Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
irq_64.c
Go to the documentation of this file.
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller ([email protected])
4  * Copyright (C) 1998 Eddie C. Dost ([email protected])
5  * Copyright (C) 1998 Jakub Jelinek ([email protected])
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/linkage.h>
10 #include <linux/ptrace.h>
11 #include <linux/errno.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/ftrace.h>
23 #include <linux/irq.h>
24 #include <linux/kmemleak.h>
25 
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <linux/atomic.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <asm/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
45 
46 #include "entry.h"
47 #include "cpumap.h"
48 #include "kstack.h"
49 
50 #define NUM_IVECS (IMAP_INR + 1)
51 
53 unsigned long ivector_table_pa;
54 
55 /* On several sun4u processors, it is illegal to mix bypass and
56  * non-bypass accesses. Therefore we access all INO buckets
57  * using bypass accesses only.
58  */
59 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
60 {
61  unsigned long ret;
62 
63  __asm__ __volatile__("ldxa [%1] %2, %0"
64  : "=&r" (ret)
65  : "r" (bucket_pa +
66  offsetof(struct ino_bucket,
68  "i" (ASI_PHYS_USE_EC));
69 
70  return ret;
71 }
72 
73 static void bucket_clear_chain_pa(unsigned long bucket_pa)
74 {
75  __asm__ __volatile__("stxa %%g0, [%0] %1"
76  : /* no outputs */
77  : "r" (bucket_pa +
78  offsetof(struct ino_bucket,
80  "i" (ASI_PHYS_USE_EC));
81 }
82 
83 static unsigned int bucket_get_irq(unsigned long bucket_pa)
84 {
85  unsigned int ret;
86 
87  __asm__ __volatile__("lduwa [%1] %2, %0"
88  : "=&r" (ret)
89  : "r" (bucket_pa +
90  offsetof(struct ino_bucket,
91  __irq)),
92  "i" (ASI_PHYS_USE_EC));
93 
94  return ret;
95 }
96 
97 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
98 {
99  __asm__ __volatile__("stwa %0, [%1] %2"
100  : /* no outputs */
101  : "r" (irq),
102  "r" (bucket_pa +
103  offsetof(struct ino_bucket,
104  __irq)),
105  "i" (ASI_PHYS_USE_EC));
106 }
107 
108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
109 
110 static struct {
111  unsigned int dev_handle;
112  unsigned int dev_ino;
113  unsigned int in_use;
114 } irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(irq_alloc_lock);
116 
117 unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
118 {
119  unsigned long flags;
120  unsigned char ent;
121 
122  BUILD_BUG_ON(NR_IRQS >= 256);
123 
124  spin_lock_irqsave(&irq_alloc_lock, flags);
125 
126  for (ent = 1; ent < NR_IRQS; ent++) {
127  if (!irq_table[ent].in_use)
128  break;
129  }
130  if (ent >= NR_IRQS) {
131  printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
132  ent = 0;
133  } else {
134  irq_table[ent].dev_handle = dev_handle;
135  irq_table[ent].dev_ino = dev_ino;
136  irq_table[ent].in_use = 1;
137  }
138 
139  spin_unlock_irqrestore(&irq_alloc_lock, flags);
140 
141  return ent;
142 }
143 
144 #ifdef CONFIG_PCI_MSI
145 void irq_free(unsigned int irq)
146 {
147  unsigned long flags;
148 
149  if (irq >= NR_IRQS)
150  return;
151 
152  spin_lock_irqsave(&irq_alloc_lock, flags);
153 
154  irq_table[irq].in_use = 0;
155 
156  spin_unlock_irqrestore(&irq_alloc_lock, flags);
157 }
158 #endif
159 
160 /*
161  * /proc/interrupts printing:
162  */
163 int arch_show_interrupts(struct seq_file *p, int prec)
164 {
165  int j;
166 
167  seq_printf(p, "NMI: ");
169  seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
170  seq_printf(p, " Non-maskable interrupts\n");
171  return 0;
172 }
173 
174 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
175 {
176  unsigned int tid;
177 
178  if (this_is_starfire) {
179  tid = starfire_translate(imap, cpuid);
180  tid <<= IMAP_TID_SHIFT;
181  tid &= IMAP_TID_UPA;
182  } else {
183  if (tlb_type == cheetah || tlb_type == cheetah_plus) {
184  unsigned long ver;
185 
186  __asm__ ("rdpr %%ver, %0" : "=r" (ver));
187  if ((ver >> 32UL) == __JALAPENO_ID ||
188  (ver >> 32UL) == __SERRANO_ID) {
189  tid = cpuid << IMAP_TID_SHIFT;
190  tid &= IMAP_TID_JBUS;
191  } else {
192  unsigned int a = cpuid & 0x1f;
193  unsigned int n = (cpuid >> 5) & 0x1f;
194 
195  tid = ((a << IMAP_AID_SHIFT) |
196  (n << IMAP_NID_SHIFT));
197  tid &= (IMAP_AID_SAFARI |
199  }
200  } else {
201  tid = cpuid << IMAP_TID_SHIFT;
202  tid &= IMAP_TID_UPA;
203  }
204  }
205 
206  return tid;
207 }
208 
210  unsigned long iclr;
211  unsigned long imap;
212 
213  void (*pre_handler)(unsigned int, void *, void *);
214  void *arg1;
215  void *arg2;
216 };
217 
218 #ifdef CONFIG_SMP
219 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
220 {
221  cpumask_t mask;
222  int cpuid;
223 
224  cpumask_copy(&mask, affinity);
225  if (cpumask_equal(&mask, cpu_online_mask)) {
226  cpuid = map_to_cpu(irq);
227  } else {
228  cpumask_t tmp;
229 
230  cpumask_and(&tmp, cpu_online_mask, &mask);
231  cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
232  }
233 
234  return cpuid;
235 }
236 #else
237 #define irq_choose_cpu(irq, affinity) \
238  real_hard_smp_processor_id()
239 #endif
240 
241 static void sun4u_irq_enable(struct irq_data *data)
242 {
243  struct irq_handler_data *handler_data = data->handler_data;
244 
245  if (likely(handler_data)) {
246  unsigned long cpuid, imap, val;
247  unsigned int tid;
248 
249  cpuid = irq_choose_cpu(data->irq, data->affinity);
250  imap = handler_data->imap;
251 
252  tid = sun4u_compute_tid(imap, cpuid);
253 
254  val = upa_readq(imap);
255  val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
257  val |= tid | IMAP_VALID;
258  upa_writeq(val, imap);
259  upa_writeq(ICLR_IDLE, handler_data->iclr);
260  }
261 }
262 
263 static int sun4u_set_affinity(struct irq_data *data,
264  const struct cpumask *mask, bool force)
265 {
266  struct irq_handler_data *handler_data = data->handler_data;
267 
268  if (likely(handler_data)) {
269  unsigned long cpuid, imap, val;
270  unsigned int tid;
271 
272  cpuid = irq_choose_cpu(data->irq, mask);
273  imap = handler_data->imap;
274 
275  tid = sun4u_compute_tid(imap, cpuid);
276 
277  val = upa_readq(imap);
278  val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
280  val |= tid | IMAP_VALID;
281  upa_writeq(val, imap);
282  upa_writeq(ICLR_IDLE, handler_data->iclr);
283  }
284 
285  return 0;
286 }
287 
288 /* Don't do anything. The desc->status check for IRQ_DISABLED in
289  * handler_irq() will skip the handler call and that will leave the
290  * interrupt in the sent state. The next ->enable() call will hit the
291  * ICLR register to reset the state machine.
292  *
293  * This scheme is necessary, instead of clearing the Valid bit in the
294  * IMAP register, to handle the case of IMAP registers being shared by
295  * multiple INOs (and thus ICLR registers). Since we use a different
296  * virtual IRQ for each shared IMAP instance, the generic code thinks
297  * there is only one user so it prematurely calls ->disable() on
298  * free_irq().
299  *
300  * We have to provide an explicit ->disable() method instead of using
301  * NULL to get the default. The reason is that if the generic code
302  * sees that, it also hooks up a default ->shutdown method which
303  * invokes ->mask() which we do not want. See irq_chip_set_defaults().
304  */
305 static void sun4u_irq_disable(struct irq_data *data)
306 {
307 }
308 
309 static void sun4u_irq_eoi(struct irq_data *data)
310 {
311  struct irq_handler_data *handler_data = data->handler_data;
312 
313  if (likely(handler_data))
314  upa_writeq(ICLR_IDLE, handler_data->iclr);
315 }
316 
317 static void sun4v_irq_enable(struct irq_data *data)
318 {
319  unsigned int ino = irq_table[data->irq].dev_ino;
320  unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
321  int err;
322 
323  err = sun4v_intr_settarget(ino, cpuid);
324  if (err != HV_EOK)
325  printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
326  "err(%d)\n", ino, cpuid, err);
328  if (err != HV_EOK)
329  printk(KERN_ERR "sun4v_intr_setstate(%x): "
330  "err(%d)\n", ino, err);
332  if (err != HV_EOK)
333  printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
334  ino, err);
335 }
336 
337 static int sun4v_set_affinity(struct irq_data *data,
338  const struct cpumask *mask, bool force)
339 {
340  unsigned int ino = irq_table[data->irq].dev_ino;
341  unsigned long cpuid = irq_choose_cpu(data->irq, mask);
342  int err;
343 
344  err = sun4v_intr_settarget(ino, cpuid);
345  if (err != HV_EOK)
346  printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
347  "err(%d)\n", ino, cpuid, err);
348 
349  return 0;
350 }
351 
352 static void sun4v_irq_disable(struct irq_data *data)
353 {
354  unsigned int ino = irq_table[data->irq].dev_ino;
355  int err;
356 
358  if (err != HV_EOK)
359  printk(KERN_ERR "sun4v_intr_setenabled(%x): "
360  "err(%d)\n", ino, err);
361 }
362 
363 static void sun4v_irq_eoi(struct irq_data *data)
364 {
365  unsigned int ino = irq_table[data->irq].dev_ino;
366  int err;
367 
369  if (err != HV_EOK)
370  printk(KERN_ERR "sun4v_intr_setstate(%x): "
371  "err(%d)\n", ino, err);
372 }
373 
374 static void sun4v_virq_enable(struct irq_data *data)
375 {
376  unsigned long cpuid, dev_handle, dev_ino;
377  int err;
378 
379  cpuid = irq_choose_cpu(data->irq, data->affinity);
380 
381  dev_handle = irq_table[data->irq].dev_handle;
382  dev_ino = irq_table[data->irq].dev_ino;
383 
384  err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
385  if (err != HV_EOK)
386  printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
387  "err(%d)\n",
388  dev_handle, dev_ino, cpuid, err);
389  err = sun4v_vintr_set_state(dev_handle, dev_ino,
391  if (err != HV_EOK)
392  printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
393  "HV_INTR_STATE_IDLE): err(%d)\n",
394  dev_handle, dev_ino, err);
395  err = sun4v_vintr_set_valid(dev_handle, dev_ino,
397  if (err != HV_EOK)
398  printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
399  "HV_INTR_ENABLED): err(%d)\n",
400  dev_handle, dev_ino, err);
401 }
402 
403 static int sun4v_virt_set_affinity(struct irq_data *data,
404  const struct cpumask *mask, bool force)
405 {
406  unsigned long cpuid, dev_handle, dev_ino;
407  int err;
408 
409  cpuid = irq_choose_cpu(data->irq, mask);
410 
411  dev_handle = irq_table[data->irq].dev_handle;
412  dev_ino = irq_table[data->irq].dev_ino;
413 
414  err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
415  if (err != HV_EOK)
416  printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
417  "err(%d)\n",
418  dev_handle, dev_ino, cpuid, err);
419 
420  return 0;
421 }
422 
423 static void sun4v_virq_disable(struct irq_data *data)
424 {
425  unsigned long dev_handle, dev_ino;
426  int err;
427 
428  dev_handle = irq_table[data->irq].dev_handle;
429  dev_ino = irq_table[data->irq].dev_ino;
430 
431  err = sun4v_vintr_set_valid(dev_handle, dev_ino,
433  if (err != HV_EOK)
434  printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
435  "HV_INTR_DISABLED): err(%d)\n",
436  dev_handle, dev_ino, err);
437 }
438 
439 static void sun4v_virq_eoi(struct irq_data *data)
440 {
441  unsigned long dev_handle, dev_ino;
442  int err;
443 
444  dev_handle = irq_table[data->irq].dev_handle;
445  dev_ino = irq_table[data->irq].dev_ino;
446 
447  err = sun4v_vintr_set_state(dev_handle, dev_ino,
449  if (err != HV_EOK)
450  printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
451  "HV_INTR_STATE_IDLE): err(%d)\n",
452  dev_handle, dev_ino, err);
453 }
454 
455 static struct irq_chip sun4u_irq = {
456  .name = "sun4u",
457  .irq_enable = sun4u_irq_enable,
458  .irq_disable = sun4u_irq_disable,
459  .irq_eoi = sun4u_irq_eoi,
460  .irq_set_affinity = sun4u_set_affinity,
461  .flags = IRQCHIP_EOI_IF_HANDLED,
462 };
463 
464 static struct irq_chip sun4v_irq = {
465  .name = "sun4v",
466  .irq_enable = sun4v_irq_enable,
467  .irq_disable = sun4v_irq_disable,
468  .irq_eoi = sun4v_irq_eoi,
469  .irq_set_affinity = sun4v_set_affinity,
470  .flags = IRQCHIP_EOI_IF_HANDLED,
471 };
472 
473 static struct irq_chip sun4v_virq = {
474  .name = "vsun4v",
475  .irq_enable = sun4v_virq_enable,
476  .irq_disable = sun4v_virq_disable,
477  .irq_eoi = sun4v_virq_eoi,
478  .irq_set_affinity = sun4v_virt_set_affinity,
479  .flags = IRQCHIP_EOI_IF_HANDLED,
480 };
481 
482 static void pre_flow_handler(struct irq_data *d)
483 {
484  struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
485  unsigned int ino = irq_table[d->irq].dev_ino;
486 
487  handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
488 }
489 
491  void (*func)(unsigned int, void *, void *),
492  void *arg1, void *arg2)
493 {
494  struct irq_handler_data *handler_data = irq_get_handler_data(irq);
495 
496  handler_data->pre_handler = func;
497  handler_data->arg1 = arg1;
498  handler_data->arg2 = arg2;
499 
500  __irq_set_preflow_handler(irq, pre_flow_handler);
501 }
502 
503 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
504 {
505  struct ino_bucket *bucket;
506  struct irq_handler_data *handler_data;
507  unsigned int irq;
508  int ino;
509 
510  BUG_ON(tlb_type == hypervisor);
511 
512  ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
513  bucket = &ivector_table[ino];
514  irq = bucket_get_irq(__pa(bucket));
515  if (!irq) {
516  irq = irq_alloc(0, ino);
517  bucket_set_irq(__pa(bucket), irq);
518  irq_set_chip_and_handler_name(irq, &sun4u_irq,
519  handle_fasteoi_irq, "IVEC");
520  }
521 
522  handler_data = irq_get_handler_data(irq);
523  if (unlikely(handler_data))
524  goto out;
525 
526  handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
527  if (unlikely(!handler_data)) {
528  prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
529  prom_halt();
530  }
531  irq_set_handler_data(irq, handler_data);
532 
533  handler_data->imap = imap;
534  handler_data->iclr = iclr;
535 
536 out:
537  return irq;
538 }
539 
540 static unsigned int sun4v_build_common(unsigned long sysino,
541  struct irq_chip *chip)
542 {
543  struct ino_bucket *bucket;
544  struct irq_handler_data *handler_data;
545  unsigned int irq;
546 
547  BUG_ON(tlb_type != hypervisor);
548 
549  bucket = &ivector_table[sysino];
550  irq = bucket_get_irq(__pa(bucket));
551  if (!irq) {
552  irq = irq_alloc(0, sysino);
553  bucket_set_irq(__pa(bucket), irq);
555  "IVEC");
556  }
557 
558  handler_data = irq_get_handler_data(irq);
559  if (unlikely(handler_data))
560  goto out;
561 
562  handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
563  if (unlikely(!handler_data)) {
564  prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
565  prom_halt();
566  }
567  irq_set_handler_data(irq, handler_data);
568 
569  /* Catch accidental accesses to these things. IMAP/ICLR handling
570  * is done by hypervisor calls on sun4v platforms, not by direct
571  * register accesses.
572  */
573  handler_data->imap = ~0UL;
574  handler_data->iclr = ~0UL;
575 
576 out:
577  return irq;
578 }
579 
580 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
581 {
582  unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
583 
584  return sun4v_build_common(sysino, &sun4v_irq);
585 }
586 
587 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
588 {
589  struct irq_handler_data *handler_data;
590  unsigned long hv_err, cookie;
591  struct ino_bucket *bucket;
592  unsigned int irq;
593 
594  bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
595  if (unlikely(!bucket))
596  return 0;
597 
598  /* The only reference we store to the IRQ bucket is
599  * by physical address which kmemleak can't see, tell
600  * it that this object explicitly is not a leak and
601  * should be scanned.
602  */
603  kmemleak_not_leak(bucket);
604 
605  __flush_dcache_range((unsigned long) bucket,
606  ((unsigned long) bucket +
607  sizeof(struct ino_bucket)));
608 
609  irq = irq_alloc(devhandle, devino);
610  bucket_set_irq(__pa(bucket), irq);
611 
613  "IVEC");
614 
615  handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
616  if (unlikely(!handler_data))
617  return 0;
618 
619  /* In order to make the LDC channel startup sequence easier,
620  * especially wrt. locking, we do not let request_irq() enable
621  * the interrupt.
622  */
623  irq_set_status_flags(irq, IRQ_NOAUTOEN);
624  irq_set_handler_data(irq, handler_data);
625 
626  /* Catch accidental accesses to these things. IMAP/ICLR handling
627  * is done by hypervisor calls on sun4v platforms, not by direct
628  * register accesses.
629  */
630  handler_data->imap = ~0UL;
631  handler_data->iclr = ~0UL;
632 
633  cookie = ~__pa(bucket);
634  hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
635  if (hv_err) {
636  prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
637  "err=%lu\n", devhandle, devino, hv_err);
638  prom_halt();
639  }
640 
641  return irq;
642 }
643 
644 void ack_bad_irq(unsigned int irq)
645 {
646  unsigned int ino = irq_table[irq].dev_ino;
647 
648  if (!ino)
649  ino = 0xdeadbeef;
650 
651  printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
652  ino, irq);
653 }
654 
657 
658 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
659 {
660  unsigned long pstate, bucket_pa;
661  struct pt_regs *old_regs;
662  void *orig_sp;
663 
664  clear_softint(1 << pil);
665 
666  old_regs = set_irq_regs(regs);
667  irq_enter();
668 
669  /* Grab an atomic snapshot of the pending IVECs. */
670  __asm__ __volatile__("rdpr %%pstate, %0\n\t"
671  "wrpr %0, %3, %%pstate\n\t"
672  "ldx [%2], %1\n\t"
673  "stx %%g0, [%2]\n\t"
674  "wrpr %0, 0x0, %%pstate\n\t"
675  : "=&r" (pstate), "=&r" (bucket_pa)
676  : "r" (irq_work_pa(smp_processor_id())),
677  "i" (PSTATE_IE)
678  : "memory");
679 
680  orig_sp = set_hardirq_stack();
681 
682  while (bucket_pa) {
683  unsigned long next_pa;
684  unsigned int irq;
685 
686  next_pa = bucket_get_chain_pa(bucket_pa);
687  irq = bucket_get_irq(bucket_pa);
688  bucket_clear_chain_pa(bucket_pa);
689 
690  generic_handle_irq(irq);
691 
692  bucket_pa = next_pa;
693  }
694 
695  restore_hardirq_stack(orig_sp);
696 
697  irq_exit();
698  set_irq_regs(old_regs);
699 }
700 
701 void do_softirq(void)
702 {
703  unsigned long flags;
704 
705  if (in_interrupt())
706  return;
707 
708  local_irq_save(flags);
709 
710  if (local_softirq_pending()) {
711  void *orig_sp, *sp = softirq_stack[smp_processor_id()];
712 
713  sp += THREAD_SIZE - 192 - STACK_BIAS;
714 
715  __asm__ __volatile__("mov %%sp, %0\n\t"
716  "mov %1, %%sp"
717  : "=&r" (orig_sp)
718  : "r" (sp));
719  __do_softirq();
720  __asm__ __volatile__("mov %0, %%sp"
721  : : "r" (orig_sp));
722  }
723 
724  local_irq_restore(flags);
725 }
726 
727 #ifdef CONFIG_HOTPLUG_CPU
728 void fixup_irqs(void)
729 {
730  unsigned int irq;
731 
732  for (irq = 0; irq < NR_IRQS; irq++) {
733  struct irq_desc *desc = irq_to_desc(irq);
734  struct irq_data *data = irq_desc_get_irq_data(desc);
735  unsigned long flags;
736 
737  raw_spin_lock_irqsave(&desc->lock, flags);
738  if (desc->action && !irqd_is_per_cpu(data)) {
739  if (data->chip->irq_set_affinity)
740  data->chip->irq_set_affinity(data,
741  data->affinity,
742  false);
743  }
744  raw_spin_unlock_irqrestore(&desc->lock, flags);
745  }
746 
747  tick_ops->disable_irq();
748 }
749 #endif
750 
751 struct sun5_timer {
756 };
757 
758 static struct sun5_timer *prom_timers;
759 static u64 prom_limit0, prom_limit1;
760 
761 static void map_prom_timers(void)
762 {
763  struct device_node *dp;
764  const unsigned int *addr;
765 
766  /* PROM timer node hangs out in the top level of device siblings... */
767  dp = of_find_node_by_path("/");
768  dp = dp->child;
769  while (dp) {
770  if (!strcmp(dp->name, "counter-timer"))
771  break;
772  dp = dp->sibling;
773  }
774 
775  /* Assume if node is not present, PROM uses different tick mechanism
776  * which we should not care about.
777  */
778  if (!dp) {
779  prom_timers = (struct sun5_timer *) 0;
780  return;
781  }
782 
783  /* If PROM is really using this, it must be mapped by him. */
784  addr = of_get_property(dp, "address", NULL);
785  if (!addr) {
786  prom_printf("PROM does not have timer mapped, trying to continue.\n");
787  prom_timers = (struct sun5_timer *) 0;
788  return;
789  }
790  prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
791 }
792 
793 static void kill_prom_timer(void)
794 {
795  if (!prom_timers)
796  return;
797 
798  /* Save them away for later. */
799  prom_limit0 = prom_timers->limit0;
800  prom_limit1 = prom_timers->limit1;
801 
802  /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
803  * We turn both off here just to be paranoid.
804  */
805  prom_timers->limit0 = 0;
806  prom_timers->limit1 = 0;
807 
808  /* Wheee, eat the interrupt packet too... */
809  __asm__ __volatile__(
810 " mov 0x40, %%g2\n"
811 " ldxa [%%g0] %0, %%g1\n"
812 " ldxa [%%g2] %1, %%g1\n"
813 " stxa %%g0, [%%g0] %0\n"
814 " membar #Sync\n"
815  : /* no outputs */
816  : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
817  : "g1", "g2");
818 }
819 
821 {
822  int cpu = hard_smp_processor_id();
823 
824  trap_block[cpu].irq_worklist_pa = 0UL;
825 }
826 
827 /* Please be very careful with register_one_mondo() and
828  * sun4v_register_mondo_queues().
829  *
830  * On SMP this gets invoked from the CPU trampoline before
831  * the cpu has fully taken over the trap table from OBP,
832  * and it's kernel stack + %g6 thread register state is
833  * not fully cooked yet.
834  *
835  * Therefore you cannot make any OBP calls, not even prom_printf,
836  * from these two routines.
837  */
838 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
839 {
840  unsigned long num_entries = (qmask + 1) / 64;
841  unsigned long status;
842 
843  status = sun4v_cpu_qconf(type, paddr, num_entries);
844  if (status != HV_EOK) {
845  prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
846  "err %lu\n", type, paddr, num_entries, status);
847  prom_halt();
848  }
849 }
850 
852 {
853  struct trap_per_cpu *tb = &trap_block[this_cpu];
854 
855  register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
856  tb->cpu_mondo_qmask);
857  register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
858  tb->dev_mondo_qmask);
859  register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
860  tb->resum_qmask);
861  register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
862  tb->nonresum_qmask);
863 }
864 
865 /* Each queue region must be a power of 2 multiple of 64 bytes in
866  * size. The base real address must be aligned to the size of the
867  * region. Thus, an 8KB queue must be 8KB aligned, for example.
868  */
869 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
870 {
871  unsigned long size = PAGE_ALIGN(qmask + 1);
872  unsigned long order = get_order(size);
873  unsigned long p;
874 
875  p = __get_free_pages(GFP_KERNEL, order);
876  if (!p) {
877  prom_printf("SUN4V: Error, cannot allocate queue.\n");
878  prom_halt();
879  }
880 
881  *pa_ptr = __pa(p);
882 }
883 
884 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
885 {
886 #ifdef CONFIG_SMP
887  unsigned long page;
888 
889  BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
890 
891  page = get_zeroed_page(GFP_KERNEL);
892  if (!page) {
893  prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
894  prom_halt();
895  }
896 
897  tb->cpu_mondo_block_pa = __pa(page);
898  tb->cpu_list_pa = __pa(page + 64);
899 #endif
900 }
901 
902 /* Allocate mondo and error queues for all possible cpus. */
903 static void __init sun4v_init_mondo_queues(void)
904 {
905  int cpu;
906 
907  for_each_possible_cpu(cpu) {
908  struct trap_per_cpu *tb = &trap_block[cpu];
909 
910  alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
911  alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
912  alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
913  alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
914  alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
915  alloc_one_queue(&tb->nonresum_kernel_buf_pa,
916  tb->nonresum_qmask);
917  }
918 }
919 
920 static void __init init_send_mondo_info(void)
921 {
922  int cpu;
923 
924  for_each_possible_cpu(cpu) {
925  struct trap_per_cpu *tb = &trap_block[cpu];
926 
927  init_cpu_send_mondo_info(tb);
928  }
929 }
930 
931 static struct irqaction timer_irq_action = {
932  .name = "timer",
933 };
934 
935 /* Only invoked on boot processor. */
936 void __init init_IRQ(void)
937 {
938  unsigned long size;
939 
940  map_prom_timers();
941  kill_prom_timer();
942 
943  size = sizeof(struct ino_bucket) * NUM_IVECS;
944  ivector_table = kzalloc(size, GFP_KERNEL);
945  if (!ivector_table) {
946  prom_printf("Fatal error, cannot allocate ivector_table\n");
947  prom_halt();
948  }
949  __flush_dcache_range((unsigned long) ivector_table,
950  ((unsigned long) ivector_table) + size);
951 
952  ivector_table_pa = __pa(ivector_table);
953 
954  if (tlb_type == hypervisor)
955  sun4v_init_mondo_queues();
956 
957  init_send_mondo_info();
958 
959  if (tlb_type == hypervisor) {
960  /* Load up the boot cpu's entries. */
962  }
963 
964  /* We need to clear any IRQ's pending in the soft interrupt
965  * registers, a spurious one could be left around from the
966  * PROM timer which we just disabled.
967  */
968  clear_softint(get_softint());
969 
970  /* Now that ivector table is initialized, it is safe
971  * to receive IRQ vector traps. We will normally take
972  * one or two right now, in case some device PROM used
973  * to boot us wants to speak to us. We just ignore them.
974  */
975  __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
976  "or %%g1, %0, %%g1\n\t"
977  "wrpr %%g1, 0x0, %%pstate"
978  : /* No outputs */
979  : "i" (PSTATE_IE)
980  : "g1");
981 
982  irq_to_desc(0)->action = &timer_irq_action;
983 }