Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tegra20-apb-dma.c
Go to the documentation of this file.
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program. If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/slab.h>
34 
35 #include <mach/clk.h>
36 #include "dmaengine.h"
37 
38 #define TEGRA_APBDMA_GENERAL 0x0
39 #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31)
40 
41 #define TEGRA_APBDMA_CONTROL 0x010
42 #define TEGRA_APBDMA_IRQ_MASK 0x01c
43 #define TEGRA_APBDMA_IRQ_MASK_SET 0x020
44 
45 /* CSR register */
46 #define TEGRA_APBDMA_CHAN_CSR 0x00
47 #define TEGRA_APBDMA_CSR_ENB BIT(31)
48 #define TEGRA_APBDMA_CSR_IE_EOC BIT(30)
49 #define TEGRA_APBDMA_CSR_HOLD BIT(29)
50 #define TEGRA_APBDMA_CSR_DIR BIT(28)
51 #define TEGRA_APBDMA_CSR_ONCE BIT(27)
52 #define TEGRA_APBDMA_CSR_FLOW BIT(21)
53 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16
54 #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC
55 
56 /* STATUS register */
57 #define TEGRA_APBDMA_CHAN_STATUS 0x004
58 #define TEGRA_APBDMA_STATUS_BUSY BIT(31)
59 #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30)
60 #define TEGRA_APBDMA_STATUS_HALT BIT(29)
61 #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28)
62 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2
63 #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC
64 
65 /* AHB memory address */
66 #define TEGRA_APBDMA_CHAN_AHBPTR 0x010
67 
68 /* AHB sequence register */
69 #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14
70 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24)
80 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19)
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16
82 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0
83 
84 /* APB address */
85 #define TEGRA_APBDMA_CHAN_APBPTR 0x018
86 
87 /* APB sequence register */
88 #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28)
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28)
94 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27)
95 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16)
96 
97 /*
98  * If any burst is in flight and DMA paused then this is the time to complete
99  * on-flight burst and update DMA status register.
100  */
101 #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20
102 
103 /* Channel base address offset from APBDMA base address */
104 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000
105 
106 /* DMA channel register space size */
107 #define TEGRA_APBDMA_CHANNEL_REGISTER_SIZE 0x20
108 
109 struct tegra_dma;
110 
111 /*
112  * tegra_dma_chip_data Tegra chip specific DMA data
113  * @nr_channels: Number of channels available in the controller.
114  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
115  */
119 };
120 
121 /* DMA channel registers */
123  unsigned long csr;
124  unsigned long ahb_ptr;
125  unsigned long apb_ptr;
126  unsigned long ahb_seq;
127  unsigned long apb_seq;
128 };
129 
130 /*
131  * tegra_dma_sg_req: Dma request details to configure hardware. This
132  * contains the details for one transfer to configure DMA hw.
133  * The client's request for data transfer can be broken into multiple
134  * sub-transfer as per requester details and hw support.
135  * This sub transfer get added in the list of transfer and point to Tegra
136  * DMA descriptor which manages the transfer details.
137  */
140  int req_len;
142  bool last_sg;
143  bool half_done;
144  struct list_head node;
146 };
147 
148 /*
149  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
150  * This descriptor keep track of transfer status, callbacks and request
151  * counts etc.
152  */
158  struct list_head node;
161  int cb_count;
162 };
163 
164 struct tegra_dma_channel;
165 
166 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
167  bool to_terminate);
168 
169 /* tegra_dma_channel: Channel specific information */
172  char name[30];
174  int id;
175  int irq;
176  unsigned long chan_base_offset;
178  bool busy;
179  struct tegra_dma *tdma;
180  bool cyclic;
181 
182  /* Different lists for managing the requests */
187 
188  /* ISR handler and tasklet for bottom half of isr handling */
193 
194  /* Channel-slave specific configuration */
196 };
197 
198 /* tegra_dma: Tegra DMA specific information */
199 struct tegra_dma {
201  struct device *dev;
202  struct clk *dma_clk;
206 
207  /* Some register need to be cache before suspend */
209 
210  /* Last member of the structure */
212 };
213 
214 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
215 {
216  writel(val, tdma->base_addr + reg);
217 }
218 
219 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
220 {
221  return readl(tdma->base_addr + reg);
222 }
223 
224 static inline void tdc_write(struct tegra_dma_channel *tdc,
225  u32 reg, u32 val)
226 {
227  writel(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
228 }
229 
230 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
231 {
232  return readl(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
233 }
234 
235 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
236 {
237  return container_of(dc, struct tegra_dma_channel, dma_chan);
238 }
239 
240 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
241  struct dma_async_tx_descriptor *td)
242 {
243  return container_of(td, struct tegra_dma_desc, txd);
244 }
245 
246 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
247 {
248  return &tdc->dma_chan.dev->device;
249 }
250 
251 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
252 static int tegra_dma_runtime_suspend(struct device *dev);
253 static int tegra_dma_runtime_resume(struct device *dev);
254 
255 /* Get DMA desc from free list, if not there then allocate it. */
256 static struct tegra_dma_desc *tegra_dma_desc_get(
257  struct tegra_dma_channel *tdc)
258 {
259  struct tegra_dma_desc *dma_desc;
260  unsigned long flags;
261 
262  spin_lock_irqsave(&tdc->lock, flags);
263 
264  /* Do not allocate if desc are waiting for ack */
265  list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
266  if (async_tx_test_ack(&dma_desc->txd)) {
267  list_del(&dma_desc->node);
268  spin_unlock_irqrestore(&tdc->lock, flags);
269  return dma_desc;
270  }
271  }
272 
273  spin_unlock_irqrestore(&tdc->lock, flags);
274 
275  /* Allocate DMA desc */
276  dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
277  if (!dma_desc) {
278  dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
279  return NULL;
280  }
281 
282  dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
283  dma_desc->txd.tx_submit = tegra_dma_tx_submit;
284  dma_desc->txd.flags = 0;
285  return dma_desc;
286 }
287 
288 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
289  struct tegra_dma_desc *dma_desc)
290 {
291  unsigned long flags;
292 
293  spin_lock_irqsave(&tdc->lock, flags);
294  if (!list_empty(&dma_desc->tx_list))
295  list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
296  list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
297  spin_unlock_irqrestore(&tdc->lock, flags);
298 }
299 
300 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
301  struct tegra_dma_channel *tdc)
302 {
303  struct tegra_dma_sg_req *sg_req = NULL;
304  unsigned long flags;
305 
306  spin_lock_irqsave(&tdc->lock, flags);
307  if (!list_empty(&tdc->free_sg_req)) {
308  sg_req = list_first_entry(&tdc->free_sg_req,
309  typeof(*sg_req), node);
310  list_del(&sg_req->node);
311  spin_unlock_irqrestore(&tdc->lock, flags);
312  return sg_req;
313  }
314  spin_unlock_irqrestore(&tdc->lock, flags);
315 
316  sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
317  if (!sg_req)
318  dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
319  return sg_req;
320 }
321 
322 static int tegra_dma_slave_config(struct dma_chan *dc,
323  struct dma_slave_config *sconfig)
324 {
325  struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
326 
327  if (!list_empty(&tdc->pending_sg_req)) {
328  dev_err(tdc2dev(tdc), "Configuration not allowed\n");
329  return -EBUSY;
330  }
331 
332  memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
333  tdc->config_init = true;
334  return 0;
335 }
336 
337 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
338  bool wait_for_burst_complete)
339 {
340  struct tegra_dma *tdma = tdc->tdma;
341 
342  spin_lock(&tdma->global_lock);
343  tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
344  if (wait_for_burst_complete)
346 }
347 
348 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
349 {
350  struct tegra_dma *tdma = tdc->tdma;
351 
353  spin_unlock(&tdma->global_lock);
354 }
355 
356 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
357 {
358  u32 csr;
359  u32 status;
360 
361  /* Disable interrupts */
362  csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
363  csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
364  tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
365 
366  /* Disable DMA */
367  csr &= ~TEGRA_APBDMA_CSR_ENB;
368  tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
369 
370  /* Clear interrupt status if it is there */
371  status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
372  if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
373  dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
374  tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
375  }
376  tdc->busy = false;
377 }
378 
379 static void tegra_dma_start(struct tegra_dma_channel *tdc,
380  struct tegra_dma_sg_req *sg_req)
381 {
382  struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
383 
384  tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
385  tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
386  tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
387  tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
388  tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
389 
390  /* Start DMA */
391  tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
392  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
393 }
394 
395 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
396  struct tegra_dma_sg_req *nsg_req)
397 {
398  unsigned long status;
399 
400  /*
401  * The DMA controller reloads the new configuration for next transfer
402  * after last burst of current transfer completes.
403  * If there is no IEC status then this makes sure that last burst
404  * has not be completed. There may be case that last burst is on
405  * flight and so it can complete but because DMA is paused, it
406  * will not generates interrupt as well as not reload the new
407  * configuration.
408  * If there is already IEC status then interrupt handler need to
409  * load new configuration.
410  */
411  tegra_dma_global_pause(tdc, false);
412  status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
413 
414  /*
415  * If interrupt is pending then do nothing as the ISR will handle
416  * the programing for new request.
417  */
418  if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
419  dev_err(tdc2dev(tdc),
420  "Skipping new configuration as interrupt is pending\n");
421  tegra_dma_global_resume(tdc);
422  return;
423  }
424 
425  /* Safe to program new configuration */
426  tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
427  tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
428  tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
429  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
430  nsg_req->configured = true;
431 
432  tegra_dma_global_resume(tdc);
433 }
434 
435 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
436 {
437  struct tegra_dma_sg_req *sg_req;
438 
439  if (list_empty(&tdc->pending_sg_req))
440  return;
441 
442  sg_req = list_first_entry(&tdc->pending_sg_req,
443  typeof(*sg_req), node);
444  tegra_dma_start(tdc, sg_req);
445  sg_req->configured = true;
446  tdc->busy = true;
447 }
448 
449 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
450 {
451  struct tegra_dma_sg_req *hsgreq;
452  struct tegra_dma_sg_req *hnsgreq;
453 
454  if (list_empty(&tdc->pending_sg_req))
455  return;
456 
457  hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
458  if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
459  hnsgreq = list_first_entry(&hsgreq->node,
460  typeof(*hnsgreq), node);
461  tegra_dma_configure_for_next(tdc, hnsgreq);
462  }
463 }
464 
465 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
466  struct tegra_dma_sg_req *sg_req, unsigned long status)
467 {
468  return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
469 }
470 
471 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
472 {
473  struct tegra_dma_sg_req *sgreq;
474  struct tegra_dma_desc *dma_desc;
475 
476  while (!list_empty(&tdc->pending_sg_req)) {
477  sgreq = list_first_entry(&tdc->pending_sg_req,
478  typeof(*sgreq), node);
479  list_move_tail(&sgreq->node, &tdc->free_sg_req);
480  if (sgreq->last_sg) {
481  dma_desc = sgreq->dma_desc;
482  dma_desc->dma_status = DMA_ERROR;
483  list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
484 
485  /* Add in cb list if it is not there. */
486  if (!dma_desc->cb_count)
487  list_add_tail(&dma_desc->cb_node,
488  &tdc->cb_desc);
489  dma_desc->cb_count++;
490  }
491  }
492  tdc->isr_handler = NULL;
493 }
494 
495 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
496  struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
497 {
498  struct tegra_dma_sg_req *hsgreq = NULL;
499 
500  if (list_empty(&tdc->pending_sg_req)) {
501  dev_err(tdc2dev(tdc), "Dma is running without req\n");
502  tegra_dma_stop(tdc);
503  return false;
504  }
505 
506  /*
507  * Check that head req on list should be in flight.
508  * If it is not in flight then abort transfer as
509  * looping of transfer can not continue.
510  */
511  hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
512  if (!hsgreq->configured) {
513  tegra_dma_stop(tdc);
514  dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
515  tegra_dma_abort_all(tdc);
516  return false;
517  }
518 
519  /* Configure next request */
520  if (!to_terminate)
521  tdc_configure_next_head_desc(tdc);
522  return true;
523 }
524 
525 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
526  bool to_terminate)
527 {
528  struct tegra_dma_sg_req *sgreq;
529  struct tegra_dma_desc *dma_desc;
530 
531  tdc->busy = false;
532  sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
533  dma_desc = sgreq->dma_desc;
534  dma_desc->bytes_transferred += sgreq->req_len;
535 
536  list_del(&sgreq->node);
537  if (sgreq->last_sg) {
538  dma_desc->dma_status = DMA_SUCCESS;
539  dma_cookie_complete(&dma_desc->txd);
540  if (!dma_desc->cb_count)
541  list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
542  dma_desc->cb_count++;
543  list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
544  }
545  list_add_tail(&sgreq->node, &tdc->free_sg_req);
546 
547  /* Do not start DMA if it is going to be terminate */
548  if (to_terminate || list_empty(&tdc->pending_sg_req))
549  return;
550 
551  tdc_start_head_req(tdc);
552  return;
553 }
554 
555 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
556  bool to_terminate)
557 {
558  struct tegra_dma_sg_req *sgreq;
559  struct tegra_dma_desc *dma_desc;
560  bool st;
561 
562  sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
563  dma_desc = sgreq->dma_desc;
564  dma_desc->bytes_transferred += sgreq->req_len;
565 
566  /* Callback need to be call */
567  if (!dma_desc->cb_count)
568  list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
569  dma_desc->cb_count++;
570 
571  /* If not last req then put at end of pending list */
572  if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
573  list_move_tail(&sgreq->node, &tdc->pending_sg_req);
574  sgreq->configured = false;
575  st = handle_continuous_head_request(tdc, sgreq, to_terminate);
576  if (!st)
577  dma_desc->dma_status = DMA_ERROR;
578  }
579  return;
580 }
581 
582 static void tegra_dma_tasklet(unsigned long data)
583 {
584  struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
586  void *callback_param = NULL;
587  struct tegra_dma_desc *dma_desc;
588  unsigned long flags;
589  int cb_count;
590 
591  spin_lock_irqsave(&tdc->lock, flags);
592  while (!list_empty(&tdc->cb_desc)) {
593  dma_desc = list_first_entry(&tdc->cb_desc,
594  typeof(*dma_desc), cb_node);
595  list_del(&dma_desc->cb_node);
596  callback = dma_desc->txd.callback;
597  callback_param = dma_desc->txd.callback_param;
598  cb_count = dma_desc->cb_count;
599  dma_desc->cb_count = 0;
600  spin_unlock_irqrestore(&tdc->lock, flags);
601  while (cb_count-- && callback)
602  callback(callback_param);
603  spin_lock_irqsave(&tdc->lock, flags);
604  }
605  spin_unlock_irqrestore(&tdc->lock, flags);
606 }
607 
608 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
609 {
610  struct tegra_dma_channel *tdc = dev_id;
611  unsigned long status;
612  unsigned long flags;
613 
614  spin_lock_irqsave(&tdc->lock, flags);
615 
616  status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
617  if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
618  tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
619  tdc->isr_handler(tdc, false);
620  tasklet_schedule(&tdc->tasklet);
621  spin_unlock_irqrestore(&tdc->lock, flags);
622  return IRQ_HANDLED;
623  }
624 
625  spin_unlock_irqrestore(&tdc->lock, flags);
626  dev_info(tdc2dev(tdc),
627  "Interrupt already served status 0x%08lx\n", status);
628  return IRQ_NONE;
629 }
630 
631 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
632 {
633  struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
634  struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
635  unsigned long flags;
637 
638  spin_lock_irqsave(&tdc->lock, flags);
639  dma_desc->dma_status = DMA_IN_PROGRESS;
640  cookie = dma_cookie_assign(&dma_desc->txd);
641  list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
642  spin_unlock_irqrestore(&tdc->lock, flags);
643  return cookie;
644 }
645 
646 static void tegra_dma_issue_pending(struct dma_chan *dc)
647 {
648  struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
649  unsigned long flags;
650 
651  spin_lock_irqsave(&tdc->lock, flags);
652  if (list_empty(&tdc->pending_sg_req)) {
653  dev_err(tdc2dev(tdc), "No DMA request\n");
654  goto end;
655  }
656  if (!tdc->busy) {
657  tdc_start_head_req(tdc);
658 
659  /* Continuous single mode: Configure next req */
660  if (tdc->cyclic) {
661  /*
662  * Wait for 1 burst time for configure DMA for
663  * next transfer.
664  */
666  tdc_configure_next_head_desc(tdc);
667  }
668  }
669 end:
670  spin_unlock_irqrestore(&tdc->lock, flags);
671  return;
672 }
673 
674 static void tegra_dma_terminate_all(struct dma_chan *dc)
675 {
676  struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
677  struct tegra_dma_sg_req *sgreq;
678  struct tegra_dma_desc *dma_desc;
679  unsigned long flags;
680  unsigned long status;
681  bool was_busy;
682 
683  spin_lock_irqsave(&tdc->lock, flags);
684  if (list_empty(&tdc->pending_sg_req)) {
685  spin_unlock_irqrestore(&tdc->lock, flags);
686  return;
687  }
688 
689  if (!tdc->busy)
690  goto skip_dma_stop;
691 
692  /* Pause DMA before checking the queue status */
693  tegra_dma_global_pause(tdc, true);
694 
695  status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
696  if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
697  dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
698  tdc->isr_handler(tdc, true);
699  status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
700  }
701 
702  was_busy = tdc->busy;
703  tegra_dma_stop(tdc);
704 
705  if (!list_empty(&tdc->pending_sg_req) && was_busy) {
706  sgreq = list_first_entry(&tdc->pending_sg_req,
707  typeof(*sgreq), node);
708  sgreq->dma_desc->bytes_transferred +=
709  get_current_xferred_count(tdc, sgreq, status);
710  }
711  tegra_dma_global_resume(tdc);
712 
713 skip_dma_stop:
714  tegra_dma_abort_all(tdc);
715 
716  while (!list_empty(&tdc->cb_desc)) {
717  dma_desc = list_first_entry(&tdc->cb_desc,
718  typeof(*dma_desc), cb_node);
719  list_del(&dma_desc->cb_node);
720  dma_desc->cb_count = 0;
721  }
722  spin_unlock_irqrestore(&tdc->lock, flags);
723 }
724 
725 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
726  dma_cookie_t cookie, struct dma_tx_state *txstate)
727 {
728  struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
729  struct tegra_dma_desc *dma_desc;
730  struct tegra_dma_sg_req *sg_req;
731  enum dma_status ret;
732  unsigned long flags;
733  unsigned int residual;
734 
735  spin_lock_irqsave(&tdc->lock, flags);
736 
737  ret = dma_cookie_status(dc, cookie, txstate);
738  if (ret == DMA_SUCCESS) {
739  dma_set_residue(txstate, 0);
740  spin_unlock_irqrestore(&tdc->lock, flags);
741  return ret;
742  }
743 
744  /* Check on wait_ack desc status */
745  list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
746  if (dma_desc->txd.cookie == cookie) {
747  residual = dma_desc->bytes_requested -
748  (dma_desc->bytes_transferred %
749  dma_desc->bytes_requested);
750  dma_set_residue(txstate, residual);
751  ret = dma_desc->dma_status;
752  spin_unlock_irqrestore(&tdc->lock, flags);
753  return ret;
754  }
755  }
756 
757  /* Check in pending list */
758  list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
759  dma_desc = sg_req->dma_desc;
760  if (dma_desc->txd.cookie == cookie) {
761  residual = dma_desc->bytes_requested -
762  (dma_desc->bytes_transferred %
763  dma_desc->bytes_requested);
764  dma_set_residue(txstate, residual);
765  ret = dma_desc->dma_status;
766  spin_unlock_irqrestore(&tdc->lock, flags);
767  return ret;
768  }
769  }
770 
771  dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
772  spin_unlock_irqrestore(&tdc->lock, flags);
773  return ret;
774 }
775 
776 static int tegra_dma_device_control(struct dma_chan *dc, enum dma_ctrl_cmd cmd,
777  unsigned long arg)
778 {
779  switch (cmd) {
780  case DMA_SLAVE_CONFIG:
781  return tegra_dma_slave_config(dc,
782  (struct dma_slave_config *)arg);
783 
784  case DMA_TERMINATE_ALL:
785  tegra_dma_terminate_all(dc);
786  return 0;
787 
788  default:
789  break;
790  }
791 
792  return -ENXIO;
793 }
794 
795 static inline int get_bus_width(struct tegra_dma_channel *tdc,
796  enum dma_slave_buswidth slave_bw)
797 {
798  switch (slave_bw) {
807  default:
808  dev_warn(tdc2dev(tdc),
809  "slave bw is not supported, using 32bits\n");
811  }
812 }
813 
814 static inline int get_burst_size(struct tegra_dma_channel *tdc,
815  u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
816 {
817  int burst_byte;
818  int burst_ahb_width;
819 
820  /*
821  * burst_size from client is in terms of the bus_width.
822  * convert them into AHB memory width which is 4 byte.
823  */
824  burst_byte = burst_size * slave_bw;
825  burst_ahb_width = burst_byte / 4;
826 
827  /* If burst size is 0 then calculate the burst size based on length */
828  if (!burst_ahb_width) {
829  if (len & 0xF)
831  else if ((len >> 4) & 0x1)
833  else
835  }
836  if (burst_ahb_width < 4)
838  else if (burst_ahb_width < 8)
840  else
842 }
843 
844 static int get_transfer_param(struct tegra_dma_channel *tdc,
845  enum dma_transfer_direction direction, unsigned long *apb_addr,
846  unsigned long *apb_seq, unsigned long *csr, unsigned int *burst_size,
847  enum dma_slave_buswidth *slave_bw)
848 {
849 
850  switch (direction) {
851  case DMA_MEM_TO_DEV:
852  *apb_addr = tdc->dma_sconfig.dst_addr;
853  *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
854  *burst_size = tdc->dma_sconfig.dst_maxburst;
855  *slave_bw = tdc->dma_sconfig.dst_addr_width;
856  *csr = TEGRA_APBDMA_CSR_DIR;
857  return 0;
858 
859  case DMA_DEV_TO_MEM:
860  *apb_addr = tdc->dma_sconfig.src_addr;
861  *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
862  *burst_size = tdc->dma_sconfig.src_maxburst;
863  *slave_bw = tdc->dma_sconfig.src_addr_width;
864  *csr = 0;
865  return 0;
866 
867  default:
868  dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
869  return -EINVAL;
870  }
871  return -EINVAL;
872 }
873 
874 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
875  struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
876  enum dma_transfer_direction direction, unsigned long flags,
877  void *context)
878 {
879  struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
880  struct tegra_dma_desc *dma_desc;
881  unsigned int i;
882  struct scatterlist *sg;
883  unsigned long csr, ahb_seq, apb_ptr, apb_seq;
884  struct list_head req_list;
885  struct tegra_dma_sg_req *sg_req = NULL;
886  u32 burst_size;
887  enum dma_slave_buswidth slave_bw;
888  int ret;
889 
890  if (!tdc->config_init) {
891  dev_err(tdc2dev(tdc), "dma channel is not configured\n");
892  return NULL;
893  }
894  if (sg_len < 1) {
895  dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
896  return NULL;
897  }
898 
899  ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
900  &burst_size, &slave_bw);
901  if (ret < 0)
902  return NULL;
903 
904  INIT_LIST_HEAD(&req_list);
905 
907  ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
910 
912  csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
913  if (flags & DMA_PREP_INTERRUPT)
915 
917 
918  dma_desc = tegra_dma_desc_get(tdc);
919  if (!dma_desc) {
920  dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
921  return NULL;
922  }
923  INIT_LIST_HEAD(&dma_desc->tx_list);
924  INIT_LIST_HEAD(&dma_desc->cb_node);
925  dma_desc->cb_count = 0;
926  dma_desc->bytes_requested = 0;
927  dma_desc->bytes_transferred = 0;
928  dma_desc->dma_status = DMA_IN_PROGRESS;
929 
930  /* Make transfer requests */
931  for_each_sg(sgl, sg, sg_len, i) {
932  u32 len, mem;
933 
934  mem = sg_dma_address(sg);
935  len = sg_dma_len(sg);
936 
937  if ((len & 3) || (mem & 3) ||
938  (len > tdc->tdma->chip_data->max_dma_count)) {
939  dev_err(tdc2dev(tdc),
940  "Dma length/memory address is not supported\n");
941  tegra_dma_desc_put(tdc, dma_desc);
942  return NULL;
943  }
944 
945  sg_req = tegra_dma_sg_req_get(tdc);
946  if (!sg_req) {
947  dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
948  tegra_dma_desc_put(tdc, dma_desc);
949  return NULL;
950  }
951 
952  ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
953  dma_desc->bytes_requested += len;
954 
955  sg_req->ch_regs.apb_ptr = apb_ptr;
956  sg_req->ch_regs.ahb_ptr = mem;
957  sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
958  sg_req->ch_regs.apb_seq = apb_seq;
959  sg_req->ch_regs.ahb_seq = ahb_seq;
960  sg_req->configured = false;
961  sg_req->last_sg = false;
962  sg_req->dma_desc = dma_desc;
963  sg_req->req_len = len;
964 
965  list_add_tail(&sg_req->node, &dma_desc->tx_list);
966  }
967  sg_req->last_sg = true;
968  if (flags & DMA_CTRL_ACK)
969  dma_desc->txd.flags = DMA_CTRL_ACK;
970 
971  /*
972  * Make sure that mode should not be conflicting with currently
973  * configured mode.
974  */
975  if (!tdc->isr_handler) {
976  tdc->isr_handler = handle_once_dma_done;
977  tdc->cyclic = false;
978  } else {
979  if (tdc->cyclic) {
980  dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
981  tegra_dma_desc_put(tdc, dma_desc);
982  return NULL;
983  }
984  }
985 
986  return &dma_desc->txd;
987 }
988 
990  struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
991  size_t period_len, enum dma_transfer_direction direction,
992  unsigned long flags, void *context)
993 {
994  struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
995  struct tegra_dma_desc *dma_desc = NULL;
996  struct tegra_dma_sg_req *sg_req = NULL;
997  unsigned long csr, ahb_seq, apb_ptr, apb_seq;
998  int len;
999  size_t remain_len;
1000  dma_addr_t mem = buf_addr;
1001  u32 burst_size;
1002  enum dma_slave_buswidth slave_bw;
1003  int ret;
1004 
1005  if (!buf_len || !period_len) {
1006  dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1007  return NULL;
1008  }
1009 
1010  if (!tdc->config_init) {
1011  dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1012  return NULL;
1013  }
1014 
1015  /*
1016  * We allow to take more number of requests till DMA is
1017  * not started. The driver will loop over all requests.
1018  * Once DMA is started then new requests can be queued only after
1019  * terminating the DMA.
1020  */
1021  if (tdc->busy) {
1022  dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1023  return NULL;
1024  }
1025 
1026  /*
1027  * We only support cycle transfer when buf_len is multiple of
1028  * period_len.
1029  */
1030  if (buf_len % period_len) {
1031  dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1032  return NULL;
1033  }
1034 
1035  len = period_len;
1036  if ((len & 3) || (buf_addr & 3) ||
1037  (len > tdc->tdma->chip_data->max_dma_count)) {
1038  dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1039  return NULL;
1040  }
1041 
1042  ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1043  &burst_size, &slave_bw);
1044  if (ret < 0)
1045  return NULL;
1046 
1047 
1048  ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1049  ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1052 
1054  csr |= tdc->dma_sconfig.slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1055 
1057 
1058  dma_desc = tegra_dma_desc_get(tdc);
1059  if (!dma_desc) {
1060  dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1061  return NULL;
1062  }
1063 
1064  INIT_LIST_HEAD(&dma_desc->tx_list);
1065  INIT_LIST_HEAD(&dma_desc->cb_node);
1066  dma_desc->cb_count = 0;
1067 
1068  dma_desc->bytes_transferred = 0;
1069  dma_desc->bytes_requested = buf_len;
1070  remain_len = buf_len;
1071 
1072  /* Split transfer equal to period size */
1073  while (remain_len) {
1074  sg_req = tegra_dma_sg_req_get(tdc);
1075  if (!sg_req) {
1076  dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1077  tegra_dma_desc_put(tdc, dma_desc);
1078  return NULL;
1079  }
1080 
1081  ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1082  sg_req->ch_regs.apb_ptr = apb_ptr;
1083  sg_req->ch_regs.ahb_ptr = mem;
1084  sg_req->ch_regs.csr = csr | ((len - 4) & 0xFFFC);
1085  sg_req->ch_regs.apb_seq = apb_seq;
1086  sg_req->ch_regs.ahb_seq = ahb_seq;
1087  sg_req->configured = false;
1088  sg_req->half_done = false;
1089  sg_req->last_sg = false;
1090  sg_req->dma_desc = dma_desc;
1091  sg_req->req_len = len;
1092 
1093  list_add_tail(&sg_req->node, &dma_desc->tx_list);
1094  remain_len -= len;
1095  mem += len;
1096  }
1097  sg_req->last_sg = true;
1098  dma_desc->txd.flags = 0;
1099 
1100  /*
1101  * Make sure that mode should not be conflicting with currently
1102  * configured mode.
1103  */
1104  if (!tdc->isr_handler) {
1105  tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1106  tdc->cyclic = true;
1107  } else {
1108  if (!tdc->cyclic) {
1109  dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1110  tegra_dma_desc_put(tdc, dma_desc);
1111  return NULL;
1112  }
1113  }
1114 
1115  return &dma_desc->txd;
1116 }
1117 
1118 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1119 {
1120  struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1121  struct tegra_dma *tdma = tdc->tdma;
1122  int ret;
1123 
1124  dma_cookie_init(&tdc->dma_chan);
1125  tdc->config_init = false;
1126  ret = clk_prepare_enable(tdma->dma_clk);
1127  if (ret < 0)
1128  dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1129  return ret;
1130 }
1131 
1132 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1133 {
1134  struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1135  struct tegra_dma *tdma = tdc->tdma;
1136 
1137  struct tegra_dma_desc *dma_desc;
1138  struct tegra_dma_sg_req *sg_req;
1139  struct list_head dma_desc_list;
1140  struct list_head sg_req_list;
1141  unsigned long flags;
1142 
1143  INIT_LIST_HEAD(&dma_desc_list);
1144  INIT_LIST_HEAD(&sg_req_list);
1145 
1146  dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1147 
1148  if (tdc->busy)
1149  tegra_dma_terminate_all(dc);
1150 
1151  spin_lock_irqsave(&tdc->lock, flags);
1152  list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1153  list_splice_init(&tdc->free_sg_req, &sg_req_list);
1154  list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1155  INIT_LIST_HEAD(&tdc->cb_desc);
1156  tdc->config_init = false;
1157  spin_unlock_irqrestore(&tdc->lock, flags);
1158 
1159  while (!list_empty(&dma_desc_list)) {
1160  dma_desc = list_first_entry(&dma_desc_list,
1161  typeof(*dma_desc), node);
1162  list_del(&dma_desc->node);
1163  kfree(dma_desc);
1164  }
1165 
1166  while (!list_empty(&sg_req_list)) {
1167  sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1168  list_del(&sg_req->node);
1169  kfree(sg_req);
1170  }
1171  clk_disable_unprepare(tdma->dma_clk);
1172 }
1173 
1174 /* Tegra20 specific DMA controller information */
1175 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1176  .nr_channels = 16,
1177  .max_dma_count = 1024UL * 64,
1178 };
1179 
1180 #if defined(CONFIG_OF)
1181 /* Tegra30 specific DMA controller information */
1182 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1183  .nr_channels = 32,
1184  .max_dma_count = 1024UL * 64,
1185 };
1186 
1187 static const struct of_device_id tegra_dma_of_match[] __devinitconst = {
1188  {
1189  .compatible = "nvidia,tegra30-apbdma",
1190  .data = &tegra30_dma_chip_data,
1191  }, {
1192  .compatible = "nvidia,tegra20-apbdma",
1193  .data = &tegra20_dma_chip_data,
1194  }, {
1195  },
1196 };
1197 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1198 #endif
1199 
1200 static int __devinit tegra_dma_probe(struct platform_device *pdev)
1201 {
1202  struct resource *res;
1203  struct tegra_dma *tdma;
1204  int ret;
1205  int i;
1206  const struct tegra_dma_chip_data *cdata = NULL;
1207 
1208  if (pdev->dev.of_node) {
1209  const struct of_device_id *match;
1210  match = of_match_device(of_match_ptr(tegra_dma_of_match),
1211  &pdev->dev);
1212  if (!match) {
1213  dev_err(&pdev->dev, "Error: No device match found\n");
1214  return -ENODEV;
1215  }
1216  cdata = match->data;
1217  } else {
1218  /* If no device tree then fallback to tegra20 */
1219  cdata = &tegra20_dma_chip_data;
1220  }
1221 
1222  tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1223  sizeof(struct tegra_dma_channel), GFP_KERNEL);
1224  if (!tdma) {
1225  dev_err(&pdev->dev, "Error: memory allocation failed\n");
1226  return -ENOMEM;
1227  }
1228 
1229  tdma->dev = &pdev->dev;
1230  tdma->chip_data = cdata;
1231  platform_set_drvdata(pdev, tdma);
1232 
1233  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1234  if (!res) {
1235  dev_err(&pdev->dev, "No mem resource for DMA\n");
1236  return -EINVAL;
1237  }
1238 
1239  tdma->base_addr = devm_request_and_ioremap(&pdev->dev, res);
1240  if (!tdma->base_addr) {
1241  dev_err(&pdev->dev,
1242  "Cannot request memregion/iomap dma address\n");
1243  return -EADDRNOTAVAIL;
1244  }
1245 
1246  tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1247  if (IS_ERR(tdma->dma_clk)) {
1248  dev_err(&pdev->dev, "Error: Missing controller clock\n");
1249  return PTR_ERR(tdma->dma_clk);
1250  }
1251 
1252  spin_lock_init(&tdma->global_lock);
1253 
1254  pm_runtime_enable(&pdev->dev);
1255  if (!pm_runtime_enabled(&pdev->dev)) {
1256  ret = tegra_dma_runtime_resume(&pdev->dev);
1257  if (ret) {
1258  dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1259  ret);
1260  goto err_pm_disable;
1261  }
1262  }
1263 
1264  /* Enable clock before accessing registers */
1265  ret = clk_prepare_enable(tdma->dma_clk);
1266  if (ret < 0) {
1267  dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1268  goto err_pm_disable;
1269  }
1270 
1271  /* Reset DMA controller */
1273  udelay(2);
1275 
1276  /* Enable global DMA registers */
1278  tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1279  tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1280 
1281  clk_disable_unprepare(tdma->dma_clk);
1282 
1283  INIT_LIST_HEAD(&tdma->dma_dev.channels);
1284  for (i = 0; i < cdata->nr_channels; i++) {
1285  struct tegra_dma_channel *tdc = &tdma->channels[i];
1286 
1289 
1290  res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1291  if (!res) {
1292  ret = -EINVAL;
1293  dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1294  goto err_irq;
1295  }
1296  tdc->irq = res->start;
1297  snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1298  ret = devm_request_irq(&pdev->dev, tdc->irq,
1299  tegra_dma_isr, 0, tdc->name, tdc);
1300  if (ret) {
1301  dev_err(&pdev->dev,
1302  "request_irq failed with err %d channel %d\n",
1303  i, ret);
1304  goto err_irq;
1305  }
1306 
1307  tdc->dma_chan.device = &tdma->dma_dev;
1308  dma_cookie_init(&tdc->dma_chan);
1309  list_add_tail(&tdc->dma_chan.device_node,
1310  &tdma->dma_dev.channels);
1311  tdc->tdma = tdma;
1312  tdc->id = i;
1313 
1314  tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1315  (unsigned long)tdc);
1316  spin_lock_init(&tdc->lock);
1317 
1318  INIT_LIST_HEAD(&tdc->pending_sg_req);
1319  INIT_LIST_HEAD(&tdc->free_sg_req);
1320  INIT_LIST_HEAD(&tdc->free_dma_desc);
1321  INIT_LIST_HEAD(&tdc->cb_desc);
1322  }
1323 
1324  dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1325  dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1326  dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1327 
1328  tdma->dma_dev.dev = &pdev->dev;
1329  tdma->dma_dev.device_alloc_chan_resources =
1330  tegra_dma_alloc_chan_resources;
1331  tdma->dma_dev.device_free_chan_resources =
1332  tegra_dma_free_chan_resources;
1333  tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1334  tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1335  tdma->dma_dev.device_control = tegra_dma_device_control;
1336  tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1337  tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1338 
1339  ret = dma_async_device_register(&tdma->dma_dev);
1340  if (ret < 0) {
1341  dev_err(&pdev->dev,
1342  "Tegra20 APB DMA driver registration failed %d\n", ret);
1343  goto err_irq;
1344  }
1345 
1346  dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1347  cdata->nr_channels);
1348  return 0;
1349 
1350 err_irq:
1351  while (--i >= 0) {
1352  struct tegra_dma_channel *tdc = &tdma->channels[i];
1353  tasklet_kill(&tdc->tasklet);
1354  }
1355 
1356 err_pm_disable:
1357  pm_runtime_disable(&pdev->dev);
1358  if (!pm_runtime_status_suspended(&pdev->dev))
1359  tegra_dma_runtime_suspend(&pdev->dev);
1360  return ret;
1361 }
1362 
1363 static int __devexit tegra_dma_remove(struct platform_device *pdev)
1364 {
1365  struct tegra_dma *tdma = platform_get_drvdata(pdev);
1366  int i;
1367  struct tegra_dma_channel *tdc;
1368 
1370 
1371  for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1372  tdc = &tdma->channels[i];
1373  tasklet_kill(&tdc->tasklet);
1374  }
1375 
1376  pm_runtime_disable(&pdev->dev);
1377  if (!pm_runtime_status_suspended(&pdev->dev))
1378  tegra_dma_runtime_suspend(&pdev->dev);
1379 
1380  return 0;
1381 }
1382 
1383 static int tegra_dma_runtime_suspend(struct device *dev)
1384 {
1385  struct platform_device *pdev = to_platform_device(dev);
1386  struct tegra_dma *tdma = platform_get_drvdata(pdev);
1387 
1388  clk_disable_unprepare(tdma->dma_clk);
1389  return 0;
1390 }
1391 
1392 static int tegra_dma_runtime_resume(struct device *dev)
1393 {
1394  struct platform_device *pdev = to_platform_device(dev);
1395  struct tegra_dma *tdma = platform_get_drvdata(pdev);
1396  int ret;
1397 
1398  ret = clk_prepare_enable(tdma->dma_clk);
1399  if (ret < 0) {
1400  dev_err(dev, "clk_enable failed: %d\n", ret);
1401  return ret;
1402  }
1403  return 0;
1404 }
1405 
1406 static const struct dev_pm_ops tegra_dma_dev_pm_ops __devinitconst = {
1407 #ifdef CONFIG_PM_RUNTIME
1408  .runtime_suspend = tegra_dma_runtime_suspend,
1409  .runtime_resume = tegra_dma_runtime_resume,
1410 #endif
1411 };
1412 
1413 static struct platform_driver tegra_dmac_driver = {
1414  .driver = {
1415  .name = "tegra-apbdma",
1416  .owner = THIS_MODULE,
1417  .pm = &tegra_dma_dev_pm_ops,
1418  .of_match_table = of_match_ptr(tegra_dma_of_match),
1419  },
1420  .probe = tegra_dma_probe,
1421  .remove = __devexit_p(tegra_dma_remove),
1422 };
1423 
1424 module_platform_driver(tegra_dmac_driver);
1425 
1426 MODULE_ALIAS("platform:tegra20-apbdma");
1427 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1428 MODULE_AUTHOR("Laxman Dewangan <[email protected]>");
1429 MODULE_LICENSE("GPL v2");