
2331  writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2332  port_mmio + EDMA_REQ_Q_IN_PTR);
2333  return 0;
2334 
2335  case ATA_PROT_PIO:
2336  /*
2337  * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2338  *
2339  * Someday, we might implement special polling workarounds
2340  * for these, but it all seems rather unnecessary since we
2341  * normally use only DMA for commands which transfer more
2342  * than a single block of data.
2343  *
2344  * Much of the time, this could just work regardless.
2345  * So for now, just log the incident, and allow the attempt.
2346  */
2347  if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2348  --limit_warnings;
2349  ata_link_warn(qc->dev->link, DRV_NAME
2350  ": attempting PIO w/multiple DRQ: "
2351  "this may fail due to h/w errata\n");
2352  }
2353  /* drop through */
2354  case ATA_PROT_NODATA:
2355  case ATAPI_PROT_PIO:
2356  case ATAPI_PROT_NODATA:
2357  if (ap->flags & ATA_FLAG_PIO_POLLING)
2358  qc->tf.flags |= ATA_TFLAG_POLLING;
2359  break;
2360  }
2361 
2362  if (qc->tf.flags & ATA_TFLAG_POLLING)
2363  port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2364  else
2365  port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2366 
2367  /*
2368  * We're about to send a non-EDMA capable command to the
2369  * port. Turn off EDMA so there won't be problems accessing
2370  * shadow block, etc registers.
2371  */
2372  mv_stop_edma(ap);
2373  mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2374  mv_pmp_select(ap, qc->dev->link->pmp);
2375 
2376  if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2377  struct mv_host_priv *hpriv = ap->host->private_data;
2378  /*
2379  * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2380  *
2381  * After any NCQ error, the READ_LOG_EXT command
2382  * from libata-eh *must* use mv_qc_issue_fis().
2383  * Otherwise it might fail, due to chip errata.
2384  *
2385  * Rather than special-case it, we'll just *always*
2386  * use this method here for READ_LOG_EXT, making for
2387  * easier testing.
2388  */
2389  if (IS_GEN_II(hpriv))
2390  return mv_qc_issue_fis(qc);
2391  }
2392  return ata_bmdma_qc_issue(qc);
2393 }
2394 
2395 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2396 {
2397  struct mv_port_priv *pp = ap->private_data;
2398  struct ata_queued_cmd *qc;
2399 
2400  if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2401  return NULL;
2402  qc = ata_qc_from_tag(ap, ap->link.active_tag);
2403  if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2404  return qc;
2405  return NULL;
2406 }
2407 
2408 static void mv_pmp_error_handler(struct ata_port *ap)
2409 {
2410  unsigned int pmp, pmp_map;
2411  struct mv_port_priv *pp = ap->private_data;
2412 
2413  if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2414  /*
2415  * Perform NCQ error analysis on failed PMPs
2416  * before we freeze the port entirely.
2417  *
2418  * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2419  */
2420  pmp_map = pp->delayed_eh_pmp_map;
2422  for (pmp = 0; pmp_map != 0; pmp++) {
2423  unsigned int this_pmp = (1 << pmp);
2424  if (pmp_map & this_pmp) {
2425  struct ata_link *link = &ap->pmp_link[pmp];
2426  pmp_map &= ~this_pmp;
2428  }
2429  }
2430  ata_port_freeze(ap);
2431  }
2433 }
2434 
2435 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2436 {
2437  void __iomem *port_mmio = mv_ap_base(ap);
2438 
2439  return readl(port_mmio + SATA_TESTCTL) >> 16;
2440 }
2441 
2442 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2443 {
2444  struct ata_eh_info *ehi;
2445  unsigned int pmp;
2446 
2447  /*
2448  * Initialize EH info for PMPs which saw device errors
2449  */
2450  ehi = &ap->link.eh_info;
2451  for (pmp = 0; pmp_map != 0; pmp++) {
2452  unsigned int this_pmp = (1 << pmp);
2453  if (pmp_map & this_pmp) {
2454  struct ata_link *link = &ap->pmp_link[pmp];
2455 
2456  pmp_map &= ~this_pmp;
2457  ehi = &link->eh_info;
2458  ata_ehi_clear_desc(ehi);
2459  ata_ehi_push_desc(ehi, "dev err");
2460  ehi->err_mask |= AC_ERR_DEV;
2461  ehi->action |= ATA_EH_RESET;
2462  ata_link_abort(link);
2463  }
2464  }
2465 }
2466 
2467 static int mv_req_q_empty(struct ata_port *ap)
2468 {
2469  void __iomem *port_mmio = mv_ap_base(ap);
2470  u32 in_ptr, out_ptr;
2471 
2472  in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2474  out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2476  return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2477 }
2478 
2479 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2480 {
2481  struct mv_port_priv *pp = ap->private_data;
2482  int failed_links;
2483  unsigned int old_map, new_map;
2484 
2485  /*
2486  * Device error during FBS+NCQ operation:
2487  *
2488  * Set a port flag to prevent further I/O being enqueued.
2489  * Leave the EDMA running to drain outstanding commands from this port.
2490  * Perform the post-mortem/EH only when all responses are complete.
2491  * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2492  */
2493  if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2495  pp->delayed_eh_pmp_map = 0;
2496  }
2497  old_map = pp->delayed_eh_pmp_map;
2498  new_map = old_map | mv_get_err_pmp_map(ap);
2499 
2500  if (old_map != new_map) {
2501  pp->delayed_eh_pmp_map = new_map;
2502  mv_pmp_eh_prep(ap, new_map & ~old_map);
2503  }
2504  failed_links = hweight16(new_map);
2505 
2506  ata_port_info(ap,
2507  "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2508  __func__, pp->delayed_eh_pmp_map,
2509  ap->qc_active, failed_links,
2510  ap->nr_active_links);
2511 
2512  if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2513  mv_process_crpb_entries(ap, pp);
2514  mv_stop_edma(ap);
2515  mv_eh_freeze(ap);
2516  ata_port_info(ap, "%s: done\n", __func__);
2517  return 1; /* handled */
2518  }
2519  ata_port_info(ap, "%s: waiting\n", __func__);
2520  return 1; /* handled */
2521 }
2522 
2523 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2524 {
2525  /*
2526  * Possible future enhancement:
2527  *
2528  * FBS+non-NCQ operation is not yet implemented.
2529  * See related notes in mv_edma_cfg().
2530  *
2531  * Device error during FBS+non-NCQ operation:
2532  *
2533  * We need to snapshot the shadow registers for each failed command.
2534  * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2535  */
2536  return 0; /* not handled */
2537 }
2538 
2539 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2540 {
2541  struct mv_port_priv *pp = ap->private_data;
2542 
2543  if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2544  return 0; /* EDMA was not active: not handled */
2545  if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2546  return 0; /* FBS was not active: not handled */
2547 
2548  if (!(edma_err_cause & EDMA_ERR_DEV))
2549  return 0; /* non DEV error: not handled */
2550  edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2551  if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2552  return 0; /* other problems: not handled */
2553 
2554  if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2555  /*
2556  * EDMA should NOT have self-disabled for this case.
2557  * If it did, then something is wrong elsewhere,
2558  * and we cannot handle it here.
2559  */
2560  if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2561  ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2562  __func__, edma_err_cause, pp->pp_flags);
2563  return 0; /* not handled */
2564  }
2565  return mv_handle_fbs_ncq_dev_err(ap);
2566  } else {
2567  /*
2568  * EDMA should have self-disabled for this case.
2569  * If it did not, then something is wrong elsewhere,
2570  * and we cannot handle it here.
2571  */
2572  if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2573  ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2574  __func__, edma_err_cause, pp->pp_flags);
2575  return 0; /* not handled */
2576  }
2577  return mv_handle_fbs_non_ncq_dev_err(ap);
2578  }
2579  return 0; /* not handled */
2580 }
2581 
2582 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2583 {
2584  struct ata_eh_info *ehi = &ap->link.eh_info;
2585  char *when = "idle";
2586 
2587  ata_ehi_clear_desc(ehi);
2588  if (edma_was_enabled) {
2589  when = "EDMA enabled";
2590  } else {
2591  struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2592  if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2593  when = "polling";
2594  }
2595  ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2596  ehi->err_mask |= AC_ERR_OTHER;
2597  ehi->action |= ATA_EH_RESET;
2598  ata_port_freeze(ap);
2599 }
2600 
2612 static void mv_err_intr(struct ata_port *ap)
2613 {
2614  void __iomem *port_mmio = mv_ap_base(ap);
2615  u32 edma_err_cause, eh_freeze_mask, serr = 0;
2616  u32 fis_cause = 0;
2617  struct mv_port_priv *pp = ap->private_data;
2618  struct mv_host_priv *hpriv = ap->host->private_data;
2619  unsigned int action = 0, err_mask = 0;
2620  struct ata_eh_info *ehi = &ap->link.eh_info;
2621  struct ata_queued_cmd *qc;
2622  int abort = 0;
2623 
2624  /*
2625  * Read and clear the SError and err_cause bits.
2626  * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2627  * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2628  */
2629  sata_scr_read(&ap->link, SCR_ERROR, &serr);
2630  sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2631 
2632  edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2633  if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2634  fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2635  writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2636  }
2637  writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2638 
2639  if (edma_err_cause & EDMA_ERR_DEV) {
2640  /*
2641  * Device errors during FIS-based switching operation
2642  * require special handling.
2643  */
2644  if (mv_handle_dev_err(ap, edma_err_cause))
2645  return;
2646  }
2647 
2648  qc = mv_get_active_qc(ap);
2649  ata_ehi_clear_desc(ehi);
2650  ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2651  edma_err_cause, pp->pp_flags);
2652 
2653  if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2654  ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2655  if (fis_cause & FIS_IRQ_CAUSE_AN) {
2656  u32 ec = edma_err_cause &
2657  ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2659  if (!ec)
2660  return; /* Just an AN; no need for the nukes */
2661  ata_ehi_push_desc(ehi, "SDB notify");
2662  }
2663  }
2664  /*
2665  * All generations share these EDMA error cause bits:
2666  */
2667  if (edma_err_cause & EDMA_ERR_DEV) {
2668  err_mask |= AC_ERR_DEV;
2669  action |= ATA_EH_RESET;
2670  ata_ehi_push_desc(ehi, "dev error");
2671  }
2672  if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2674  EDMA_ERR_INTRL_PAR)) {
2676  action |= ATA_EH_RESET;
2677  ata_ehi_push_desc(ehi, "parity error");
2678  }
2679  if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2680  ata_ehi_hotplugged(ehi);
2681  ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2682  "dev disconnect" : "dev connect");
2683  action |= ATA_EH_RESET;
2684  }
2685 
2686  /*
2687  * Gen-I has a different SELF_DIS bit,
2688  * different FREEZE bits, and no SERR bit:
2689  */
2690  if (IS_GEN_I(hpriv)) {
2691  eh_freeze_mask = EDMA_EH_FREEZE_5;
2692  if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2693  pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2694  ata_ehi_push_desc(ehi, "EDMA self-disable");
2695  }
2696  } else {
2697  eh_freeze_mask = EDMA_EH_FREEZE;
2698  if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2699  pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2700  ata_ehi_push_desc(ehi, "EDMA self-disable");
2701  }
2702  if (edma_err_cause & EDMA_ERR_SERR) {
2703  ata_ehi_push_desc(ehi, "SError=%08x", serr);
2705  action |= ATA_EH_RESET;
2706  }
2707  }
2708 
2709  if (!err_mask) {
2711  action |= ATA_EH_RESET;
2712  }
2713 
2714  ehi->serror |= serr;
2715  ehi->action |= action;
2716 
2717  if (qc)
2718  qc->err_mask |= err_mask;
2719  else
2720  ehi->err_mask |= err_mask;
2721 
2722  if (err_mask == AC_ERR_DEV) {
2723  /*
2724  * Cannot do ata_port_freeze() here,
2725  * because it would kill PIO access,
2726  * which is needed for further diagnosis.
2727  */
2728  mv_eh_freeze(ap);
2729  abort = 1;
2730  } else if (edma_err_cause & eh_freeze_mask) {
2731  /*
2732  * Note to self: ata_port_freeze() calls ata_port_abort()
2733  */
2734  ata_port_freeze(ap);
2735  } else {
2736  abort = 1;
2737  }
2738 
2739  if (abort) {
2740  if (qc)
2741  ata_link_abort(qc->dev->link);
2742  else
2743  ata_port_abort(ap);
2744  }
2745 }
2746 
2747 static bool mv_process_crpb_response(struct ata_port *ap,
2748  struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2749 {
2750  u8 ata_status;
2751  u16 edma_status = le16_to_cpu(response->flags);
2752 
2753  /*
2754  * edma_status from a response queue entry:
2755  * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2756  * MSB is saved ATA status from command completion.
2757  */
2758  if (!ncq_enabled) {
2759  u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2760  if (err_cause) {
2761  /*
2762  * Error will be seen/handled by
2763  * mv_err_intr(). So do nothing at all here.
2764  */
2765  return false;
2766  }
2767  }
2768  ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2769  if (!ac_err_mask(ata_status))
2770  return true;
2771  /* else: leave it for mv_err_intr() */
2772  return false;
2773 }
2774 
2775 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2776 {
2777  void __iomem *port_mmio = mv_ap_base(ap);
2778  struct mv_host_priv *hpriv = ap->host->private_data;
2779  u32 in_index;
2780  bool work_done = false;
2781  u32 done_mask = 0;
2782  int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2783 
2784  /* Get the hardware queue position index */
2785  in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2787 
2788  /* Process new responses from since the last time we looked */
2789  while (in_index != pp->resp_idx) {
2790  unsigned int tag;
2791  struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2792 
2793  pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2794 
2795  if (IS_GEN_I(hpriv)) {
2796  /* 50xx: no NCQ, only one command active at a time */
2797  tag = ap->link.active_tag;
2798  } else {
2799  /* Gen II/IIE: get command tag from CRPB entry */
2800  tag = le16_to_cpu(response->id) & 0x1f;
2801  }
2802  if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2803  done_mask |= 1 << tag;
2804  work_done = true;
2805  }
2806 
2807  if (work_done) {
2808  ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2809 
2810  /* Update the software queue position index in hardware */
2811  writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2812  (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2813  port_mmio + EDMA_RSP_Q_OUT_PTR);
2814  }
2815 }
2816 
2817 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2818 {
2819  struct mv_port_priv *pp;
2820  int edma_was_enabled;
2821 
2822  /*
2823  * Grab a snapshot of the EDMA_EN flag setting,
2824  * so that we have a consistent view for this port,
2825  * even if something we call of our routines changes it.
2826  */
2827  pp = ap->private_data;
2828  edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2829  /*
2830  * Process completed CRPB response(s) before other events.
2831  */
2832  if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2833  mv_process_crpb_entries(ap, pp);
2834  if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2835  mv_handle_fbs_ncq_dev_err(ap);
2836  }
2837  /*
2838  * Handle chip-reported errors, or continue on to handle PIO.
2839  */
2840  if (unlikely(port_cause & ERR_IRQ)) {
2841  mv_err_intr(ap);
2842  } else if (!edma_was_enabled) {
2843  struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2844  if (qc)
2845  ata_bmdma_port_intr(ap, qc);
2846  else
2847  mv_unexpected_intr(ap, edma_was_enabled);
2848  }
2849 }
2850 
2859 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2860 {
2861  struct mv_host_priv *hpriv = host->private_data;
2862  void __iomem *mmio = hpriv->base, *hc_mmio;
2863  unsigned int handled = 0, port;
2864 
2865  /* If asserted, clear the "all ports" IRQ coalescing bit */
2866  if (main_irq_cause & ALL_PORTS_COAL_DONE)
2868 
2869  for (port = 0; port < hpriv->n_ports; port++) {
2870  struct ata_port *ap = host->ports[port];
2871  unsigned int p, shift, hardport, port_cause;
2872 
2873  MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2874  /*
2875  * Each hc within the host has its own hc_irq_cause register,
2876  * where the interrupting ports bits get ack'd.
2877  */
2878  if (hardport == 0) { /* first port on this hc ? */
2879  u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2880  u32 port_mask, ack_irqs;
2881  /*
2882  * Skip this entire hc if nothing pending for any ports
2883  */
2884  if (!hc_cause) {
2885  port += MV_PORTS_PER_HC - 1;
2886  continue;
2887  }
2888  /*
2889  * We don't need/want to read the hc_irq_cause register,
2890  * because doing so hurts performance, and
2891  * main_irq_cause already gives us everything we need.
2892  *
2893  * But we do have to *write* to the hc_irq_cause to ack
2894  * the ports that we are handling this time through.
2895  *
2896  * This requires that we create a bitmap for those
2897  * ports which interrupted us, and use that bitmap
2898  * to ack (only) those ports via hc_irq_cause.
2899  */
2900  ack_irqs = 0;
2901  if (hc_cause & PORTS_0_3_COAL_DONE)
2902  ack_irqs = HC_COAL_IRQ;
2903  for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2904  if ((port + p) >= hpriv->n_ports)
2905  break;
2906  port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2907  if (hc_cause & port_mask)
2908  ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2909  }
2910  hc_mmio = mv_hc_base_from_port(mmio, port);
2911  writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2912  handled = 1;
2913  }
2914  /*
2915  * Handle interrupts signalled for this port:
2916  */
2917  port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2918  if (port_cause)
2919  mv_port_intr(ap, port_cause);
2920  }
2921  return handled;
2922 }
2923 
2924 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2925 {
2926  struct mv_host_priv *hpriv = host->private_data;
2927  struct ata_port *ap;
2928  struct ata_queued_cmd *qc;
2929  struct ata_eh_info *ehi;
2930  unsigned int i, err_mask, printed = 0;
2931  u32 err_cause;
2932 
2933  err_cause = readl(mmio + hpriv->irq_cause_offset);
2934 
2935  dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2936 
2937  DPRINTK("All regs @ PCI error\n");
2938  mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2939 
2940  writelfl(0, mmio + hpriv->irq_cause_offset);
2941 
2942  for (i = 0; i < host->n_ports; i++) {
2943  ap = host->ports[i];
2944  if (!ata_link_offline(&ap->link)) {
2945  ehi = &ap->link.eh_info;
2946  ata_ehi_clear_desc(ehi);
2947  if (!printed++)
2948  ata_ehi_push_desc(ehi,
2949  "PCI err cause 0x%08x", err_cause);
2950  err_mask = AC_ERR_HOST_BUS;
2951  ehi->action = ATA_EH_RESET;
2952  qc = ata_qc_from_tag(ap, ap->link.active_tag);
2953  if (qc)
2954  qc->err_mask |= err_mask;
2955  else
2956  ehi->err_mask |= err_mask;
2957 
2958  ata_port_freeze(ap);
2959  }
2960  }
2961  return 1; /* handled */
2962 }
2963 
2978 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2979 {
2980  struct ata_host *host = dev_instance;
2981  struct mv_host_priv *hpriv = host->private_data;
2982  unsigned int handled = 0;
2983  int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2984  u32 main_irq_cause, pending_irqs;
2985 
2986  spin_lock(&host->lock);
2987 
2988  /* for MSI: block new interrupts while in here */
2989  if (using_msi)
2990  mv_write_main_irq_mask(0, hpriv);
2991 
2992  main_irq_cause = readl(hpriv->main_irq_cause_addr);
2993  pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2994  /*
2995  * Deal with cases where we either have nothing pending, or have read
2996  * a bogus register value which can indicate HW removal or PCI fault.
2997  */
2998  if (pending_irqs && main_irq_cause != 0xffffffffU) {
2999  if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3000  handled = mv_pci_error(host, hpriv->base);
3001  else
3002  handled = mv_host_intr(host, pending_irqs);
3003  }
3004 
3005  /* for MSI: unmask; interrupt cause bits will retrigger now */
3006  if (using_msi)
3007  mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3008 
3009  spin_unlock(&host->lock);
3010 
3011  return IRQ_RETVAL(handled);
3012 }
3013 
3014 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3015 {
3016  unsigned int ofs;
3017 
3018  switch (sc_reg_in) {
3019  case SCR_STATUS:
3020  case SCR_ERROR:
3021  case SCR_CONTROL:
3022  ofs = sc_reg_in * sizeof(u32);
3023  break;
3024  default:
3025  ofs = 0xffffffffU;
3026  break;
3027  }
3028  return ofs;
3029 }
3030 
3031 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3032 {
3033  struct mv_host_priv *hpriv = link->ap->host->private_data;
3034  void __iomem *mmio = hpriv->base;
3035  void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3036  unsigned int ofs = mv5_scr_offset(sc_reg_in);
3037 
3038  if (ofs != 0xffffffffU) {
3039  *val = readl(addr + ofs);
3040  return 0;
3041  } else
3042  return -EINVAL;
3043 }
3044 
3045 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3046 {
3047  struct mv_host_priv *hpriv = link->ap->host->private_data;
3048  void __iomem *mmio = hpriv->base;
3049  void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3050  unsigned int ofs = mv5_scr_offset(sc_reg_in);
3051 
3052  if (ofs != 0xffffffffU) {
3053  writelfl(val, addr + ofs);
3054  return 0;
3055  } else
3056  return -EINVAL;
3057 }
3058 
3059 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3060 {
3061  struct pci_dev *pdev = to_pci_dev(host->dev);
3062  int early_5080;
3063 
3064  early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3065 
3066  if (!early_5080) {
3067  u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3068  tmp |= (1 << 0);
3069  writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3070  }
3071 
3072  mv_reset_pci_bus(host, mmio);
3073 }
3074 
3075 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3076 {
3077  writel(0x0fcfffff, mmio + FLASH_CTL);
3078 }
3079 
3080 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3081  void __iomem *mmio)
3082 {
3083  void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3084  u32 tmp;
3085 
3086  tmp = readl(phy_mmio + MV5_PHY_MODE);
3087 
3088  hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3089  hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3090 }
3091 
3092 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3093 {
3094  u32 tmp;
3095 
3096  writel(0, mmio + GPIO_PORT_CTL);
3097 
3098  /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3099 
3100  tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3101  tmp |= ~(1 << 0);
3102  writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3103 }
3104 
3105 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3106  unsigned int port)
3107 {
3108  void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3109  const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3110  u32 tmp;
3111  int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3112 
3113  if (fix_apm_sq) {
3114  tmp = readl(phy_mmio + MV5_LTMODE);
3115  tmp |= (1 << 19);
3116  writel(tmp, phy_mmio + MV5_LTMODE);
3117 
3118  tmp = readl(phy_mmio + MV5_PHY_CTL);
3119  tmp &= ~0x3;
3120  tmp |= 0x1;
3121  writel(tmp, phy_mmio + MV5_PHY_CTL);
3122  }
3123 
3124  tmp = readl(phy_mmio + MV5_PHY_MODE);
3125  tmp &= ~mask;
3126  tmp |= hpriv->signal[port].pre;
3127  tmp |= hpriv->signal[port].amps;
3128  writel(tmp, phy_mmio + MV5_PHY_MODE);
3129 }
3130 
3131 
3132 #undef ZERO
3133 #define ZERO(reg) writel(0, port_mmio + (reg))
3134 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3135  unsigned int port)
3136 {
3137  void __iomem *port_mmio = mv_port_base(mmio, port);
3138 
3139  mv_reset_channel(hpriv, mmio, port);
3140 
3141  ZERO(0x028); /* command */
3142  writel(0x11f, port_mmio + EDMA_CFG);
3143  ZERO(0x004); /* timer */
3144  ZERO(0x008); /* irq err cause */
3145  ZERO(0x00c); /* irq err mask */
3146  ZERO(0x010); /* rq bah */
3147  ZERO(0x014); /* rq inp */
3148  ZERO(0x018); /* rq outp */
3149  ZERO(0x01c); /* respq bah */
3150  ZERO(0x024); /* respq outp */
3151  ZERO(0x020); /* respq inp */
3152  ZERO(0x02c); /* test control */
3153  writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3154 }
3155 #undef ZERO
3156 
3157 #define ZERO(reg) writel(0, hc_mmio + (reg))
3158 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3159  unsigned int hc)
3160 {
3161  void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3162  u32 tmp;
3163 
3164  ZERO(0x00c);
3165  ZERO(0x010);
3166  ZERO(0x014);
3167  ZERO(0x018);
3168 
3169  tmp = readl(hc_mmio + 0x20);
3170  tmp &= 0x1c1c1c1c;
3171  tmp |= 0x03030303;
3172  writel(tmp, hc_mmio + 0x20);
3173 }
3174 #undef ZERO
3175 
3176 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3177  unsigned int n_hc)
3178 {
3179  unsigned int hc, port;
3180 
3181  for (hc = 0; hc < n_hc; hc++) {
3182  for (port = 0; port < MV_PORTS_PER_HC; port++)
3183  mv5_reset_hc_port(hpriv, mmio,
3184  (hc * MV_PORTS_PER_HC) + port);
3185 
3186  mv5_reset_one_hc(hpriv, mmio, hc);
3187  }
3188 
3189  return 0;
3190 }
3191 
3192 #undef ZERO
3193 #define ZERO(reg) writel(0, mmio + (reg))
3194 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3195 {
3196  struct mv_host_priv *hpriv = host->private_data;
3197  u32 tmp;
3198 
3199  tmp = readl(mmio + MV_PCI_MODE);
3200  tmp &= 0xff00ffff;
3201  writel(tmp, mmio + MV_PCI_MODE);
3202 
3205  writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3207  ZERO(hpriv->irq_cause_offset);
3208  ZERO(hpriv->irq_mask_offset);
3213 }
3214 #undef ZERO
3215 
3216 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3217 {
3218  u32 tmp;
3219 
3220  mv5_reset_flash(hpriv, mmio);
3221 
3222  tmp = readl(mmio + GPIO_PORT_CTL);
3223  tmp &= 0x3;
3224  tmp |= (1 << 5) | (1 << 6);
3225  writel(tmp, mmio + GPIO_PORT_CTL);
3226 }
3227 
3237 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3238  unsigned int n_hc)
3239 {
3240  void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3241  int i, rc = 0;
3242  u32 t;
3243 
3244  /* Following procedure defined in PCI "main command and status
3245  * register" table.
3246  */
3247  t = readl(reg);
3248  writel(t | STOP_PCI_MASTER, reg);
3249 
3250  for (i = 0; i < 1000; i++) {
3251  udelay(1);
3252  t = readl(reg);
3253  if (PCI_MASTER_EMPTY & t)
3254  break;
3255  }
3256  if (!(PCI_MASTER_EMPTY & t)) {
3257  printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3258  rc = 1;
3259  goto done;
3260  }
3261 
3262  /* set reset */
3263  i = 5;
3264  do {
3265  writel(t | GLOB_SFT_RST, reg);
3266  t = readl(reg);
3267  udelay(1);
3268  } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3269 
3270  if (!(GLOB_SFT_RST & t)) {
3271  printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3272  rc = 1;
3273  goto done;
3274  }
3275 
3276  /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3277  i = 5;
3278  do {
3279  writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3280  t = readl(reg);
3281  udelay(1);
3282  } while ((GLOB_SFT_RST & t) && (i-- > 0));
3283 
3284  if (GLOB_SFT_RST & t) {
3285  printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3286  rc = 1;
3287  }
3288 done:
3289  return rc;
3290 }
3291 
3292 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3293  void __iomem *mmio)
3294 {
3295  void __iomem *port_mmio;
3296  u32 tmp;
3297 
3298  tmp = readl(mmio + RESET_CFG);
3299  if ((tmp & (1 << 0)) == 0) {
3300  hpriv->signal[idx].amps = 0x7 << 8;
3301  hpriv->signal[idx].pre = 0x1 << 5;
3302  return;
3303  }
3304 
3305  port_mmio = mv_port_base(mmio, idx);
3306  tmp = readl(port_mmio + PHY_MODE2);
3307 
3308  hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3309  hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3310 }
3311 
3312 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3313 {
3314  writel(0x00000060, mmio + GPIO_PORT_CTL);
3315 }
3316 
3317 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3318  unsigned int port)
3319 {
3320  void __iomem *port_mmio = mv_port_base(mmio, port);
3321 
3322  u32 hp_flags = hpriv->hp_flags;
3323  int fix_phy_mode2 =
3325  int fix_phy_mode4 =
3327  u32 m2, m3;
3328 
3329  if (fix_phy_mode2) {
3330  m2 = readl(port_mmio + PHY_MODE2);
3331  m2 &= ~(1 << 16);
3332  m2 |= (1 << 31);
3333  writel(m2, port_mmio + PHY_MODE2);
3334 
3335  udelay(200);
3336 
3337  m2 = readl(port_mmio + PHY_MODE2);
3338  m2 &= ~((1 << 16) | (1 << 31));
3339  writel(m2, port_mmio + PHY_MODE2);
3340 
3341  udelay(200);
3342  }
3343 
3344  /*
3345  * Gen-II/IIe PHY_MODE3 errata RM#2:
3346  * Achieves better receiver noise performance than the h/w default:
3347  */
3348  m3 = readl(port_mmio + PHY_MODE3);
3349  m3 = (m3 & 0x1f) | (0x5555601 << 5);
3350 
3351  /* Guideline 88F5182 (GL# SATA-S11) */
3352  if (IS_SOC(hpriv))
3353  m3 &= ~0x1c;
3354 
3355  if (fix_phy_mode4) {
3356  u32 m4 = readl(port_mmio + PHY_MODE4);
3357  /*
3358  * Enforce reserved-bit restrictions on GenIIe devices only.
3359  * For earlier chipsets, force only the internal config field
3360  * (workaround for errata FEr SATA#10 part 1).
3361  */
3362  if (IS_GEN_IIE(hpriv))
3364  else
3365  m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3366  writel(m4, port_mmio + PHY_MODE4);
3367  }
3368  /*
3369  * Workaround for 60x1-B2 errata SATA#13:
3370  * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3371  * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3372  * Or ensure we use writelfl() when writing PHY_MODE4.
3373  */
3374  writel(m3, port_mmio + PHY_MODE3);
3375 
3376  /* Revert values of pre-emphasis and signal amps to the saved ones */
3377  m2 = readl(port_mmio + PHY_MODE2);
3378 
3379  m2 &= ~MV_M2_PREAMP_MASK;
3380  m2 |= hpriv->signal[port].amps;
3381  m2 |= hpriv->signal[port].pre;
3382  m2 &= ~(1 << 16);
3383 
3384  /* according to mvSata 3.6.1, some IIE values are fixed */
3385  if (IS_GEN_IIE(hpriv)) {
3386  m2 &= ~0xC30FF01F;
3387  m2 |= 0x0000900F;
3388  }
3389 
3390  writel(m2, port_mmio + PHY_MODE2);
3391 }
3392 
3393 /* TODO: use the generic LED interface to configure the SATA Presence */
3394 /* & Acitivy LEDs on the board */
3395 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3396  void __iomem *mmio)
3397 {
3398  return;
3399 }
3400 
3401 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3402  void __iomem *mmio)
3403 {
3404  void __iomem *port_mmio;
3405  u32 tmp;
3406 
3407  port_mmio = mv_port_base(mmio, idx);
3408  tmp = readl(port_mmio + PHY_MODE2);
3409 
3410  hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3411  hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3412 }
3413 
3414 #undef ZERO
3415 #define ZERO(reg) writel(0, port_mmio + (reg))
3416 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3417  void __iomem *mmio, unsigned int port)
3418 {
3419  void __iomem *port_mmio = mv_port_base(mmio, port);
3420 
3421  mv_reset_channel(hpriv, mmio, port);
3422 
3423  ZERO(0x028); /* command */
3424  writel(0x101f, port_mmio + EDMA_CFG);
3425  ZERO(0x004); /* timer */
3426  ZERO(0x008); /* irq err cause */
3427  ZERO(0x00c); /* irq err mask */
3428  ZERO(0x010); /* rq bah */
3429  ZERO(0x014); /* rq inp */
3430  ZERO(0x018); /* rq outp */
3431  ZERO(0x01c); /* respq bah */
3432  ZERO(0x024); /* respq outp */
3433  ZERO(0x020); /* respq inp */
3434  ZERO(0x02c); /* test control */
3435  writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3436 }
3437 
3438 #undef ZERO
3439 
3440 #define ZERO(reg) writel(0, hc_mmio + (reg))
3441 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3442  void __iomem *mmio)
3443 {
3444  void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3445 
3446  ZERO(0x00c);
3447  ZERO(0x010);
3448  ZERO(0x014);
3449 
3450 }
3451 
3452 #undef ZERO
3453 
3454 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3455  void __iomem *mmio, unsigned int n_hc)
3456 {
3457  unsigned int port;
3458 
3459  for (port = 0; port < hpriv->n_ports; port++)
3460  mv_soc_reset_hc_port(hpriv, mmio, port);
3461 
3462  mv_soc_reset_one_hc(hpriv, mmio);
3463 
3464  return 0;
3465 }
3466 
3467 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3468  void __iomem *mmio)
3469 {
3470  return;
3471 }
3472 
3473 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3474 {
3475  return;
3476 }
3477 
3478 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3479  void __iomem *mmio, unsigned int port)
3480 {
3481  void __iomem *port_mmio = mv_port_base(mmio, port);
3482  u32 reg;
3483 
3484  reg = readl(port_mmio + PHY_MODE3);
3485  reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3486  reg |= (0x1 << 27);
3487  reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3488  reg |= (0x1 << 29);
3489  writel(reg, port_mmio + PHY_MODE3);
3490 
3491  reg = readl(port_mmio + PHY_MODE4);
3492  reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3493  reg |= (0x1 << 16);
3494  writel(reg, port_mmio + PHY_MODE4);
3495 
3496  reg = readl(port_mmio + PHY_MODE9_GEN2);
3497  reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3498  reg |= 0x8;
3499  reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3500  writel(reg, port_mmio + PHY_MODE9_GEN2);
3501 
3502  reg = readl(port_mmio + PHY_MODE9_GEN1);
3503  reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3504  reg |= 0x8;
3505  reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3506  writel(reg, port_mmio + PHY_MODE9_GEN1);
3507 }
3508 
3516 static bool soc_is_65n(struct mv_host_priv *hpriv)
3517 {
3518  void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3519 
3520  if (readl(port0_mmio + PHYCFG_OFS))
3521  return true;
3522  return false;
3523 }
3524 
3525 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3526 {
3527  u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3528 
3529  ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3530  if (want_gen2i)
3531  ifcfg |= (1 << 7); /* enable gen2i speed */
3532  writelfl(ifcfg, port_mmio + SATA_IFCFG);
3533 }
3534 
3535 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3536  unsigned int port_no)
3537 {
3538  void __iomem *port_mmio = mv_port_base(mmio, port_no);
3539 
3540  /*
3541  * The datasheet warns against setting EDMA_RESET when EDMA is active
3542  * (but doesn't say what the problem might be). So we first try
3543  * to disable the EDMA engine before doing the EDMA_RESET operation.
3544  */
3545  mv_stop_edma_engine(port_mmio);
3546  writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3547 
3548  if (!IS_GEN_I(hpriv)) {
3549  /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3550  mv_setup_ifcfg(port_mmio, 1);
3551  }
3552  /*
3553  * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3554  * link, and physical layers. It resets all SATA interface registers
3555  * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3556  */
3557  writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3558  udelay(25); /* allow reset propagation */
3559  writelfl(0, port_mmio + EDMA_CMD);
3560 
3561  hpriv->ops->phy_errata(hpriv, mmio, port_no);
3562 
3563  if (IS_GEN_I(hpriv))
3564  mdelay(1);
3565 }
3566 
3567 static void mv_pmp_select(struct ata_port *ap, int pmp)
3568 {
3569  if (sata_pmp_supported(ap)) {
3570  void __iomem *port_mmio = mv_ap_base(ap);
3571  u32 reg = readl(port_mmio + SATA_IFCTL);
3572  int old = reg & 0xf;
3573 
3574  if (old != pmp) {
3575  reg = (reg & ~0xf) | pmp;
3576  writelfl(reg, port_mmio + SATA_IFCTL);
3577  }
3578  }
3579 }
3580 
3581 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3582  unsigned long deadline)
3583 {
3584  mv_pmp_select(link->ap, sata_srst_pmp(link));
3585  return sata_std_hardreset(link, class, deadline);
3586 }
3587 
3588 static int mv_softreset(struct ata_link *link, unsigned int *class,
3589  unsigned long deadline)
3590 {
3591  mv_pmp_select(link->ap, sata_srst_pmp(link));
3592  return ata_sff_softreset(link, class, deadline);
3593 }
3594 
3595 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3596  unsigned long deadline)
3597 {
3598  struct ata_port *ap = link->ap;
3599  struct mv_host_priv *hpriv = ap->host->private_data;
3600  struct mv_port_priv *pp = ap->private_data;
3601  void __iomem *mmio = hpriv->base;
3602  int rc, attempts = 0, extra = 0;
3603  u32 sstatus;
3604  bool online;
3605 
3606  mv_reset_channel(hpriv, mmio, ap->port_no);
3607  pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3608  pp->pp_flags &=
3610 
3611  /* Workaround for errata FEr SATA#10 (part 2) */
3612  do {
3613  const unsigned long *timing =
3614  sata_ehc_deb_timing(&link->eh_context);
3615 
3616  rc = sata_link_hardreset(link, timing, deadline + extra,
3617  &online, NULL);
3618  rc = online ? -EAGAIN : rc;
3619  if (rc)
3620  return rc;
3621  sata_scr_read(link, SCR_STATUS, &sstatus);
3622  if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3623  /* Force 1.5gb/s link speed and try again */
3624  mv_setup_ifcfg(mv_ap_base(ap), 0);
3625  if (time_after(jiffies + HZ, deadline))
3626  extra = HZ; /* only extend it once, max */
3627  }
3628  } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3629  mv_save_cached_regs(ap);
3630  mv_edma_cfg(ap, 0, 0);
3631 
3632  return rc;
3633 }
3634 
3635 static void mv_eh_freeze(struct ata_port *ap)
3636 {
3637  mv_stop_edma(ap);
3638  mv_enable_port_irqs(ap, 0);
3639 }
3640 
3641 static void mv_eh_thaw(struct ata_port *ap)
3642 {
3643  struct mv_host_priv *hpriv = ap->host->private_data;
3644  unsigned int port = ap->port_no;
3645  unsigned int hardport = mv_hardport_from_port(port);
3646  void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3647  void __iomem *port_mmio = mv_ap_base(ap);
3648  u32 hc_irq_cause;
3649 
3650  /* clear EDMA errors on this port */
3651  writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3652 
3653  /* clear pending irq events */
3654  hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3655  writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3656 
3657  mv_enable_port_irqs(ap, ERR_IRQ);
3658 }
3659 
3672 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3673 {
3674  void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3675 
3676  /* PIO related setup
3677  */
3678  port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3679  port->error_addr =
3680  port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3681  port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3682  port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3683  port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3684  port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3685  port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3686  port->status_addr =
3687  port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3688  /* special case: control/altstatus doesn't have ATA_REG_ address */
3689  port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3690 
3691  /* Clear any currently outstanding port interrupt conditions */
3692  serr = port_mmio + mv_scr_offset(SCR_ERROR);
3693  writelfl(readl(serr), serr);
3694  writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3695 
3696  /* unmask all non-transient EDMA error interrupts */
3697  writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3698 
3699  VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3700  readl(port_mmio + EDMA_CFG),
3701  readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3702  readl(port_mmio + EDMA_ERR_IRQ_MASK));
3703 }
3704 
3705 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3706 {
3707  struct mv_host_priv *hpriv = host->private_data;
3708  void __iomem *mmio = hpriv->base;
3709  u32 reg;
3710 
3711  if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3712  return 0; /* not PCI-X capable */
3713  reg = readl(mmio + MV_PCI_MODE);
3714  if ((reg & MV_PCI_MODE_MASK) == 0)
3715  return 0; /* conventional PCI mode */
3716  return 1; /* chip is in PCI-X mode */
3717 }
3718 
3719 static int mv_pci_cut_through_okay(struct ata_host *host)
3720 {
3721  struct mv_host_priv *hpriv = host->private_data;
3722  void __iomem *mmio = hpriv->base;
3723  u32 reg;
3724 
3725  if (!mv_in_pcix_mode(host)) {
3726  reg = readl(mmio + MV_PCI_COMMAND);
3727  if (reg & MV_PCI_COMMAND_MRDTRIG)
3728  return 0; /* not okay */
3729  }
3730  return 1; /* okay */
3731 }
3732 
3733 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3734 {
3735  struct mv_host_priv *hpriv = host->private_data;
3736  void __iomem *mmio = hpriv->base;
3737 
3738  /* workaround for 60x1-B2 errata PCI#7 */
3739  if (mv_in_pcix_mode(host)) {
3740  u32 reg = readl(mmio + MV_PCI_COMMAND);
3741  writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3742  }
3743 }
3744 
3745 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3746 {
3747  struct pci_dev *pdev = to_pci_dev(host->dev);
3748  struct mv_host_priv *hpriv = host->private_data;
3749  u32 hp_flags = hpriv->hp_flags;
3750 
3751  switch (board_idx) {
3752  case chip_5080:
3753  hpriv->ops = &mv5xxx_ops;
3754  hp_flags |= MV_HP_GEN_I;
3755 
3756  switch (pdev->revision) {
3757  case 0x1:
3758  hp_flags |= MV_HP_ERRATA_50XXB0;
3759  break;
3760  case 0x3:
3761  hp_flags |= MV_HP_ERRATA_50XXB2;
3762  break;
3763  default:
3764  dev_warn(&pdev->dev,
3765  "Applying 50XXB2 workarounds to unknown rev\n");
3766  hp_flags |= MV_HP_ERRATA_50XXB2;
3767  break;
3768  }
3769  break;
3770 
3771  case chip_504x:
3772  case chip_508x:
3773  hpriv->ops = &mv5xxx_ops;
3774  hp_flags |= MV_HP_GEN_I;
3775 
3776  switch (pdev->revision) {
3777  case 0x0:
3778  hp_flags |= MV_HP_ERRATA_50XXB0;
3779  break;
3780  case 0x3:
3781  hp_flags |= MV_HP_ERRATA_50XXB2;
3782  break;
3783  default:
3784  dev_warn(&pdev->dev,
3785  "Applying B2 workarounds to unknown rev\n");
3786  hp_flags |= MV_HP_ERRATA_50XXB2;
3787  break;
3788  }
3789  break;
3790 
3791  case chip_604x:
3792  case chip_608x:
3793  hpriv->ops = &mv6xxx_ops;
3794  hp_flags |= MV_HP_GEN_II;
3795 
3796  switch (pdev->revision) {
3797  case 0x7:
3798  mv_60x1b2_errata_pci7(host);
3799  hp_flags |= MV_HP_ERRATA_60X1B2;
3800  break;
3801  case 0x9:
3802  hp_flags |= MV_HP_ERRATA_60X1C0;
3803  break;
3804  default:
3805  dev_warn(&pdev->dev,
3806  "Applying B2 workarounds to unknown rev\n");
3807  hp_flags |= MV_HP_ERRATA_60X1B2;
3808  break;
3809  }
3810  break;
3811 
3812  case chip_7042:
3813  hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3814  if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3815  (pdev->device == 0x2300 || pdev->device == 0x2310))
3816  {
3817  /*
3818  * Highpoint RocketRAID PCIe 23xx series cards:
3819  *
3820  * Unconfigured drives are treated as "Legacy"
3821  * by the BIOS, and it overwrites sector 8 with
3822  * a "Lgcy" metadata block prior to Linux boot.
3823  *
3824  * Configured drives (RAID or JBOD) leave sector 8
3825  * alone, but instead overwrite a high numbered
3826  * sector for the RAID metadata. This sector can
3827  * be determined exactly, by truncating the physical
3828  * drive capacity to a nice even GB value.
3829  *
3830  * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3831  *
3832  * Warn the user, lest they think we're just buggy.
3833  */
3834  printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3835  " BIOS CORRUPTS DATA on all attached drives,"
3836  " regardless of if/how they are configured."
3837  " BEWARE!\n");
3838  printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3839  " use sectors 8-9 on \"Legacy\" drives,"
3840  " and avoid the final two gigabytes on"
3841  " all RocketRAID BIOS initialized drives.\n");
3842  }
3843  /* drop through */
3844  case chip_6042:
3845  hpriv->ops = &mv6xxx_ops;
3846  hp_flags |= MV_HP_GEN_IIE;
3847  if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3848  hp_flags |= MV_HP_CUT_THROUGH;
3849 
3850  switch (pdev->revision) {
3851  case 0x2: /* Rev.B0: the first/only public release */
3852  hp_flags |= MV_HP_ERRATA_60X1C0;
3853  break;
3854  default:
3855  dev_warn(&pdev->dev,
3856  "Applying 60X1C0 workarounds to unknown rev\n");
3857  hp_flags |= MV_HP_ERRATA_60X1C0;
3858  break;
3859  }
3860  break;
3861  case chip_soc:
3862  if (soc_is_65n(hpriv))
3863  hpriv->ops = &mv_soc_65n_ops;
3864  else
3865  hpriv->ops = &mv_soc_ops;
3866  hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3868  break;
3869 
3870  default:
3871  dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3872  return 1;
3873  }
3874 
3875  hpriv->hp_flags = hp_flags;
3876  if (hp_flags & MV_HP_PCIE) {
3878  hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3880  } else {
3882  hpriv->irq_mask_offset = PCI_IRQ_MASK;
3884  }
3885 
3886  return 0;
3887 }
3888 
3899 static int mv_init_host(struct ata_host *host)
3900 {
3901  int rc = 0, n_hc, port, hc;
3902  struct mv_host_priv *hpriv = host->private_data;
3903  void __iomem *mmio = hpriv->base;
3904 
3905  rc = mv_chip_id(host, hpriv->board_idx);
3906  if (rc)
3907  goto done;
3908 
3909  if (IS_SOC(hpriv)) {
3911  hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3912  } else {
3914  hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3915  }
3916 
3917  /* initialize shadow irq mask with register's value */
3918  hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3919 
3920  /* global interrupt mask: 0 == mask everything */
3921  mv_set_main_irq_mask(host, ~0, 0);
3922 
3923  n_hc = mv_get_hc_count(host->ports[0]->flags);
3924 
3925  for (port = 0; port < host->n_ports; port++)
3926  if (hpriv->ops->read_preamp)
3927  hpriv->ops->read_preamp(hpriv, port, mmio);
3928 
3929  rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3930  if (rc)
3931  goto done;
3932 
3933  hpriv->ops->reset_flash(hpriv, mmio);
3934  hpriv->ops->reset_bus(host, mmio);
3935  hpriv->ops->enable_leds(hpriv, mmio);
3936 
3937  for (port = 0; port < host->n_ports; port++) {
3938  struct ata_port *ap = host->ports[port];
3939  void __iomem *port_mmio = mv_port_base(mmio, port);
3940 
3941  mv_port_init(&ap->ioaddr, port_mmio);
3942  }
3943 
3944  for (hc = 0; hc < n_hc; hc++) {
3945  void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3946 
3947  VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3948  "(before clear)=0x%08x\n", hc,
3949  readl(hc_mmio + HC_CFG),
3950  readl(hc_mmio + HC_IRQ_CAUSE));
3951 
3952  /* Clear any currently outstanding hc interrupt conditions */
3953  writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3954  }
3955 
3956  if (!IS_SOC(hpriv)) {
3957  /* Clear any currently outstanding host interrupt conditions */
3958  writelfl(0, mmio + hpriv->irq_cause_offset);
3959 
3960  /* and unmask interrupt generation for host regs */
3961  writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3962  }
3963 
3964  /*
3965  * enable only global host interrupts for now.
3966  * The per-port interrupts get done later as ports are set up.
3967  */
3968  mv_set_main_irq_mask(host, 0, PCI_ERR);
3969  mv_set_irq_coalescing(host, irq_coalescing_io_count,
3970  irq_coalescing_usecs);
3971 done:
3972  return rc;
3973 }
3974 
3975 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3976 {
3977  hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3978  MV_CRQB_Q_SZ, 0);
3979  if (!hpriv->crqb_pool)
3980  return -ENOMEM;
3981 
3982  hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3983  MV_CRPB_Q_SZ, 0);
3984  if (!hpriv->crpb_pool)
3985  return -ENOMEM;
3986 
3987  hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3988  MV_SG_TBL_SZ, 0);
3989  if (!hpriv->sg_tbl_pool)
3990  return -ENOMEM;
3991 
3992  return 0;
3993 }
3994 
3995 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3996  const struct mbus_dram_target_info *dram)
3997 {
3998  int i;
3999 
4000  for (i = 0; i < 4; i++) {
4001  writel(0, hpriv->base + WINDOW_CTRL(i));
4002  writel(0, hpriv->base + WINDOW_BASE(i));
4003  }
4004 
4005  for (i = 0; i < dram->num_cs; i++) {
4006  const struct mbus_dram_window *cs = dram->cs + i;
4007 
4008  writel(((cs->size - 1) & 0xffff0000) |
4009  (cs->mbus_attr << 8) |
4010  (dram->mbus_dram_target_id << 4) | 1,
4011  hpriv->base + WINDOW_CTRL(i));
4012  writel(cs->base, hpriv->base + WINDOW_BASE(i));
4013  }
4014 }
4015 
4024 static int mv_platform_probe(struct platform_device *pdev)
4025 {
4026  const struct mv_sata_platform_data *mv_platform_data;
4027  const struct mbus_dram_target_info *dram;
4028  const struct ata_port_info *ppi[] =
4029  { &mv_port_info[chip_soc], NULL };
4030  struct ata_host *host;
4031  struct mv_host_priv *hpriv;
4032  struct resource *res;
4033  int n_ports = 0, irq = 0;
4034  int rc;
4035 #if defined(CONFIG_HAVE_CLK)
4036  int port;
4037 #endif
4038 
4040 
4041  /*
4042  * Simple resource validation ..
4043  */
4044  if (unlikely(pdev->num_resources != 2)) {
4045  dev_err(&pdev->dev, "invalid number of resources\n");
4046  return -EINVAL;
4047  }
4048 
4049  /*
4050  * Get the register base first
4051  */
4052  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4053  if (res == NULL)
4054  return -EINVAL;
4055 
4056  /* allocate host */
4057  if (pdev->dev.of_node) {
4058  of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4059  irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4060  } else {
4061  mv_platform_data = pdev->dev.platform_data;
4062  n_ports = mv_platform_data->n_ports;
4063  irq = platform_get_irq(pdev, 0);
4064  }
4065 
4066  host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4067  hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4068 
4069  if (!host || !hpriv)
4070  return -ENOMEM;
4071 #if defined(CONFIG_HAVE_CLK)
4072  hpriv->port_clks = devm_kzalloc(&pdev->dev,
4073  sizeof(struct clk *) * n_ports,
4074  GFP_KERNEL);
4075  if (!hpriv->port_clks)
4076  return -ENOMEM;
4077 #endif
4078  host->private_data = hpriv;
4079  hpriv->n_ports = n_ports;
4080  hpriv->board_idx = chip_soc;
4081 
4082  host->iomap = NULL;
4083  hpriv->base = devm_ioremap(&pdev->dev, res->start,
4084  resource_size(res));
4085  hpriv->base -= SATAHC0_REG_BASE;
4086 
4087 #if defined(CONFIG_HAVE_CLK)
4088  hpriv->clk = clk_get(&pdev->dev, NULL);
4089  if (IS_ERR(hpriv->clk))
4090  dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4091  else
4092  clk_prepare_enable(hpriv->clk);
4093 
4094  for (port = 0; port < n_ports; port++) {
4095  char port_number[16];
4096  sprintf(port_number, "%d", port);
4097  hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4098  if (!IS_ERR(hpriv->port_clks[port]))
4099  clk_prepare_enable(hpriv->port_clks[port]);
4100  }
4101 #endif
4102 
4103  /*
4104  * (Re-)program MBUS remapping windows if we are asked to.
4105  */
4106  dram = mv_mbus_dram_info();
4107  if (dram)
4108  mv_conf_mbus_windows(hpriv, dram);
4109 
4110  rc = mv_create_dma_pools(hpriv, &pdev->dev);
4111  if (rc)
4112  goto err;
4113 
4114  /* initialize adapter */
4115  rc = mv_init_host(host);
4116  if (rc)
4117  goto err;
4118 
4119  dev_info(&pdev->dev, "slots %u ports %d\n",
4120  (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4121 
4122  rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4123  if (!rc)
4124  return 0;
4125 
4126 err:
4127 #if defined(CONFIG_HAVE_CLK)
4128  if (!IS_ERR(hpriv->clk)) {
4129  clk_disable_unprepare(hpriv->clk);
4130  clk_put(hpriv->clk);
4131  }
4132  for (port = 0; port < n_ports; port++) {
4133  if (!IS_ERR(hpriv->port_clks[port])) {
4134  clk_disable_unprepare(hpriv->port_clks[port]);
4135  clk_put(hpriv->port_clks[port]);
4136  }
4137  }
4138 #endif
4139 
4140  return rc;
4141 }
4142 
4143 /*
4144  *
4145  * mv_platform_remove - unplug a platform interface
4146  * @pdev: platform device
4147  *
4148  * A platform bus SATA device has been unplugged. Perform the needed
4149  * cleanup. Also called on module unload for any active devices.
4150  */
4151 static int __devexit mv_platform_remove(struct platform_device *pdev)
4152 {
4153  struct ata_host *host = platform_get_drvdata(pdev);
4154 #if defined(CONFIG_HAVE_CLK)
4155  struct mv_host_priv *hpriv = host->private_data;
4156  int port;
4157 #endif
4158  ata_host_detach(host);
4159 
4160 #if defined(CONFIG_HAVE_CLK)
4161  if (!IS_ERR(hpriv->clk)) {
4162  clk_disable_unprepare(hpriv->clk);
4163  clk_put(hpriv->clk);
4164  }
4165  for (port = 0; port < host->n_ports; port++) {
4166  if (!IS_ERR(hpriv->port_clks[port])) {
4167  clk_disable_unprepare(hpriv->port_clks[port]);
4168  clk_put(hpriv->port_clks[port]);
4169  }
4170  }
4171 #endif
4172  return 0;
4173 }
4174 
4175 #ifdef CONFIG_PM
4176 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4177 {
4178  struct ata_host *host = platform_get_drvdata(pdev);
4179  if (host)
4180  return ata_host_suspend(host, state);
4181  else
4182  return 0;
4183 }
4184 
4185 static int mv_platform_resume(struct platform_device *pdev)
4186 {
4187  struct ata_host *host = platform_get_drvdata(pdev);
4188  const struct mbus_dram_target_info *dram;
4189  int ret;
4190 
4191  if (host) {
4192  struct mv_host_priv *hpriv = host->private_data;
4193 
4194  /*
4195  * (Re-)program MBUS remapping windows if we are asked to.
4196  */
4197  dram = mv_mbus_dram_info();
4198  if (dram)
4199  mv_conf_mbus_windows(hpriv, dram);
4200 
4201  /* initialize adapter */
4202  ret = mv_init_host(host);
4203  if (ret) {
4204  printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4205  return ret;
4206  }
4207  ata_host_resume(host);
4208  }
4209 
4210  return 0;
4211 }
4212 #else
4213 #define mv_platform_suspend NULL
4214 #define mv_platform_resume NULL
4215 #endif
4216 
4217 #ifdef CONFIG_OF
4218 static struct of_device_id mv_sata_dt_ids[] __devinitdata = {
4219  { .compatible = "marvell,orion-sata", },
4220  {},
4221 };
4222 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4223 #endif
4224 
4225 static struct platform_driver mv_platform_driver = {
4226  .probe = mv_platform_probe,
4227  .remove = __devexit_p(mv_platform_remove),
4228  .suspend = mv_platform_suspend,
4229  .resume = mv_platform_resume,
4230  .driver = {
4231  .name = DRV_NAME,
4232  .owner = THIS_MODULE,
4233  .of_match_table = of_match_ptr(mv_sata_dt_ids),
4234  },
4235 };
4236 
4237 
4238 #ifdef CONFIG_PCI
4239 static int mv_pci_init_one(struct pci_dev *pdev,
4240  const struct pci_device_id *ent);
4241 #ifdef CONFIG_PM
4242 static int mv_pci_device_resume(struct pci_dev *pdev);
4243 #endif
4244 
4245 
4246 static struct pci_driver mv_pci_driver = {
4247  .name = DRV_NAME,
4248  .id_table = mv_pci_tbl,
4249  .probe = mv_pci_init_one,
4250  .remove = ata_pci_remove_one,
4251 #ifdef CONFIG_PM
4252  .suspend = ata_pci_device_suspend,
4253  .resume = mv_pci_device_resume,
4254 #endif
4255 
4256 };
4257 
4258 /* move to PCI layer or libata core? */
4259 static int pci_go_64(struct pci_dev *pdev)
4260 {
4261  int rc;
4262 
4263  if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4264  rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4265  if (rc) {
4266  rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4267  if (rc) {
4268  dev_err(&pdev->dev,
4269  "64-bit DMA enable failed\n");
4270  return rc;
4271  }
4272  }
4273  } else {
4274  rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4275  if (rc) {
4276  dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4277  return rc;
4278  }
4279  rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4280  if (rc) {
4281  dev_err(&pdev->dev,
4282  "32-bit consistent DMA enable failed\n");
4283  return rc;
4284  }
4285  }
4286 
4287  return rc;
4288 }
4289 
4299 static void mv_print_info(struct ata_host *host)
4300 {
4301  struct pci_dev *pdev = to_pci_dev(host->dev);
4302  struct mv_host_priv *hpriv = host->private_data;
4303  u8 scc;
4304  const char *scc_s, *gen;
4305 
4306  /* Use this to determine the HW stepping of the chip so we know
4307  * what errata to workaround
4308  */
4309  pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4310  if (scc == 0)
4311  scc_s = "SCSI";
4312  else if (scc == 0x01)
4313  scc_s = "RAID";
4314  else
4315  scc_s = "?";
4316 
4317  if (IS_GEN_I(hpriv))
4318  gen = "I";
4319  else if (IS_GEN_II(hpriv))
4320  gen = "II";
4321  else if (IS_GEN_IIE(hpriv))
4322  gen = "IIE";
4323  else
4324  gen = "?";
4325 
4326  dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4327  gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4328  scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4329 }
4330 
4339 static int mv_pci_init_one(struct pci_dev *pdev,
4340  const struct pci_device_id *ent)
4341 {
4342  unsigned int board_idx = (unsigned int)ent->driver_data;
4343  const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4344  struct ata_host *host;
4345  struct mv_host_priv *hpriv;
4346  int n_ports, port, rc;
4347 
4349 
4350  /* allocate host */
4351  n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4352 
4353  host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4354  hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4355  if (!host || !hpriv)
4356  return -ENOMEM;
4357  host->private_data = hpriv;
4358  hpriv->n_ports = n_ports;
4359  hpriv->board_idx = board_idx;
4360 
4361  /* acquire resources */
4362  rc = pcim_enable_device(pdev);
4363  if (rc)
4364  return rc;
4365 
4366  rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4367  if (rc == -EBUSY)
4368  pcim_pin_device(pdev);
4369  if (rc)
4370  return rc;
4371  host->iomap = pcim_iomap_table(pdev);
4372  hpriv->base = host->iomap[MV_PRIMARY_BAR];
4373 
4374  rc = pci_go_64(pdev);
4375  if (rc)
4376  return rc;
4377 
4378  rc = mv_create_dma_pools(hpriv, &pdev->dev);
4379  if (rc)
4380  return rc;
4381 
4382  for (port = 0; port < host->n_ports; port++) {
4383  struct ata_port *ap = host->ports[port];
4384  void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4385  unsigned int offset = port_mmio - hpriv->base;
4386 
4387  ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4388  ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4389  }
4390 
4391  /* initialize adapter */
4392  rc = mv_init_host(host);
4393  if (rc)
4394  return rc;
4395 
4396  /* Enable message-switched interrupts, if requested */
4397  if (msi && pci_enable_msi(pdev) == 0)
4398  hpriv->hp_flags |= MV_HP_FLAG_MSI;
4399 
4400  mv_dump_pci_cfg(pdev, 0x68);
4401  mv_print_info(host);
4402 
4403  pci_set_master(pdev);
4404  pci_try_set_mwi(pdev);
4405  return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4406  IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4407 }
4408 
4409 #ifdef CONFIG_PM
4410 static int mv_pci_device_resume(struct pci_dev *pdev)
4411 {
4412  struct ata_host *host = pci_get_drvdata(pdev);
4413  int rc;
4414 
4415  rc = ata_pci_device_do_resume(pdev);
4416  if (rc)
4417  return rc;
4418 
4419  /* initialize adapter */
4420  rc = mv_init_host(host);
4421  if (rc)
4422  return rc;
4423 
4424  ata_host_resume(host);
4425 
4426  return 0;
4427 }
4428 #endif
4429 #endif
4430 
4431 static int mv_platform_probe(struct platform_device *pdev);
4432 static int __devexit mv_platform_remove(struct platform_device *pdev);
4433 
4434 static int __init mv_init(void)
4435 {
4436  int rc = -ENODEV;
4437 #ifdef CONFIG_PCI
4438  rc = pci_register_driver(&mv_pci_driver);
4439  if (rc < 0)
4440  return rc;
4441 #endif
4442  rc = platform_driver_register(&mv_platform_driver);
4443 
4444 #ifdef CONFIG_PCI
4445  if (rc < 0)
4446  pci_unregister_driver(&mv_pci_driver);
4447 #endif
4448  return rc;
4449 }
4450 
4451 static void __exit mv_exit(void)
4452 {
4453 #ifdef CONFIG_PCI
4454  pci_unregister_driver(&mv_pci_driver);
4455 #endif
4456  platform_driver_unregister(&mv_platform_driver);
4457 }
4458 
4459 MODULE_AUTHOR("Brett Russ");
4460 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4461 MODULE_LICENSE("GPL");
4462 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4464 MODULE_ALIAS("platform:" DRV_NAME);
4465 
4466 module_init(mv_init);
4467 module_exit(mv_exit);