Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ucc_geth.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
3  *
4  * Author: Shlomi Gridish <[email protected]>
5  * Li Yang <[email protected]>
6  *
7  * Description:
8  * QE UCC Gigabit Ethernet Driver
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  */
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/slab.h>
19 #include <linux/stddef.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/mii.h>
29 #include <linux/phy.h>
30 #include <linux/workqueue.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_platform.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/irq.h>
37 #include <asm/io.h>
38 #include <asm/immap_qe.h>
39 #include <asm/qe.h>
40 #include <asm/ucc.h>
41 #include <asm/ucc_fast.h>
42 #include <asm/machdep.h>
43 
44 #include "ucc_geth.h"
45 
46 #undef DEBUG
47 
48 #define ugeth_printk(level, format, arg...) \
49  printk(level format "\n", ## arg)
50 
51 #define ugeth_dbg(format, arg...) \
52  ugeth_printk(KERN_DEBUG , format , ## arg)
53 #define ugeth_err(format, arg...) \
54  ugeth_printk(KERN_ERR , format , ## arg)
55 #define ugeth_info(format, arg...) \
56  ugeth_printk(KERN_INFO , format , ## arg)
57 #define ugeth_warn(format, arg...) \
58  ugeth_printk(KERN_WARNING , format , ## arg)
59 
60 #ifdef UGETH_VERBOSE_DEBUG
61 #define ugeth_vdbg ugeth_dbg
62 #else
63 #define ugeth_vdbg(fmt, args...) do { } while (0)
64 #endif /* UGETH_VERBOSE_DEBUG */
65 #define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1
66 
67 
68 static DEFINE_SPINLOCK(ugeth_lock);
69 
70 static struct {
72 } debug = { -1 };
73 
74 module_param_named(debug, debug.msg_enable, int, 0);
75 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
76 
77 static struct ucc_geth_info ugeth_primary_info = {
78  .uf_info = {
79  .bd_mem_part = MEM_PART_SYSTEM,
81  .max_rx_buf_length = 1536,
82  /* adjusted at startup if max-speed 1000 */
83  .urfs = UCC_GETH_URFS_INIT,
84  .urfet = UCC_GETH_URFET_INIT,
85  .urfset = UCC_GETH_URFSET_INIT,
86  .utfs = UCC_GETH_UTFS_INIT,
87  .utfet = UCC_GETH_UTFET_INIT,
88  .utftt = UCC_GETH_UTFTT_INIT,
89  .ufpt = 256,
94  .tcrc = UCC_FAST_16_BIT_CRC,
96  },
97  .numQueuesTx = 1,
98  .numQueuesRx = 1,
99  .extendedFilteringChainPointer = ((uint32_t) NULL),
100  .typeorlen = 3072 /*1536 */ ,
101  .nonBackToBackIfgPart1 = 0x40,
102  .nonBackToBackIfgPart2 = 0x60,
103  .miminumInterFrameGapEnforcement = 0x50,
104  .backToBackInterFrameGap = 0x60,
105  .mblinterval = 128,
106  .nortsrbytetime = 5,
107  .fracsiz = 1,
108  .strictpriorityq = 0xff,
109  .altBebTruncation = 0xa,
110  .excessDefer = 1,
111  .maxRetransmission = 0xf,
112  .collisionWindow = 0x37,
113  .receiveFlowControl = 1,
114  .transmitFlowControl = 1,
115  .maxGroupAddrInHash = 4,
116  .maxIndAddrInHash = 4,
117  .prel = 7,
118  .maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
119  .minFrameLength = 64,
120  .maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
121  .maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
122  .vlantype = 0x8100,
123  .ecamptr = ((uint32_t) NULL),
124  .eventRegMask = UCCE_OTHER,
125  .pausePeriod = 0xf000,
126  .interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
127  .bdRingLenTx = {
135  TX_BD_RING_LEN},
136 
137  .bdRingLenRx = {
145  RX_BD_RING_LEN},
146 
147  .numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
148  .largestexternallookupkeysize =
149  QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
153  .vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
154  .vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
155  .rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
158  .numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
159  .numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
160  .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
161  .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
162 };
163 
164 static struct ucc_geth_info ugeth_info[8];
165 
166 #ifdef DEBUG
167 static void mem_disp(u8 *addr, int size)
168 {
169  u8 *i;
170  int size16Aling = (size >> 4) << 4;
171  int size4Aling = (size >> 2) << 2;
172  int notAlign = 0;
173  if (size % 16)
174  notAlign = 1;
175 
176  for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
177  printk("0x%08x: %08x %08x %08x %08x\r\n",
178  (u32) i,
179  *((u32 *) (i)),
180  *((u32 *) (i + 4)),
181  *((u32 *) (i + 8)), *((u32 *) (i + 12)));
182  if (notAlign == 1)
183  printk("0x%08x: ", (u32) i);
184  for (; (u32) i < (u32) addr + size4Aling; i += 4)
185  printk("%08x ", *((u32 *) (i)));
186  for (; (u32) i < (u32) addr + size; i++)
187  printk("%02x", *((i)));
188  if (notAlign == 1)
189  printk("\r\n");
190 }
191 #endif /* DEBUG */
192 
193 static struct list_head *dequeue(struct list_head *lh)
194 {
195  unsigned long flags;
196 
197  spin_lock_irqsave(&ugeth_lock, flags);
198  if (!list_empty(lh)) {
199  struct list_head *node = lh->next;
200  list_del(node);
201  spin_unlock_irqrestore(&ugeth_lock, flags);
202  return node;
203  } else {
204  spin_unlock_irqrestore(&ugeth_lock, flags);
205  return NULL;
206  }
207 }
208 
209 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
210  u8 __iomem *bd)
211 {
212  struct sk_buff *skb;
213 
214  skb = netdev_alloc_skb(ugeth->ndev,
215  ugeth->ug_info->uf_info.max_rx_buf_length +
217  if (!skb)
218  return NULL;
219 
220  /* We need the data buffer to be aligned properly. We will reserve
221  * as many bytes as needed to align the data properly
222  */
223  skb_reserve(skb,
225  (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
226  1)));
227 
228  out_be32(&((struct qe_bd __iomem *)bd)->buf,
229  dma_map_single(ugeth->dev,
230  skb->data,
231  ugeth->ug_info->uf_info.max_rx_buf_length +
233  DMA_FROM_DEVICE));
234 
235  out_be32((u32 __iomem *)bd,
236  (R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
237 
238  return skb;
239 }
240 
241 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
242 {
243  u8 __iomem *bd;
244  u32 bd_status;
245  struct sk_buff *skb;
246  int i;
247 
248  bd = ugeth->p_rx_bd_ring[rxQ];
249  i = 0;
250 
251  do {
252  bd_status = in_be32((u32 __iomem *)bd);
253  skb = get_new_skb(ugeth, bd);
254 
255  if (!skb) /* If can not allocate data buffer,
256  abort. Cleanup will be elsewhere */
257  return -ENOMEM;
258 
259  ugeth->rx_skbuff[rxQ][i] = skb;
260 
261  /* advance the BD pointer */
262  bd += sizeof(struct qe_bd);
263  i++;
264  } while (!(bd_status & R_W));
265 
266  return 0;
267 }
268 
269 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
270  u32 *p_start,
271  u8 num_entries,
272  u32 thread_size,
273  u32 thread_alignment,
274  unsigned int risc,
275  int skip_page_for_first_entry)
276 {
277  u32 init_enet_offset;
278  u8 i;
279  int snum;
280 
281  for (i = 0; i < num_entries; i++) {
282  if ((snum = qe_get_snum()) < 0) {
283  if (netif_msg_ifup(ugeth))
284  ugeth_err("fill_init_enet_entries: Can not get SNUM.");
285  return snum;
286  }
287  if ((i == 0) && skip_page_for_first_entry)
288  /* First entry of Rx does not have page */
289  init_enet_offset = 0;
290  else {
291  init_enet_offset =
292  qe_muram_alloc(thread_size, thread_alignment);
293  if (IS_ERR_VALUE(init_enet_offset)) {
294  if (netif_msg_ifup(ugeth))
295  ugeth_err("fill_init_enet_entries: Can not allocate DPRAM memory.");
296  qe_put_snum((u8) snum);
297  return -ENOMEM;
298  }
299  }
300  *(p_start++) =
301  ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
302  | risc;
303  }
304 
305  return 0;
306 }
307 
308 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
309  u32 *p_start,
310  u8 num_entries,
311  unsigned int risc,
312  int skip_page_for_first_entry)
313 {
314  u32 init_enet_offset;
315  u8 i;
316  int snum;
317 
318  for (i = 0; i < num_entries; i++) {
319  u32 val = *p_start;
320 
321  /* Check that this entry was actually valid --
322  needed in case failed in allocations */
323  if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
324  snum =
325  (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
327  qe_put_snum((u8) snum);
328  if (!((i == 0) && skip_page_for_first_entry)) {
329  /* First entry of Rx does not have page */
330  init_enet_offset =
331  (val & ENET_INIT_PARAM_PTR_MASK);
332  qe_muram_free(init_enet_offset);
333  }
334  *p_start++ = 0;
335  }
336  }
337 
338  return 0;
339 }
340 
341 #ifdef DEBUG
342 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
343  u32 __iomem *p_start,
344  u8 num_entries,
345  u32 thread_size,
346  unsigned int risc,
347  int skip_page_for_first_entry)
348 {
349  u32 init_enet_offset;
350  u8 i;
351  int snum;
352 
353  for (i = 0; i < num_entries; i++) {
354  u32 val = in_be32(p_start);
355 
356  /* Check that this entry was actually valid --
357  needed in case failed in allocations */
358  if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
359  snum =
360  (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
362  qe_put_snum((u8) snum);
363  if (!((i == 0) && skip_page_for_first_entry)) {
364  /* First entry of Rx does not have page */
365  init_enet_offset =
366  (in_be32(p_start) &
368  ugeth_info("Init enet entry %d:", i);
369  ugeth_info("Base address: 0x%08x",
370  (u32)
371  qe_muram_addr(init_enet_offset));
372  mem_disp(qe_muram_addr(init_enet_offset),
373  thread_size);
374  }
375  p_start++;
376  }
377  }
378 
379  return 0;
380 }
381 #endif
382 
383 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
384 {
385  kfree(enet_addr_cont);
386 }
387 
388 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
389 {
390  out_be16(&reg[0], ((u16)mac[5] << 8) | mac[4]);
391  out_be16(&reg[1], ((u16)mac[3] << 8) | mac[2]);
392  out_be16(&reg[2], ((u16)mac[1] << 8) | mac[0]);
393 }
394 
395 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
396 {
397  struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
398 
399  if (!(paddr_num < NUM_OF_PADDRS)) {
400  ugeth_warn("%s: Illagel paddr_num.", __func__);
401  return -EINVAL;
402  }
403 
404  p_82xx_addr_filt =
406  addressfiltering;
407 
408  /* Writing address ff.ff.ff.ff.ff.ff disables address
409  recognition for this register */
410  out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
411  out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
412  out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
413 
414  return 0;
415 }
416 
417 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
418  u8 *p_enet_addr)
419 {
420  struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
421  u32 cecr_subblock;
422 
423  p_82xx_addr_filt =
425  addressfiltering;
426 
427  cecr_subblock =
428  ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
429 
430  /* Ethernet frames are defined in Little Endian mode,
431  therefore to insert */
432  /* the address to the hash (Big Endian mode), we reverse the bytes.*/
433 
434  set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
435 
436  qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
437  QE_CR_PROTOCOL_ETHERNET, 0);
438 }
439 
440 static inline int compare_addr(u8 **addr1, u8 **addr2)
441 {
442  return memcmp(addr1, addr2, ETH_ALEN);
443 }
444 
445 #ifdef DEBUG
446 static void get_statistics(struct ucc_geth_private *ugeth,
448  tx_firmware_statistics,
450  rx_firmware_statistics,
451  struct ucc_geth_hardware_statistics *hardware_statistics)
452 {
453  struct ucc_fast __iomem *uf_regs;
454  struct ucc_geth __iomem *ug_regs;
455  struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
456  struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
457 
458  ug_regs = ugeth->ug_regs;
459  uf_regs = (struct ucc_fast __iomem *) ug_regs;
460  p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
461  p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
462 
463  /* Tx firmware only if user handed pointer and driver actually
464  gathers Tx firmware statistics */
465  if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
466  tx_firmware_statistics->sicoltx =
467  in_be32(&p_tx_fw_statistics_pram->sicoltx);
468  tx_firmware_statistics->mulcoltx =
469  in_be32(&p_tx_fw_statistics_pram->mulcoltx);
470  tx_firmware_statistics->latecoltxfr =
471  in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
472  tx_firmware_statistics->frabortduecol =
473  in_be32(&p_tx_fw_statistics_pram->frabortduecol);
474  tx_firmware_statistics->frlostinmactxer =
475  in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
476  tx_firmware_statistics->carriersenseertx =
477  in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
478  tx_firmware_statistics->frtxok =
479  in_be32(&p_tx_fw_statistics_pram->frtxok);
480  tx_firmware_statistics->txfrexcessivedefer =
481  in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
482  tx_firmware_statistics->txpkts256 =
483  in_be32(&p_tx_fw_statistics_pram->txpkts256);
484  tx_firmware_statistics->txpkts512 =
485  in_be32(&p_tx_fw_statistics_pram->txpkts512);
486  tx_firmware_statistics->txpkts1024 =
487  in_be32(&p_tx_fw_statistics_pram->txpkts1024);
488  tx_firmware_statistics->txpktsjumbo =
489  in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
490  }
491 
492  /* Rx firmware only if user handed pointer and driver actually
493  * gathers Rx firmware statistics */
494  if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
495  int i;
496  rx_firmware_statistics->frrxfcser =
497  in_be32(&p_rx_fw_statistics_pram->frrxfcser);
498  rx_firmware_statistics->fraligner =
499  in_be32(&p_rx_fw_statistics_pram->fraligner);
500  rx_firmware_statistics->inrangelenrxer =
501  in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
502  rx_firmware_statistics->outrangelenrxer =
503  in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
504  rx_firmware_statistics->frtoolong =
505  in_be32(&p_rx_fw_statistics_pram->frtoolong);
506  rx_firmware_statistics->runt =
507  in_be32(&p_rx_fw_statistics_pram->runt);
508  rx_firmware_statistics->verylongevent =
509  in_be32(&p_rx_fw_statistics_pram->verylongevent);
510  rx_firmware_statistics->symbolerror =
511  in_be32(&p_rx_fw_statistics_pram->symbolerror);
512  rx_firmware_statistics->dropbsy =
513  in_be32(&p_rx_fw_statistics_pram->dropbsy);
514  for (i = 0; i < 0x8; i++)
515  rx_firmware_statistics->res0[i] =
516  p_rx_fw_statistics_pram->res0[i];
517  rx_firmware_statistics->mismatchdrop =
518  in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
519  rx_firmware_statistics->underpkts =
520  in_be32(&p_rx_fw_statistics_pram->underpkts);
521  rx_firmware_statistics->pkts256 =
522  in_be32(&p_rx_fw_statistics_pram->pkts256);
523  rx_firmware_statistics->pkts512 =
524  in_be32(&p_rx_fw_statistics_pram->pkts512);
525  rx_firmware_statistics->pkts1024 =
526  in_be32(&p_rx_fw_statistics_pram->pkts1024);
527  rx_firmware_statistics->pktsjumbo =
528  in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
529  rx_firmware_statistics->frlossinmacer =
530  in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
531  rx_firmware_statistics->pausefr =
532  in_be32(&p_rx_fw_statistics_pram->pausefr);
533  for (i = 0; i < 0x4; i++)
534  rx_firmware_statistics->res1[i] =
535  p_rx_fw_statistics_pram->res1[i];
536  rx_firmware_statistics->removevlan =
537  in_be32(&p_rx_fw_statistics_pram->removevlan);
538  rx_firmware_statistics->replacevlan =
539  in_be32(&p_rx_fw_statistics_pram->replacevlan);
540  rx_firmware_statistics->insertvlan =
541  in_be32(&p_rx_fw_statistics_pram->insertvlan);
542  }
543 
544  /* Hardware only if user handed pointer and driver actually
545  gathers hardware statistics */
546  if (hardware_statistics &&
547  (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
548  hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
549  hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
550  hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
551  hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
552  hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
553  hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
554  hardware_statistics->txok = in_be32(&ug_regs->txok);
555  hardware_statistics->txcf = in_be16(&ug_regs->txcf);
556  hardware_statistics->tmca = in_be32(&ug_regs->tmca);
557  hardware_statistics->tbca = in_be32(&ug_regs->tbca);
558  hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
559  hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
560  hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
561  hardware_statistics->rmca = in_be32(&ug_regs->rmca);
562  hardware_statistics->rbca = in_be32(&ug_regs->rbca);
563  }
564 }
565 
566 static void dump_bds(struct ucc_geth_private *ugeth)
567 {
568  int i;
569  int length;
570 
571  for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
572  if (ugeth->p_tx_bd_ring[i]) {
573  length =
574  (ugeth->ug_info->bdRingLenTx[i] *
575  sizeof(struct qe_bd));
576  ugeth_info("TX BDs[%d]", i);
577  mem_disp(ugeth->p_tx_bd_ring[i], length);
578  }
579  }
580  for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
581  if (ugeth->p_rx_bd_ring[i]) {
582  length =
583  (ugeth->ug_info->bdRingLenRx[i] *
584  sizeof(struct qe_bd));
585  ugeth_info("RX BDs[%d]", i);
586  mem_disp(ugeth->p_rx_bd_ring[i], length);
587  }
588  }
589 }
590 
591 static void dump_regs(struct ucc_geth_private *ugeth)
592 {
593  int i;
594 
595  ugeth_info("UCC%d Geth registers:", ugeth->ug_info->uf_info.ucc_num + 1);
596  ugeth_info("Base address: 0x%08x", (u32) ugeth->ug_regs);
597 
598  ugeth_info("maccfg1 : addr - 0x%08x, val - 0x%08x",
599  (u32) & ugeth->ug_regs->maccfg1,
600  in_be32(&ugeth->ug_regs->maccfg1));
601  ugeth_info("maccfg2 : addr - 0x%08x, val - 0x%08x",
602  (u32) & ugeth->ug_regs->maccfg2,
603  in_be32(&ugeth->ug_regs->maccfg2));
604  ugeth_info("ipgifg : addr - 0x%08x, val - 0x%08x",
605  (u32) & ugeth->ug_regs->ipgifg,
606  in_be32(&ugeth->ug_regs->ipgifg));
607  ugeth_info("hafdup : addr - 0x%08x, val - 0x%08x",
608  (u32) & ugeth->ug_regs->hafdup,
609  in_be32(&ugeth->ug_regs->hafdup));
610  ugeth_info("ifctl : addr - 0x%08x, val - 0x%08x",
611  (u32) & ugeth->ug_regs->ifctl,
612  in_be32(&ugeth->ug_regs->ifctl));
613  ugeth_info("ifstat : addr - 0x%08x, val - 0x%08x",
614  (u32) & ugeth->ug_regs->ifstat,
615  in_be32(&ugeth->ug_regs->ifstat));
616  ugeth_info("macstnaddr1: addr - 0x%08x, val - 0x%08x",
617  (u32) & ugeth->ug_regs->macstnaddr1,
618  in_be32(&ugeth->ug_regs->macstnaddr1));
619  ugeth_info("macstnaddr2: addr - 0x%08x, val - 0x%08x",
620  (u32) & ugeth->ug_regs->macstnaddr2,
621  in_be32(&ugeth->ug_regs->macstnaddr2));
622  ugeth_info("uempr : addr - 0x%08x, val - 0x%08x",
623  (u32) & ugeth->ug_regs->uempr,
624  in_be32(&ugeth->ug_regs->uempr));
625  ugeth_info("utbipar : addr - 0x%08x, val - 0x%08x",
626  (u32) & ugeth->ug_regs->utbipar,
627  in_be32(&ugeth->ug_regs->utbipar));
628  ugeth_info("uescr : addr - 0x%08x, val - 0x%04x",
629  (u32) & ugeth->ug_regs->uescr,
630  in_be16(&ugeth->ug_regs->uescr));
631  ugeth_info("tx64 : addr - 0x%08x, val - 0x%08x",
632  (u32) & ugeth->ug_regs->tx64,
633  in_be32(&ugeth->ug_regs->tx64));
634  ugeth_info("tx127 : addr - 0x%08x, val - 0x%08x",
635  (u32) & ugeth->ug_regs->tx127,
636  in_be32(&ugeth->ug_regs->tx127));
637  ugeth_info("tx255 : addr - 0x%08x, val - 0x%08x",
638  (u32) & ugeth->ug_regs->tx255,
639  in_be32(&ugeth->ug_regs->tx255));
640  ugeth_info("rx64 : addr - 0x%08x, val - 0x%08x",
641  (u32) & ugeth->ug_regs->rx64,
642  in_be32(&ugeth->ug_regs->rx64));
643  ugeth_info("rx127 : addr - 0x%08x, val - 0x%08x",
644  (u32) & ugeth->ug_regs->rx127,
645  in_be32(&ugeth->ug_regs->rx127));
646  ugeth_info("rx255 : addr - 0x%08x, val - 0x%08x",
647  (u32) & ugeth->ug_regs->rx255,
648  in_be32(&ugeth->ug_regs->rx255));
649  ugeth_info("txok : addr - 0x%08x, val - 0x%08x",
650  (u32) & ugeth->ug_regs->txok,
651  in_be32(&ugeth->ug_regs->txok));
652  ugeth_info("txcf : addr - 0x%08x, val - 0x%04x",
653  (u32) & ugeth->ug_regs->txcf,
654  in_be16(&ugeth->ug_regs->txcf));
655  ugeth_info("tmca : addr - 0x%08x, val - 0x%08x",
656  (u32) & ugeth->ug_regs->tmca,
657  in_be32(&ugeth->ug_regs->tmca));
658  ugeth_info("tbca : addr - 0x%08x, val - 0x%08x",
659  (u32) & ugeth->ug_regs->tbca,
660  in_be32(&ugeth->ug_regs->tbca));
661  ugeth_info("rxfok : addr - 0x%08x, val - 0x%08x",
662  (u32) & ugeth->ug_regs->rxfok,
663  in_be32(&ugeth->ug_regs->rxfok));
664  ugeth_info("rxbok : addr - 0x%08x, val - 0x%08x",
665  (u32) & ugeth->ug_regs->rxbok,
666  in_be32(&ugeth->ug_regs->rxbok));
667  ugeth_info("rbyt : addr - 0x%08x, val - 0x%08x",
668  (u32) & ugeth->ug_regs->rbyt,
669  in_be32(&ugeth->ug_regs->rbyt));
670  ugeth_info("rmca : addr - 0x%08x, val - 0x%08x",
671  (u32) & ugeth->ug_regs->rmca,
672  in_be32(&ugeth->ug_regs->rmca));
673  ugeth_info("rbca : addr - 0x%08x, val - 0x%08x",
674  (u32) & ugeth->ug_regs->rbca,
675  in_be32(&ugeth->ug_regs->rbca));
676  ugeth_info("scar : addr - 0x%08x, val - 0x%08x",
677  (u32) & ugeth->ug_regs->scar,
678  in_be32(&ugeth->ug_regs->scar));
679  ugeth_info("scam : addr - 0x%08x, val - 0x%08x",
680  (u32) & ugeth->ug_regs->scam,
681  in_be32(&ugeth->ug_regs->scam));
682 
683  if (ugeth->p_thread_data_tx) {
684  int numThreadsTxNumerical;
685  switch (ugeth->ug_info->numThreadsTx) {
687  numThreadsTxNumerical = 1;
688  break;
690  numThreadsTxNumerical = 2;
691  break;
693  numThreadsTxNumerical = 4;
694  break;
696  numThreadsTxNumerical = 6;
697  break;
699  numThreadsTxNumerical = 8;
700  break;
701  default:
702  numThreadsTxNumerical = 0;
703  break;
704  }
705 
706  ugeth_info("Thread data TXs:");
707  ugeth_info("Base address: 0x%08x",
708  (u32) ugeth->p_thread_data_tx);
709  for (i = 0; i < numThreadsTxNumerical; i++) {
710  ugeth_info("Thread data TX[%d]:", i);
711  ugeth_info("Base address: 0x%08x",
712  (u32) & ugeth->p_thread_data_tx[i]);
713  mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
714  sizeof(struct ucc_geth_thread_data_tx));
715  }
716  }
717  if (ugeth->p_thread_data_rx) {
718  int numThreadsRxNumerical;
719  switch (ugeth->ug_info->numThreadsRx) {
721  numThreadsRxNumerical = 1;
722  break;
724  numThreadsRxNumerical = 2;
725  break;
727  numThreadsRxNumerical = 4;
728  break;
730  numThreadsRxNumerical = 6;
731  break;
733  numThreadsRxNumerical = 8;
734  break;
735  default:
736  numThreadsRxNumerical = 0;
737  break;
738  }
739 
740  ugeth_info("Thread data RX:");
741  ugeth_info("Base address: 0x%08x",
742  (u32) ugeth->p_thread_data_rx);
743  for (i = 0; i < numThreadsRxNumerical; i++) {
744  ugeth_info("Thread data RX[%d]:", i);
745  ugeth_info("Base address: 0x%08x",
746  (u32) & ugeth->p_thread_data_rx[i]);
747  mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
748  sizeof(struct ucc_geth_thread_data_rx));
749  }
750  }
751  if (ugeth->p_exf_glbl_param) {
752  ugeth_info("EXF global param:");
753  ugeth_info("Base address: 0x%08x",
754  (u32) ugeth->p_exf_glbl_param);
755  mem_disp((u8 *) ugeth->p_exf_glbl_param,
756  sizeof(*ugeth->p_exf_glbl_param));
757  }
758  if (ugeth->p_tx_glbl_pram) {
759  ugeth_info("TX global param:");
760  ugeth_info("Base address: 0x%08x", (u32) ugeth->p_tx_glbl_pram);
761  ugeth_info("temoder : addr - 0x%08x, val - 0x%04x",
762  (u32) & ugeth->p_tx_glbl_pram->temoder,
763  in_be16(&ugeth->p_tx_glbl_pram->temoder));
764  ugeth_info("sqptr : addr - 0x%08x, val - 0x%08x",
765  (u32) & ugeth->p_tx_glbl_pram->sqptr,
766  in_be32(&ugeth->p_tx_glbl_pram->sqptr));
767  ugeth_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x",
768  (u32) & ugeth->p_tx_glbl_pram->schedulerbasepointer,
769  in_be32(&ugeth->p_tx_glbl_pram->
770  schedulerbasepointer));
771  ugeth_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x",
772  (u32) & ugeth->p_tx_glbl_pram->txrmonbaseptr,
773  in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
774  ugeth_info("tstate : addr - 0x%08x, val - 0x%08x",
775  (u32) & ugeth->p_tx_glbl_pram->tstate,
776  in_be32(&ugeth->p_tx_glbl_pram->tstate));
777  ugeth_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x",
778  (u32) & ugeth->p_tx_glbl_pram->iphoffset[0],
779  ugeth->p_tx_glbl_pram->iphoffset[0]);
780  ugeth_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x",
781  (u32) & ugeth->p_tx_glbl_pram->iphoffset[1],
782  ugeth->p_tx_glbl_pram->iphoffset[1]);
783  ugeth_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x",
784  (u32) & ugeth->p_tx_glbl_pram->iphoffset[2],
785  ugeth->p_tx_glbl_pram->iphoffset[2]);
786  ugeth_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x",
787  (u32) & ugeth->p_tx_glbl_pram->iphoffset[3],
788  ugeth->p_tx_glbl_pram->iphoffset[3]);
789  ugeth_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x",
790  (u32) & ugeth->p_tx_glbl_pram->iphoffset[4],
791  ugeth->p_tx_glbl_pram->iphoffset[4]);
792  ugeth_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x",
793  (u32) & ugeth->p_tx_glbl_pram->iphoffset[5],
794  ugeth->p_tx_glbl_pram->iphoffset[5]);
795  ugeth_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x",
796  (u32) & ugeth->p_tx_glbl_pram->iphoffset[6],
797  ugeth->p_tx_glbl_pram->iphoffset[6]);
798  ugeth_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x",
799  (u32) & ugeth->p_tx_glbl_pram->iphoffset[7],
800  ugeth->p_tx_glbl_pram->iphoffset[7]);
801  ugeth_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x",
802  (u32) & ugeth->p_tx_glbl_pram->vtagtable[0],
803  in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
804  ugeth_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x",
805  (u32) & ugeth->p_tx_glbl_pram->vtagtable[1],
806  in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
807  ugeth_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x",
808  (u32) & ugeth->p_tx_glbl_pram->vtagtable[2],
809  in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
810  ugeth_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x",
811  (u32) & ugeth->p_tx_glbl_pram->vtagtable[3],
812  in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
813  ugeth_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x",
814  (u32) & ugeth->p_tx_glbl_pram->vtagtable[4],
815  in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
816  ugeth_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x",
817  (u32) & ugeth->p_tx_glbl_pram->vtagtable[5],
818  in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
819  ugeth_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x",
820  (u32) & ugeth->p_tx_glbl_pram->vtagtable[6],
821  in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
822  ugeth_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x",
823  (u32) & ugeth->p_tx_glbl_pram->vtagtable[7],
824  in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
825  ugeth_info("tqptr : addr - 0x%08x, val - 0x%08x",
826  (u32) & ugeth->p_tx_glbl_pram->tqptr,
827  in_be32(&ugeth->p_tx_glbl_pram->tqptr));
828  }
829  if (ugeth->p_rx_glbl_pram) {
830  ugeth_info("RX global param:");
831  ugeth_info("Base address: 0x%08x", (u32) ugeth->p_rx_glbl_pram);
832  ugeth_info("remoder : addr - 0x%08x, val - 0x%08x",
833  (u32) & ugeth->p_rx_glbl_pram->remoder,
834  in_be32(&ugeth->p_rx_glbl_pram->remoder));
835  ugeth_info("rqptr : addr - 0x%08x, val - 0x%08x",
836  (u32) & ugeth->p_rx_glbl_pram->rqptr,
837  in_be32(&ugeth->p_rx_glbl_pram->rqptr));
838  ugeth_info("typeorlen : addr - 0x%08x, val - 0x%04x",
839  (u32) & ugeth->p_rx_glbl_pram->typeorlen,
840  in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
841  ugeth_info("rxgstpack : addr - 0x%08x, val - 0x%02x",
842  (u32) & ugeth->p_rx_glbl_pram->rxgstpack,
843  ugeth->p_rx_glbl_pram->rxgstpack);
844  ugeth_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x",
845  (u32) & ugeth->p_rx_glbl_pram->rxrmonbaseptr,
846  in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
847  ugeth_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x",
848  (u32) & ugeth->p_rx_glbl_pram->intcoalescingptr,
849  in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
850  ugeth_info("rstate : addr - 0x%08x, val - 0x%02x",
851  (u32) & ugeth->p_rx_glbl_pram->rstate,
852  ugeth->p_rx_glbl_pram->rstate);
853  ugeth_info("mrblr : addr - 0x%08x, val - 0x%04x",
854  (u32) & ugeth->p_rx_glbl_pram->mrblr,
855  in_be16(&ugeth->p_rx_glbl_pram->mrblr));
856  ugeth_info("rbdqptr : addr - 0x%08x, val - 0x%08x",
857  (u32) & ugeth->p_rx_glbl_pram->rbdqptr,
858  in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
859  ugeth_info("mflr : addr - 0x%08x, val - 0x%04x",
860  (u32) & ugeth->p_rx_glbl_pram->mflr,
861  in_be16(&ugeth->p_rx_glbl_pram->mflr));
862  ugeth_info("minflr : addr - 0x%08x, val - 0x%04x",
863  (u32) & ugeth->p_rx_glbl_pram->minflr,
864  in_be16(&ugeth->p_rx_glbl_pram->minflr));
865  ugeth_info("maxd1 : addr - 0x%08x, val - 0x%04x",
866  (u32) & ugeth->p_rx_glbl_pram->maxd1,
867  in_be16(&ugeth->p_rx_glbl_pram->maxd1));
868  ugeth_info("maxd2 : addr - 0x%08x, val - 0x%04x",
869  (u32) & ugeth->p_rx_glbl_pram->maxd2,
870  in_be16(&ugeth->p_rx_glbl_pram->maxd2));
871  ugeth_info("ecamptr : addr - 0x%08x, val - 0x%08x",
872  (u32) & ugeth->p_rx_glbl_pram->ecamptr,
873  in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
874  ugeth_info("l2qt : addr - 0x%08x, val - 0x%08x",
875  (u32) & ugeth->p_rx_glbl_pram->l2qt,
876  in_be32(&ugeth->p_rx_glbl_pram->l2qt));
877  ugeth_info("l3qt[0] : addr - 0x%08x, val - 0x%08x",
878  (u32) & ugeth->p_rx_glbl_pram->l3qt[0],
879  in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
880  ugeth_info("l3qt[1] : addr - 0x%08x, val - 0x%08x",
881  (u32) & ugeth->p_rx_glbl_pram->l3qt[1],
882  in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
883  ugeth_info("l3qt[2] : addr - 0x%08x, val - 0x%08x",
884  (u32) & ugeth->p_rx_glbl_pram->l3qt[2],
885  in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
886  ugeth_info("l3qt[3] : addr - 0x%08x, val - 0x%08x",
887  (u32) & ugeth->p_rx_glbl_pram->l3qt[3],
888  in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
889  ugeth_info("l3qt[4] : addr - 0x%08x, val - 0x%08x",
890  (u32) & ugeth->p_rx_glbl_pram->l3qt[4],
891  in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
892  ugeth_info("l3qt[5] : addr - 0x%08x, val - 0x%08x",
893  (u32) & ugeth->p_rx_glbl_pram->l3qt[5],
894  in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
895  ugeth_info("l3qt[6] : addr - 0x%08x, val - 0x%08x",
896  (u32) & ugeth->p_rx_glbl_pram->l3qt[6],
897  in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
898  ugeth_info("l3qt[7] : addr - 0x%08x, val - 0x%08x",
899  (u32) & ugeth->p_rx_glbl_pram->l3qt[7],
900  in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
901  ugeth_info("vlantype : addr - 0x%08x, val - 0x%04x",
902  (u32) & ugeth->p_rx_glbl_pram->vlantype,
903  in_be16(&ugeth->p_rx_glbl_pram->vlantype));
904  ugeth_info("vlantci : addr - 0x%08x, val - 0x%04x",
905  (u32) & ugeth->p_rx_glbl_pram->vlantci,
906  in_be16(&ugeth->p_rx_glbl_pram->vlantci));
907  for (i = 0; i < 64; i++)
908  ugeth_info
909  ("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x",
910  i,
911  (u32) & ugeth->p_rx_glbl_pram->addressfiltering[i],
912  ugeth->p_rx_glbl_pram->addressfiltering[i]);
913  ugeth_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x",
914  (u32) & ugeth->p_rx_glbl_pram->exfGlobalParam,
915  in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
916  }
917  if (ugeth->p_send_q_mem_reg) {
918  ugeth_info("Send Q memory registers:");
919  ugeth_info("Base address: 0x%08x",
920  (u32) ugeth->p_send_q_mem_reg);
921  for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
922  ugeth_info("SQQD[%d]:", i);
923  ugeth_info("Base address: 0x%08x",
924  (u32) & ugeth->p_send_q_mem_reg->sqqd[i]);
925  mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
926  sizeof(struct ucc_geth_send_queue_qd));
927  }
928  }
929  if (ugeth->p_scheduler) {
930  ugeth_info("Scheduler:");
931  ugeth_info("Base address: 0x%08x", (u32) ugeth->p_scheduler);
932  mem_disp((u8 *) ugeth->p_scheduler,
933  sizeof(*ugeth->p_scheduler));
934  }
935  if (ugeth->p_tx_fw_statistics_pram) {
936  ugeth_info("TX FW statistics pram:");
937  ugeth_info("Base address: 0x%08x",
938  (u32) ugeth->p_tx_fw_statistics_pram);
939  mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
940  sizeof(*ugeth->p_tx_fw_statistics_pram));
941  }
942  if (ugeth->p_rx_fw_statistics_pram) {
943  ugeth_info("RX FW statistics pram:");
944  ugeth_info("Base address: 0x%08x",
945  (u32) ugeth->p_rx_fw_statistics_pram);
946  mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
947  sizeof(*ugeth->p_rx_fw_statistics_pram));
948  }
949  if (ugeth->p_rx_irq_coalescing_tbl) {
950  ugeth_info("RX IRQ coalescing tables:");
951  ugeth_info("Base address: 0x%08x",
952  (u32) ugeth->p_rx_irq_coalescing_tbl);
953  for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
954  ugeth_info("RX IRQ coalescing table entry[%d]:", i);
955  ugeth_info("Base address: 0x%08x",
956  (u32) & ugeth->p_rx_irq_coalescing_tbl->
957  coalescingentry[i]);
958  ugeth_info
959  ("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x",
960  (u32) & ugeth->p_rx_irq_coalescing_tbl->
961  coalescingentry[i].interruptcoalescingmaxvalue,
963  coalescingentry[i].
964  interruptcoalescingmaxvalue));
965  ugeth_info
966  ("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x",
967  (u32) & ugeth->p_rx_irq_coalescing_tbl->
968  coalescingentry[i].interruptcoalescingcounter,
970  coalescingentry[i].
971  interruptcoalescingcounter));
972  }
973  }
974  if (ugeth->p_rx_bd_qs_tbl) {
975  ugeth_info("RX BD QS tables:");
976  ugeth_info("Base address: 0x%08x", (u32) ugeth->p_rx_bd_qs_tbl);
977  for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
978  ugeth_info("RX BD QS table[%d]:", i);
979  ugeth_info("Base address: 0x%08x",
980  (u32) & ugeth->p_rx_bd_qs_tbl[i]);
981  ugeth_info
982  ("bdbaseptr : addr - 0x%08x, val - 0x%08x",
983  (u32) & ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
984  in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
985  ugeth_info
986  ("bdptr : addr - 0x%08x, val - 0x%08x",
987  (u32) & ugeth->p_rx_bd_qs_tbl[i].bdptr,
988  in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
989  ugeth_info
990  ("externalbdbaseptr: addr - 0x%08x, val - 0x%08x",
991  (u32) & ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
992  in_be32(&ugeth->p_rx_bd_qs_tbl[i].
993  externalbdbaseptr));
994  ugeth_info
995  ("externalbdptr : addr - 0x%08x, val - 0x%08x",
996  (u32) & ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
997  in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
998  ugeth_info("ucode RX Prefetched BDs:");
999  ugeth_info("Base address: 0x%08x",
1000  (u32)
1001  qe_muram_addr(in_be32
1002  (&ugeth->p_rx_bd_qs_tbl[i].
1003  bdbaseptr)));
1004  mem_disp((u8 *)
1005  qe_muram_addr(in_be32
1006  (&ugeth->p_rx_bd_qs_tbl[i].
1007  bdbaseptr)),
1008  sizeof(struct ucc_geth_rx_prefetched_bds));
1009  }
1010  }
1011  if (ugeth->p_init_enet_param_shadow) {
1012  int size;
1013  ugeth_info("Init enet param shadow:");
1014  ugeth_info("Base address: 0x%08x",
1015  (u32) ugeth->p_init_enet_param_shadow);
1016  mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
1017  sizeof(*ugeth->p_init_enet_param_shadow));
1018 
1019  size = sizeof(struct ucc_geth_thread_rx_pram);
1020  if (ugeth->ug_info->rxExtendedFiltering) {
1021  size +=
1023  if (ugeth->ug_info->largestexternallookupkeysize ==
1024  QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1025  size +=
1027  if (ugeth->ug_info->largestexternallookupkeysize ==
1028  QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1029  size +=
1031  }
1032 
1033  dump_init_enet_entries(ugeth,
1034  &(ugeth->p_init_enet_param_shadow->
1035  txthread[0]),
1037  sizeof(struct ucc_geth_thread_tx_pram),
1038  ugeth->ug_info->riscTx, 0);
1039  dump_init_enet_entries(ugeth,
1040  &(ugeth->p_init_enet_param_shadow->
1041  rxthread[0]),
1043  ugeth->ug_info->riscRx, 1);
1044  }
1045 }
1046 #endif /* DEBUG */
1047 
1048 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1049  u32 __iomem *maccfg1_register,
1050  u32 __iomem *maccfg2_register)
1051 {
1052  out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1053  out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1054  out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1055 }
1056 
1057 static int init_half_duplex_params(int alt_beb,
1058  int back_pressure_no_backoff,
1059  int no_backoff,
1060  int excess_defer,
1061  u8 alt_beb_truncation,
1062  u8 max_retransmissions,
1063  u8 collision_window,
1064  u32 __iomem *hafdup_register)
1065 {
1066  u32 value = 0;
1067 
1068  if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1069  (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1070  (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1071  return -EINVAL;
1072 
1073  value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1074 
1075  if (alt_beb)
1076  value |= HALFDUP_ALT_BEB;
1077  if (back_pressure_no_backoff)
1079  if (no_backoff)
1080  value |= HALFDUP_NO_BACKOFF;
1081  if (excess_defer)
1082  value |= HALFDUP_EXCESSIVE_DEFER;
1083 
1084  value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1085 
1086  value |= collision_window;
1087 
1088  out_be32(hafdup_register, value);
1089  return 0;
1090 }
1091 
1092 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1093  u8 non_btb_ipg,
1094  u8 min_ifg,
1095  u8 btb_ipg,
1096  u32 __iomem *ipgifg_register)
1097 {
1098  u32 value = 0;
1099 
1100  /* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1101  IPG part 2 */
1102  if (non_btb_cs_ipg > non_btb_ipg)
1103  return -EINVAL;
1104 
1105  if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1106  (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1107  /*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1108  (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1109  return -EINVAL;
1110 
1111  value |=
1112  ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1114  value |=
1115  ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1117  value |=
1118  ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1120  value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1121 
1122  out_be32(ipgifg_register, value);
1123  return 0;
1124 }
1125 
1126 int init_flow_control_params(u32 automatic_flow_control_mode,
1127  int rx_flow_control_enable,
1128  int tx_flow_control_enable,
1129  u16 pause_period,
1130  u16 extension_field,
1131  u32 __iomem *upsmr_register,
1132  u32 __iomem *uempr_register,
1133  u32 __iomem *maccfg1_register)
1134 {
1135  u32 value = 0;
1136 
1137  /* Set UEMPR register */
1138  value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1139  value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1140  out_be32(uempr_register, value);
1141 
1142  /* Set UPSMR register */
1143  setbits32(upsmr_register, automatic_flow_control_mode);
1144 
1145  value = in_be32(maccfg1_register);
1146  if (rx_flow_control_enable)
1147  value |= MACCFG1_FLOW_RX;
1148  if (tx_flow_control_enable)
1149  value |= MACCFG1_FLOW_TX;
1150  out_be32(maccfg1_register, value);
1151 
1152  return 0;
1153 }
1154 
1155 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1156  int auto_zero_hardware_statistics,
1157  u32 __iomem *upsmr_register,
1158  u16 __iomem *uescr_register)
1159 {
1160  u16 uescr_value = 0;
1161 
1162  /* Enable hardware statistics gathering if requested */
1163  if (enable_hardware_statistics)
1164  setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1165 
1166  /* Clear hardware statistics counters */
1167  uescr_value = in_be16(uescr_register);
1168  uescr_value |= UESCR_CLRCNT;
1169  /* Automatically zero hardware statistics counters on read,
1170  if requested */
1171  if (auto_zero_hardware_statistics)
1172  uescr_value |= UESCR_AUTOZ;
1173  out_be16(uescr_register, uescr_value);
1174 
1175  return 0;
1176 }
1177 
1178 static int init_firmware_statistics_gathering_mode(int
1179  enable_tx_firmware_statistics,
1180  int enable_rx_firmware_statistics,
1181  u32 __iomem *tx_rmon_base_ptr,
1182  u32 tx_firmware_statistics_structure_address,
1183  u32 __iomem *rx_rmon_base_ptr,
1184  u32 rx_firmware_statistics_structure_address,
1185  u16 __iomem *temoder_register,
1186  u32 __iomem *remoder_register)
1187 {
1188  /* Note: this function does not check if */
1189  /* the parameters it receives are NULL */
1190 
1191  if (enable_tx_firmware_statistics) {
1192  out_be32(tx_rmon_base_ptr,
1193  tx_firmware_statistics_structure_address);
1194  setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1195  }
1196 
1197  if (enable_rx_firmware_statistics) {
1198  out_be32(rx_rmon_base_ptr,
1199  rx_firmware_statistics_structure_address);
1200  setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1201  }
1202 
1203  return 0;
1204 }
1205 
1206 static int init_mac_station_addr_regs(u8 address_byte_0,
1207  u8 address_byte_1,
1208  u8 address_byte_2,
1209  u8 address_byte_3,
1210  u8 address_byte_4,
1211  u8 address_byte_5,
1212  u32 __iomem *macstnaddr1_register,
1213  u32 __iomem *macstnaddr2_register)
1214 {
1215  u32 value = 0;
1216 
1217  /* Example: for a station address of 0x12345678ABCD, */
1218  /* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1219 
1220  /* MACSTNADDR1 Register: */
1221 
1222  /* 0 7 8 15 */
1223  /* station address byte 5 station address byte 4 */
1224  /* 16 23 24 31 */
1225  /* station address byte 3 station address byte 2 */
1226  value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1227  value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1228  value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1229  value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1230 
1231  out_be32(macstnaddr1_register, value);
1232 
1233  /* MACSTNADDR2 Register: */
1234 
1235  /* 0 7 8 15 */
1236  /* station address byte 1 station address byte 0 */
1237  /* 16 23 24 31 */
1238  /* reserved reserved */
1239  value = 0;
1240  value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1241  value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1242 
1243  out_be32(macstnaddr2_register, value);
1244 
1245  return 0;
1246 }
1247 
1248 static int init_check_frame_length_mode(int length_check,
1249  u32 __iomem *maccfg2_register)
1250 {
1251  u32 value = 0;
1252 
1253  value = in_be32(maccfg2_register);
1254 
1255  if (length_check)
1256  value |= MACCFG2_LC;
1257  else
1258  value &= ~MACCFG2_LC;
1259 
1260  out_be32(maccfg2_register, value);
1261  return 0;
1262 }
1263 
1264 static int init_preamble_length(u8 preamble_length,
1265  u32 __iomem *maccfg2_register)
1266 {
1267  if ((preamble_length < 3) || (preamble_length > 7))
1268  return -EINVAL;
1269 
1270  clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1271  preamble_length << MACCFG2_PREL_SHIFT);
1272 
1273  return 0;
1274 }
1275 
1276 static int init_rx_parameters(int reject_broadcast,
1277  int receive_short_frames,
1278  int promiscuous, u32 __iomem *upsmr_register)
1279 {
1280  u32 value = 0;
1281 
1282  value = in_be32(upsmr_register);
1283 
1284  if (reject_broadcast)
1285  value |= UCC_GETH_UPSMR_BRO;
1286  else
1287  value &= ~UCC_GETH_UPSMR_BRO;
1288 
1289  if (receive_short_frames)
1290  value |= UCC_GETH_UPSMR_RSH;
1291  else
1292  value &= ~UCC_GETH_UPSMR_RSH;
1293 
1294  if (promiscuous)
1295  value |= UCC_GETH_UPSMR_PRO;
1296  else
1297  value &= ~UCC_GETH_UPSMR_PRO;
1298 
1299  out_be32(upsmr_register, value);
1300 
1301  return 0;
1302 }
1303 
1304 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1305  u16 __iomem *mrblr_register)
1306 {
1307  /* max_rx_buf_len value must be a multiple of 128 */
1308  if ((max_rx_buf_len == 0) ||
1309  (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1310  return -EINVAL;
1311 
1312  out_be16(mrblr_register, max_rx_buf_len);
1313  return 0;
1314 }
1315 
1316 static int init_min_frame_len(u16 min_frame_length,
1317  u16 __iomem *minflr_register,
1318  u16 __iomem *mrblr_register)
1319 {
1320  u16 mrblr_value = 0;
1321 
1322  mrblr_value = in_be16(mrblr_register);
1323  if (min_frame_length >= (mrblr_value - 4))
1324  return -EINVAL;
1325 
1326  out_be16(minflr_register, min_frame_length);
1327  return 0;
1328 }
1329 
1330 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1331 {
1332  struct ucc_geth_info *ug_info;
1333  struct ucc_geth __iomem *ug_regs;
1334  struct ucc_fast __iomem *uf_regs;
1335  int ret_val;
1336  u32 upsmr, maccfg2;
1337  u16 value;
1338 
1339  ugeth_vdbg("%s: IN", __func__);
1340 
1341  ug_info = ugeth->ug_info;
1342  ug_regs = ugeth->ug_regs;
1343  uf_regs = ugeth->uccf->uf_regs;
1344 
1345  /* Set MACCFG2 */
1346  maccfg2 = in_be32(&ug_regs->maccfg2);
1347  maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1348  if ((ugeth->max_speed == SPEED_10) ||
1349  (ugeth->max_speed == SPEED_100))
1350  maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1351  else if (ugeth->max_speed == SPEED_1000)
1352  maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1353  maccfg2 |= ug_info->padAndCrc;
1354  out_be32(&ug_regs->maccfg2, maccfg2);
1355 
1356  /* Set UPSMR */
1357  upsmr = in_be32(&uf_regs->upsmr);
1358  upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1359  UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1360  if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1365  (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1366  if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1367  upsmr |= UCC_GETH_UPSMR_RPM;
1368  switch (ugeth->max_speed) {
1369  case SPEED_10:
1370  upsmr |= UCC_GETH_UPSMR_R10M;
1371  /* FALLTHROUGH */
1372  case SPEED_100:
1373  if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1374  upsmr |= UCC_GETH_UPSMR_RMM;
1375  }
1376  }
1377  if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1378  (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1379  upsmr |= UCC_GETH_UPSMR_TBIM;
1380  }
1381  if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
1382  upsmr |= UCC_GETH_UPSMR_SGMM;
1383 
1384  out_be32(&uf_regs->upsmr, upsmr);
1385 
1386  /* Disable autonegotiation in tbi mode, because by default it
1387  comes up in autonegotiation mode. */
1388  /* Note that this depends on proper setting in utbipar register. */
1389  if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1390  (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1391  struct ucc_geth_info *ug_info = ugeth->ug_info;
1392  struct phy_device *tbiphy;
1393 
1394  if (!ug_info->tbi_node)
1395  ugeth_warn("TBI mode requires that the device "
1396  "tree specify a tbi-handle\n");
1397 
1398  tbiphy = of_phy_find_device(ug_info->tbi_node);
1399  if (!tbiphy)
1400  ugeth_warn("Could not get TBI device\n");
1401 
1402  value = phy_read(tbiphy, ENET_TBI_MII_CR);
1403  value &= ~0x1000; /* Turn off autonegotiation */
1404  phy_write(tbiphy, ENET_TBI_MII_CR, value);
1405  }
1406 
1407  init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1408 
1409  ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1410  if (ret_val != 0) {
1411  if (netif_msg_probe(ugeth))
1412  ugeth_err("%s: Preamble length must be between 3 and 7 inclusive.",
1413  __func__);
1414  return ret_val;
1415  }
1416 
1417  return 0;
1418 }
1419 
1420 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1421 {
1422  struct ucc_fast_private *uccf;
1423  u32 cecr_subblock;
1424  u32 temp;
1425  int i = 10;
1426 
1427  uccf = ugeth->uccf;
1428 
1429  /* Mask GRACEFUL STOP TX interrupt bit and clear it */
1430  clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1431  out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */
1432 
1433  /* Issue host command */
1434  cecr_subblock =
1435  ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1436  qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1437  QE_CR_PROTOCOL_ETHERNET, 0);
1438 
1439  /* Wait for command to complete */
1440  do {
1441  msleep(10);
1442  temp = in_be32(uccf->p_ucce);
1443  } while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1444 
1445  uccf->stopped_tx = 1;
1446 
1447  return 0;
1448 }
1449 
1450 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1451 {
1452  struct ucc_fast_private *uccf;
1453  u32 cecr_subblock;
1454  u8 temp;
1455  int i = 10;
1456 
1457  uccf = ugeth->uccf;
1458 
1459  /* Clear acknowledge bit */
1460  temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1462  out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1463 
1464  /* Keep issuing command and checking acknowledge bit until
1465  it is asserted, according to spec */
1466  do {
1467  /* Issue host command */
1468  cecr_subblock =
1469  ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1470  ucc_num);
1471  qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1472  QE_CR_PROTOCOL_ETHERNET, 0);
1473  msleep(10);
1474  temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1475  } while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1476 
1477  uccf->stopped_rx = 1;
1478 
1479  return 0;
1480 }
1481 
1482 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1483 {
1484  struct ucc_fast_private *uccf;
1485  u32 cecr_subblock;
1486 
1487  uccf = ugeth->uccf;
1488 
1489  cecr_subblock =
1490  ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1491  qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1492  uccf->stopped_tx = 0;
1493 
1494  return 0;
1495 }
1496 
1497 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1498 {
1499  struct ucc_fast_private *uccf;
1500  u32 cecr_subblock;
1501 
1502  uccf = ugeth->uccf;
1503 
1504  cecr_subblock =
1505  ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1506  qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1507  0);
1508  uccf->stopped_rx = 0;
1509 
1510  return 0;
1511 }
1512 
1513 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1514 {
1515  struct ucc_fast_private *uccf;
1516  int enabled_tx, enabled_rx;
1517 
1518  uccf = ugeth->uccf;
1519 
1520  /* check if the UCC number is in range. */
1521  if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1522  if (netif_msg_probe(ugeth))
1523  ugeth_err("%s: ucc_num out of range.", __func__);
1524  return -EINVAL;
1525  }
1526 
1527  enabled_tx = uccf->enabled_tx;
1528  enabled_rx = uccf->enabled_rx;
1529 
1530  /* Get Tx and Rx going again, in case this channel was actively
1531  disabled. */
1532  if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1533  ugeth_restart_tx(ugeth);
1534  if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1535  ugeth_restart_rx(ugeth);
1536 
1537  ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */
1538 
1539  return 0;
1540 
1541 }
1542 
1543 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1544 {
1545  struct ucc_fast_private *uccf;
1546 
1547  uccf = ugeth->uccf;
1548 
1549  /* check if the UCC number is in range. */
1550  if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1551  if (netif_msg_probe(ugeth))
1552  ugeth_err("%s: ucc_num out of range.", __func__);
1553  return -EINVAL;
1554  }
1555 
1556  /* Stop any transmissions */
1557  if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1558  ugeth_graceful_stop_tx(ugeth);
1559 
1560  /* Stop any receptions */
1561  if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1562  ugeth_graceful_stop_rx(ugeth);
1563 
1564  ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1565 
1566  return 0;
1567 }
1568 
1569 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1570 {
1571  /* Prevent any further xmits, plus detach the device. */
1572  netif_device_detach(ugeth->ndev);
1573 
1574  /* Wait for any current xmits to finish. */
1575  netif_tx_disable(ugeth->ndev);
1576 
1577  /* Disable the interrupt to avoid NAPI rescheduling. */
1578  disable_irq(ugeth->ug_info->uf_info.irq);
1579 
1580  /* Stop NAPI, and possibly wait for its completion. */
1581  napi_disable(&ugeth->napi);
1582 }
1583 
1584 static void ugeth_activate(struct ucc_geth_private *ugeth)
1585 {
1586  napi_enable(&ugeth->napi);
1587  enable_irq(ugeth->ug_info->uf_info.irq);
1588  netif_device_attach(ugeth->ndev);
1589 }
1590 
1591 /* Called every time the controller might need to be made
1592  * aware of new link state. The PHY code conveys this
1593  * information through variables in the ugeth structure, and this
1594  * function converts those variables into the appropriate
1595  * register values, and can bring down the device if needed.
1596  */
1597 
1598 static void adjust_link(struct net_device *dev)
1599 {
1600  struct ucc_geth_private *ugeth = netdev_priv(dev);
1601  struct ucc_geth __iomem *ug_regs;
1602  struct ucc_fast __iomem *uf_regs;
1603  struct phy_device *phydev = ugeth->phydev;
1604  int new_state = 0;
1605 
1606  ug_regs = ugeth->ug_regs;
1607  uf_regs = ugeth->uccf->uf_regs;
1608 
1609  if (phydev->link) {
1610  u32 tempval = in_be32(&ug_regs->maccfg2);
1611  u32 upsmr = in_be32(&uf_regs->upsmr);
1612  /* Now we make sure that we can be in full duplex mode.
1613  * If not, we operate in half-duplex mode. */
1614  if (phydev->duplex != ugeth->oldduplex) {
1615  new_state = 1;
1616  if (!(phydev->duplex))
1617  tempval &= ~(MACCFG2_FDX);
1618  else
1619  tempval |= MACCFG2_FDX;
1620  ugeth->oldduplex = phydev->duplex;
1621  }
1622 
1623  if (phydev->speed != ugeth->oldspeed) {
1624  new_state = 1;
1625  switch (phydev->speed) {
1626  case SPEED_1000:
1627  tempval = ((tempval &
1630  break;
1631  case SPEED_100:
1632  case SPEED_10:
1633  tempval = ((tempval &
1636  /* if reduced mode, re-set UPSMR.R10M */
1637  if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1642  (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1643  if (phydev->speed == SPEED_10)
1644  upsmr |= UCC_GETH_UPSMR_R10M;
1645  else
1646  upsmr &= ~UCC_GETH_UPSMR_R10M;
1647  }
1648  break;
1649  default:
1650  if (netif_msg_link(ugeth))
1651  ugeth_warn(
1652  "%s: Ack! Speed (%d) is not 10/100/1000!",
1653  dev->name, phydev->speed);
1654  break;
1655  }
1656  ugeth->oldspeed = phydev->speed;
1657  }
1658 
1659  if (!ugeth->oldlink) {
1660  new_state = 1;
1661  ugeth->oldlink = 1;
1662  }
1663 
1664  if (new_state) {
1665  /*
1666  * To change the MAC configuration we need to disable
1667  * the controller. To do so, we have to either grab
1668  * ugeth->lock, which is a bad idea since 'graceful
1669  * stop' commands might take quite a while, or we can
1670  * quiesce driver's activity.
1671  */
1672  ugeth_quiesce(ugeth);
1673  ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1674 
1675  out_be32(&ug_regs->maccfg2, tempval);
1676  out_be32(&uf_regs->upsmr, upsmr);
1677 
1678  ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1679  ugeth_activate(ugeth);
1680  }
1681  } else if (ugeth->oldlink) {
1682  new_state = 1;
1683  ugeth->oldlink = 0;
1684  ugeth->oldspeed = 0;
1685  ugeth->oldduplex = -1;
1686  }
1687 
1688  if (new_state && netif_msg_link(ugeth))
1689  phy_print_status(phydev);
1690 }
1691 
1692 /* Initialize TBI PHY interface for communicating with the
1693  * SERDES lynx PHY on the chip. We communicate with this PHY
1694  * through the MDIO bus on each controller, treating it as a
1695  * "normal" PHY at the address found in the UTBIPA register. We assume
1696  * that the UTBIPA register is valid. Either the MDIO bus code will set
1697  * it to a value that doesn't conflict with other PHYs on the bus, or the
1698  * value doesn't matter, as there are no other PHYs on the bus.
1699  */
1700 static void uec_configure_serdes(struct net_device *dev)
1701 {
1702  struct ucc_geth_private *ugeth = netdev_priv(dev);
1703  struct ucc_geth_info *ug_info = ugeth->ug_info;
1704  struct phy_device *tbiphy;
1705 
1706  if (!ug_info->tbi_node) {
1707  dev_warn(&dev->dev, "SGMII mode requires that the device "
1708  "tree specify a tbi-handle\n");
1709  return;
1710  }
1711 
1712  tbiphy = of_phy_find_device(ug_info->tbi_node);
1713  if (!tbiphy) {
1714  dev_err(&dev->dev, "error: Could not get TBI device\n");
1715  return;
1716  }
1717 
1718  /*
1719  * If the link is already up, we must already be ok, and don't need to
1720  * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1721  * everything for us? Resetting it takes the link down and requires
1722  * several seconds for it to come back.
1723  */
1724  if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS)
1725  return;
1726 
1727  /* Single clk mode, mii mode off(for serdes communication) */
1729 
1731 
1733 }
1734 
1735 /* Configure the PHY for dev.
1736  * returns 0 if success. -1 if failure
1737  */
1738 static int init_phy(struct net_device *dev)
1739 {
1740  struct ucc_geth_private *priv = netdev_priv(dev);
1741  struct ucc_geth_info *ug_info = priv->ug_info;
1742  struct phy_device *phydev;
1743 
1744  priv->oldlink = 0;
1745  priv->oldspeed = 0;
1746  priv->oldduplex = -1;
1747 
1748  phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1749  priv->phy_interface);
1750  if (!phydev)
1751  phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1752  priv->phy_interface);
1753  if (!phydev) {
1754  dev_err(&dev->dev, "Could not attach to PHY\n");
1755  return -ENODEV;
1756  }
1757 
1759  uec_configure_serdes(dev);
1760 
1761  phydev->supported &= (SUPPORTED_MII |
1767 
1768  if (priv->max_speed == SPEED_1000)
1770 
1771  phydev->advertising = phydev->supported;
1772 
1773  priv->phydev = phydev;
1774 
1775  return 0;
1776 }
1777 
1778 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1779 {
1780 #ifdef DEBUG
1781  ucc_fast_dump_regs(ugeth->uccf);
1782  dump_regs(ugeth);
1783  dump_bds(ugeth);
1784 #endif
1785 }
1786 
1787 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1788  ugeth,
1789  enum enet_addr_type
1791 {
1792  struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1793  struct ucc_fast_private *uccf;
1794  enum comm_dir comm_dir;
1795  struct list_head *p_lh;
1796  u16 i, num;
1797  u32 __iomem *addr_h;
1798  u32 __iomem *addr_l;
1799  u8 *p_counter;
1800 
1801  uccf = ugeth->uccf;
1802 
1803  p_82xx_addr_filt =
1805  ugeth->p_rx_glbl_pram->addressfiltering;
1806 
1807  if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1808  addr_h = &(p_82xx_addr_filt->gaddr_h);
1809  addr_l = &(p_82xx_addr_filt->gaddr_l);
1810  p_lh = &ugeth->group_hash_q;
1811  p_counter = &(ugeth->numGroupAddrInHash);
1812  } else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1813  addr_h = &(p_82xx_addr_filt->iaddr_h);
1814  addr_l = &(p_82xx_addr_filt->iaddr_l);
1815  p_lh = &ugeth->ind_hash_q;
1816  p_counter = &(ugeth->numIndAddrInHash);
1817  } else
1818  return -EINVAL;
1819 
1820  comm_dir = 0;
1821  if (uccf->enabled_tx)
1822  comm_dir |= COMM_DIR_TX;
1823  if (uccf->enabled_rx)
1824  comm_dir |= COMM_DIR_RX;
1825  if (comm_dir)
1826  ugeth_disable(ugeth, comm_dir);
1827 
1828  /* Clear the hash table. */
1829  out_be32(addr_h, 0x00000000);
1830  out_be32(addr_l, 0x00000000);
1831 
1832  if (!p_lh)
1833  return 0;
1834 
1835  num = *p_counter;
1836 
1837  /* Delete all remaining CQ elements */
1838  for (i = 0; i < num; i++)
1839  put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1840 
1841  *p_counter = 0;
1842 
1843  if (comm_dir)
1844  ugeth_enable(ugeth, comm_dir);
1845 
1846  return 0;
1847 }
1848 
1849 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1850  u8 paddr_num)
1851 {
1852  ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1853  return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1854 }
1855 
1856 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1857 {
1858  struct ucc_geth_info *ug_info;
1859  struct ucc_fast_info *uf_info;
1860  u16 i, j;
1861  u8 __iomem *bd;
1862 
1863 
1864  ug_info = ugeth->ug_info;
1865  uf_info = &ug_info->uf_info;
1866 
1867  for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1868  if (ugeth->p_rx_bd_ring[i]) {
1869  /* Return existing data buffers in ring */
1870  bd = ugeth->p_rx_bd_ring[i];
1871  for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1872  if (ugeth->rx_skbuff[i][j]) {
1873  dma_unmap_single(ugeth->dev,
1874  in_be32(&((struct qe_bd __iomem *)bd)->buf),
1875  ugeth->ug_info->
1876  uf_info.max_rx_buf_length +
1878  DMA_FROM_DEVICE);
1880  ugeth->rx_skbuff[i][j]);
1881  ugeth->rx_skbuff[i][j] = NULL;
1882  }
1883  bd += sizeof(struct qe_bd);
1884  }
1885 
1886  kfree(ugeth->rx_skbuff[i]);
1887 
1888  if (ugeth->ug_info->uf_info.bd_mem_part ==
1889  MEM_PART_SYSTEM)
1890  kfree((void *)ugeth->rx_bd_ring_offset[i]);
1891  else if (ugeth->ug_info->uf_info.bd_mem_part ==
1892  MEM_PART_MURAM)
1893  qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1894  ugeth->p_rx_bd_ring[i] = NULL;
1895  }
1896  }
1897 
1898 }
1899 
1900 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1901 {
1902  struct ucc_geth_info *ug_info;
1903  struct ucc_fast_info *uf_info;
1904  u16 i, j;
1905  u8 __iomem *bd;
1906 
1907  ug_info = ugeth->ug_info;
1908  uf_info = &ug_info->uf_info;
1909 
1910  for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1911  bd = ugeth->p_tx_bd_ring[i];
1912  if (!bd)
1913  continue;
1914  for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1915  if (ugeth->tx_skbuff[i][j]) {
1916  dma_unmap_single(ugeth->dev,
1917  in_be32(&((struct qe_bd __iomem *)bd)->buf),
1918  (in_be32((u32 __iomem *)bd) &
1919  BD_LENGTH_MASK),
1920  DMA_TO_DEVICE);
1921  dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1922  ugeth->tx_skbuff[i][j] = NULL;
1923  }
1924  }
1925 
1926  kfree(ugeth->tx_skbuff[i]);
1927 
1928  if (ugeth->p_tx_bd_ring[i]) {
1929  if (ugeth->ug_info->uf_info.bd_mem_part ==
1930  MEM_PART_SYSTEM)
1931  kfree((void *)ugeth->tx_bd_ring_offset[i]);
1932  else if (ugeth->ug_info->uf_info.bd_mem_part ==
1933  MEM_PART_MURAM)
1934  qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1935  ugeth->p_tx_bd_ring[i] = NULL;
1936  }
1937  }
1938 
1939 }
1940 
1941 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1942 {
1943  if (!ugeth)
1944  return;
1945 
1946  if (ugeth->uccf) {
1947  ucc_fast_free(ugeth->uccf);
1948  ugeth->uccf = NULL;
1949  }
1950 
1951  if (ugeth->p_thread_data_tx) {
1952  qe_muram_free(ugeth->thread_dat_tx_offset);
1953  ugeth->p_thread_data_tx = NULL;
1954  }
1955  if (ugeth->p_thread_data_rx) {
1956  qe_muram_free(ugeth->thread_dat_rx_offset);
1957  ugeth->p_thread_data_rx = NULL;
1958  }
1959  if (ugeth->p_exf_glbl_param) {
1960  qe_muram_free(ugeth->exf_glbl_param_offset);
1961  ugeth->p_exf_glbl_param = NULL;
1962  }
1963  if (ugeth->p_rx_glbl_pram) {
1964  qe_muram_free(ugeth->rx_glbl_pram_offset);
1965  ugeth->p_rx_glbl_pram = NULL;
1966  }
1967  if (ugeth->p_tx_glbl_pram) {
1968  qe_muram_free(ugeth->tx_glbl_pram_offset);
1969  ugeth->p_tx_glbl_pram = NULL;
1970  }
1971  if (ugeth->p_send_q_mem_reg) {
1972  qe_muram_free(ugeth->send_q_mem_reg_offset);
1973  ugeth->p_send_q_mem_reg = NULL;
1974  }
1975  if (ugeth->p_scheduler) {
1976  qe_muram_free(ugeth->scheduler_offset);
1977  ugeth->p_scheduler = NULL;
1978  }
1979  if (ugeth->p_tx_fw_statistics_pram) {
1980  qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1981  ugeth->p_tx_fw_statistics_pram = NULL;
1982  }
1983  if (ugeth->p_rx_fw_statistics_pram) {
1984  qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1985  ugeth->p_rx_fw_statistics_pram = NULL;
1986  }
1987  if (ugeth->p_rx_irq_coalescing_tbl) {
1988  qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1989  ugeth->p_rx_irq_coalescing_tbl = NULL;
1990  }
1991  if (ugeth->p_rx_bd_qs_tbl) {
1992  qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1993  ugeth->p_rx_bd_qs_tbl = NULL;
1994  }
1995  if (ugeth->p_init_enet_param_shadow) {
1996  return_init_enet_entries(ugeth,
1997  &(ugeth->p_init_enet_param_shadow->
1998  rxthread[0]),
2000  ugeth->ug_info->riscRx, 1);
2001  return_init_enet_entries(ugeth,
2002  &(ugeth->p_init_enet_param_shadow->
2003  txthread[0]),
2005  ugeth->ug_info->riscTx, 0);
2007  ugeth->p_init_enet_param_shadow = NULL;
2008  }
2009  ucc_geth_free_tx(ugeth);
2010  ucc_geth_free_rx(ugeth);
2011  while (!list_empty(&ugeth->group_hash_q))
2012  put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2013  (dequeue(&ugeth->group_hash_q)));
2014  while (!list_empty(&ugeth->ind_hash_q))
2015  put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2016  (dequeue(&ugeth->ind_hash_q)));
2017  if (ugeth->ug_regs) {
2018  iounmap(ugeth->ug_regs);
2019  ugeth->ug_regs = NULL;
2020  }
2021 }
2022 
2023 static void ucc_geth_set_multi(struct net_device *dev)
2024 {
2025  struct ucc_geth_private *ugeth;
2026  struct netdev_hw_addr *ha;
2027  struct ucc_fast __iomem *uf_regs;
2028  struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2029 
2030  ugeth = netdev_priv(dev);
2031 
2032  uf_regs = ugeth->uccf->uf_regs;
2033 
2034  if (dev->flags & IFF_PROMISC) {
2035  setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2036  } else {
2037  clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2038 
2039  p_82xx_addr_filt =
2041  p_rx_glbl_pram->addressfiltering;
2042 
2043  if (dev->flags & IFF_ALLMULTI) {
2044  /* Catch all multicast addresses, so set the
2045  * filter to all 1's.
2046  */
2047  out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2048  out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2049  } else {
2050  /* Clear filter and add the addresses in the list.
2051  */
2052  out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2053  out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2054 
2055  netdev_for_each_mc_addr(ha, dev) {
2056  /* Ask CPM to run CRC and set bit in
2057  * filter mask.
2058  */
2059  hw_add_addr_in_hash(ugeth, ha->addr);
2060  }
2061  }
2062  }
2063 }
2064 
2065 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2066 {
2067  struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2068  struct phy_device *phydev = ugeth->phydev;
2069 
2070  ugeth_vdbg("%s: IN", __func__);
2071 
2072  /*
2073  * Tell the kernel the link is down.
2074  * Must be done before disabling the controller
2075  * or deadlock may happen.
2076  */
2077  phy_stop(phydev);
2078 
2079  /* Disable the controller */
2080  ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2081 
2082  /* Mask all interrupts */
2083  out_be32(ugeth->uccf->p_uccm, 0x00000000);
2084 
2085  /* Clear all interrupts */
2086  out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2087 
2088  /* Disable Rx and Tx */
2089  clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2090 
2091  ucc_geth_memclean(ugeth);
2092 }
2093 
2094 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2095 {
2096  struct ucc_geth_info *ug_info;
2097  struct ucc_fast_info *uf_info;
2098  int i;
2099 
2100  ug_info = ugeth->ug_info;
2101  uf_info = &ug_info->uf_info;
2102 
2103  if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2104  (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2105  if (netif_msg_probe(ugeth))
2106  ugeth_err("%s: Bad memory partition value.",
2107  __func__);
2108  return -EINVAL;
2109  }
2110 
2111  /* Rx BD lengths */
2112  for (i = 0; i < ug_info->numQueuesRx; i++) {
2113  if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2114  (ug_info->bdRingLenRx[i] %
2116  if (netif_msg_probe(ugeth))
2117  ugeth_err
2118  ("%s: Rx BD ring length must be multiple of 4, no smaller than 8.",
2119  __func__);
2120  return -EINVAL;
2121  }
2122  }
2123 
2124  /* Tx BD lengths */
2125  for (i = 0; i < ug_info->numQueuesTx; i++) {
2126  if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2127  if (netif_msg_probe(ugeth))
2128  ugeth_err
2129  ("%s: Tx BD ring length must be no smaller than 2.",
2130  __func__);
2131  return -EINVAL;
2132  }
2133  }
2134 
2135  /* mrblr */
2136  if ((uf_info->max_rx_buf_length == 0) ||
2138  if (netif_msg_probe(ugeth))
2139  ugeth_err
2140  ("%s: max_rx_buf_length must be non-zero multiple of 128.",
2141  __func__);
2142  return -EINVAL;
2143  }
2144 
2145  /* num Tx queues */
2146  if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2147  if (netif_msg_probe(ugeth))
2148  ugeth_err("%s: number of tx queues too large.", __func__);
2149  return -EINVAL;
2150  }
2151 
2152  /* num Rx queues */
2153  if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2154  if (netif_msg_probe(ugeth))
2155  ugeth_err("%s: number of rx queues too large.", __func__);
2156  return -EINVAL;
2157  }
2158 
2159  /* l2qt */
2160  for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2161  if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2162  if (netif_msg_probe(ugeth))
2163  ugeth_err
2164  ("%s: VLAN priority table entry must not be"
2165  " larger than number of Rx queues.",
2166  __func__);
2167  return -EINVAL;
2168  }
2169  }
2170 
2171  /* l3qt */
2172  for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2173  if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2174  if (netif_msg_probe(ugeth))
2175  ugeth_err
2176  ("%s: IP priority table entry must not be"
2177  " larger than number of Rx queues.",
2178  __func__);
2179  return -EINVAL;
2180  }
2181  }
2182 
2183  if (ug_info->cam && !ug_info->ecamptr) {
2184  if (netif_msg_probe(ugeth))
2185  ugeth_err("%s: If cam mode is chosen, must supply cam ptr.",
2186  __func__);
2187  return -EINVAL;
2188  }
2189 
2190  if ((ug_info->numStationAddresses !=
2192  ug_info->rxExtendedFiltering) {
2193  if (netif_msg_probe(ugeth))
2194  ugeth_err("%s: Number of station addresses greater than 1 "
2195  "not allowed in extended parsing mode.",
2196  __func__);
2197  return -EINVAL;
2198  }
2199 
2200  /* Generate uccm_mask for receive */
2201  uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2202  for (i = 0; i < ug_info->numQueuesRx; i++)
2203  uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2204 
2205  for (i = 0; i < ug_info->numQueuesTx; i++)
2206  uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2207  /* Initialize the general fast UCC block. */
2208  if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2209  if (netif_msg_probe(ugeth))
2210  ugeth_err("%s: Failed to init uccf.", __func__);
2211  return -ENOMEM;
2212  }
2213 
2214  /* read the number of risc engines, update the riscTx and riscRx
2215  * if there are 4 riscs in QE
2216  */
2217  if (qe_get_num_of_risc() == 4) {
2218  ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2219  ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2220  }
2221 
2222  ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2223  if (!ugeth->ug_regs) {
2224  if (netif_msg_probe(ugeth))
2225  ugeth_err("%s: Failed to ioremap regs.", __func__);
2226  return -ENOMEM;
2227  }
2228 
2229  return 0;
2230 }
2231 
2232 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2233 {
2234  struct ucc_geth_info *ug_info;
2235  struct ucc_fast_info *uf_info;
2236  int length;
2237  u16 i, j;
2238  u8 __iomem *bd;
2239 
2240  ug_info = ugeth->ug_info;
2241  uf_info = &ug_info->uf_info;
2242 
2243  /* Allocate Tx bds */
2244  for (j = 0; j < ug_info->numQueuesTx; j++) {
2245  /* Allocate in multiple of
2246  UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2247  according to spec */
2248  length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2251  if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2252  UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2254  if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2255  u32 align = 4;
2258  ugeth->tx_bd_ring_offset[j] =
2259  (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2260 
2261  if (ugeth->tx_bd_ring_offset[j] != 0)
2262  ugeth->p_tx_bd_ring[j] =
2263  (u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2264  align) & ~(align - 1));
2265  } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2266  ugeth->tx_bd_ring_offset[j] =
2267  qe_muram_alloc(length,
2269  if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2270  ugeth->p_tx_bd_ring[j] =
2271  (u8 __iomem *) qe_muram_addr(ugeth->
2272  tx_bd_ring_offset[j]);
2273  }
2274  if (!ugeth->p_tx_bd_ring[j]) {
2275  if (netif_msg_ifup(ugeth))
2276  ugeth_err
2277  ("%s: Can not allocate memory for Tx bd rings.",
2278  __func__);
2279  return -ENOMEM;
2280  }
2281  /* Zero unused end of bd ring, according to spec */
2282  memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2283  ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2284  length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2285  }
2286 
2287  /* Init Tx bds */
2288  for (j = 0; j < ug_info->numQueuesTx; j++) {
2289  /* Setup the skbuff rings */
2290  ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2291  ugeth->ug_info->bdRingLenTx[j],
2292  GFP_KERNEL);
2293 
2294  if (ugeth->tx_skbuff[j] == NULL) {
2295  if (netif_msg_ifup(ugeth))
2296  ugeth_err("%s: Could not allocate tx_skbuff",
2297  __func__);
2298  return -ENOMEM;
2299  }
2300 
2301  for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2302  ugeth->tx_skbuff[j][i] = NULL;
2303 
2304  ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2305  bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2306  for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2307  /* clear bd buffer */
2308  out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2309  /* set bd status and length */
2310  out_be32((u32 __iomem *)bd, 0);
2311  bd += sizeof(struct qe_bd);
2312  }
2313  bd -= sizeof(struct qe_bd);
2314  /* set bd status and length */
2315  out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2316  }
2317 
2318  return 0;
2319 }
2320 
2321 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2322 {
2323  struct ucc_geth_info *ug_info;
2324  struct ucc_fast_info *uf_info;
2325  int length;
2326  u16 i, j;
2327  u8 __iomem *bd;
2328 
2329  ug_info = ugeth->ug_info;
2330  uf_info = &ug_info->uf_info;
2331 
2332  /* Allocate Rx bds */
2333  for (j = 0; j < ug_info->numQueuesRx; j++) {
2334  length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2335  if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2336  u32 align = 4;
2339  ugeth->rx_bd_ring_offset[j] =
2340  (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2341  if (ugeth->rx_bd_ring_offset[j] != 0)
2342  ugeth->p_rx_bd_ring[j] =
2343  (u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2344  align) & ~(align - 1));
2345  } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2346  ugeth->rx_bd_ring_offset[j] =
2347  qe_muram_alloc(length,
2349  if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2350  ugeth->p_rx_bd_ring[j] =
2351  (u8 __iomem *) qe_muram_addr(ugeth->
2352  rx_bd_ring_offset[j]);
2353  }
2354  if (!ugeth->p_rx_bd_ring[j]) {
2355  if (netif_msg_ifup(ugeth))
2356  ugeth_err
2357  ("%s: Can not allocate memory for Rx bd rings.",
2358  __func__);
2359  return -ENOMEM;
2360  }
2361  }
2362 
2363  /* Init Rx bds */
2364  for (j = 0; j < ug_info->numQueuesRx; j++) {
2365  /* Setup the skbuff rings */
2366  ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2367  ugeth->ug_info->bdRingLenRx[j],
2368  GFP_KERNEL);
2369 
2370  if (ugeth->rx_skbuff[j] == NULL) {
2371  if (netif_msg_ifup(ugeth))
2372  ugeth_err("%s: Could not allocate rx_skbuff",
2373  __func__);
2374  return -ENOMEM;
2375  }
2376 
2377  for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2378  ugeth->rx_skbuff[j][i] = NULL;
2379 
2380  ugeth->skb_currx[j] = 0;
2381  bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2382  for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2383  /* set bd status and length */
2384  out_be32((u32 __iomem *)bd, R_I);
2385  /* clear bd buffer */
2386  out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2387  bd += sizeof(struct qe_bd);
2388  }
2389  bd -= sizeof(struct qe_bd);
2390  /* set bd status and length */
2391  out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2392  }
2393 
2394  return 0;
2395 }
2396 
2397 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2398 {
2399  struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2400  struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2401  struct ucc_fast_private *uccf;
2402  struct ucc_geth_info *ug_info;
2403  struct ucc_fast_info *uf_info;
2404  struct ucc_fast __iomem *uf_regs;
2405  struct ucc_geth __iomem *ug_regs;
2406  int ret_val = -EINVAL;
2407  u32 remoder = UCC_GETH_REMODER_INIT;
2408  u32 init_enet_pram_offset, cecr_subblock, command;
2409  u32 ifstat, i, j, size, l2qt, l3qt;
2410  u16 temoder = UCC_GETH_TEMODER_INIT;
2411  u16 test;
2412  u8 function_code = 0;
2413  u8 __iomem *endOfRing;
2414  u8 numThreadsRxNumerical, numThreadsTxNumerical;
2415 
2416  ugeth_vdbg("%s: IN", __func__);
2417  uccf = ugeth->uccf;
2418  ug_info = ugeth->ug_info;
2419  uf_info = &ug_info->uf_info;
2420  uf_regs = uccf->uf_regs;
2421  ug_regs = ugeth->ug_regs;
2422 
2423  switch (ug_info->numThreadsRx) {
2425  numThreadsRxNumerical = 1;
2426  break;
2428  numThreadsRxNumerical = 2;
2429  break;
2431  numThreadsRxNumerical = 4;
2432  break;
2434  numThreadsRxNumerical = 6;
2435  break;
2437  numThreadsRxNumerical = 8;
2438  break;
2439  default:
2440  if (netif_msg_ifup(ugeth))
2441  ugeth_err("%s: Bad number of Rx threads value.",
2442  __func__);
2443  return -EINVAL;
2444  break;
2445  }
2446 
2447  switch (ug_info->numThreadsTx) {
2449  numThreadsTxNumerical = 1;
2450  break;
2452  numThreadsTxNumerical = 2;
2453  break;
2455  numThreadsTxNumerical = 4;
2456  break;
2458  numThreadsTxNumerical = 6;
2459  break;
2461  numThreadsTxNumerical = 8;
2462  break;
2463  default:
2464  if (netif_msg_ifup(ugeth))
2465  ugeth_err("%s: Bad number of Tx threads value.",
2466  __func__);
2467  return -EINVAL;
2468  break;
2469  }
2470 
2471  /* Calculate rx_extended_features */
2473  ug_info->ipAddressAlignment ||
2474  (ug_info->numStationAddresses !=
2476 
2479  (ug_info->vlanOperationNonTagged !=
2481 
2482  init_default_reg_vals(&uf_regs->upsmr,
2483  &ug_regs->maccfg1, &ug_regs->maccfg2);
2484 
2485  /* Set UPSMR */
2486  /* For more details see the hardware spec. */
2487  init_rx_parameters(ug_info->bro,
2488  ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2489 
2490  /* We're going to ignore other registers for now, */
2491  /* except as needed to get up and running */
2492 
2493  /* Set MACCFG1 */
2494  /* For more details see the hardware spec. */
2495  init_flow_control_params(ug_info->aufc,
2496  ug_info->receiveFlowControl,
2497  ug_info->transmitFlowControl,
2498  ug_info->pausePeriod,
2499  ug_info->extensionField,
2500  &uf_regs->upsmr,
2501  &ug_regs->uempr, &ug_regs->maccfg1);
2502 
2503  setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2504 
2505  /* Set IPGIFG */
2506  /* For more details see the hardware spec. */
2507  ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2508  ug_info->nonBackToBackIfgPart2,
2509  ug_info->
2510  miminumInterFrameGapEnforcement,
2511  ug_info->backToBackInterFrameGap,
2512  &ug_regs->ipgifg);
2513  if (ret_val != 0) {
2514  if (netif_msg_ifup(ugeth))
2515  ugeth_err("%s: IPGIFG initialization parameter too large.",
2516  __func__);
2517  return ret_val;
2518  }
2519 
2520  /* Set HAFDUP */
2521  /* For more details see the hardware spec. */
2522  ret_val = init_half_duplex_params(ug_info->altBeb,
2523  ug_info->backPressureNoBackoff,
2524  ug_info->noBackoff,
2525  ug_info->excessDefer,
2526  ug_info->altBebTruncation,
2527  ug_info->maxRetransmission,
2528  ug_info->collisionWindow,
2529  &ug_regs->hafdup);
2530  if (ret_val != 0) {
2531  if (netif_msg_ifup(ugeth))
2532  ugeth_err("%s: Half Duplex initialization parameter too large.",
2533  __func__);
2534  return ret_val;
2535  }
2536 
2537  /* Set IFSTAT */
2538  /* For more details see the hardware spec. */
2539  /* Read only - resets upon read */
2540  ifstat = in_be32(&ug_regs->ifstat);
2541 
2542  /* Clear UEMPR */
2543  /* For more details see the hardware spec. */
2544  out_be32(&ug_regs->uempr, 0);
2545 
2546  /* Set UESCR */
2547  /* For more details see the hardware spec. */
2548  init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2550  0, &uf_regs->upsmr, &ug_regs->uescr);
2551 
2552  ret_val = ucc_geth_alloc_tx(ugeth);
2553  if (ret_val != 0)
2554  return ret_val;
2555 
2556  ret_val = ucc_geth_alloc_rx(ugeth);
2557  if (ret_val != 0)
2558  return ret_val;
2559 
2560  /*
2561  * Global PRAM
2562  */
2563  /* Tx global PRAM */
2564  /* Allocate global tx parameter RAM page */
2565  ugeth->tx_glbl_pram_offset =
2566  qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2568  if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2569  if (netif_msg_ifup(ugeth))
2570  ugeth_err
2571  ("%s: Can not allocate DPRAM memory for p_tx_glbl_pram.",
2572  __func__);
2573  return -ENOMEM;
2574  }
2575  ugeth->p_tx_glbl_pram =
2576  (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2577  tx_glbl_pram_offset);
2578  /* Zero out p_tx_glbl_pram */
2579  memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2580 
2581  /* Fill global PRAM */
2582 
2583  /* TQPTR */
2584  /* Size varies with number of Tx threads */
2585  ugeth->thread_dat_tx_offset =
2586  qe_muram_alloc(numThreadsTxNumerical *
2587  sizeof(struct ucc_geth_thread_data_tx) +
2588  32 * (numThreadsTxNumerical == 1),
2590  if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2591  if (netif_msg_ifup(ugeth))
2592  ugeth_err
2593  ("%s: Can not allocate DPRAM memory for p_thread_data_tx.",
2594  __func__);
2595  return -ENOMEM;
2596  }
2597 
2598  ugeth->p_thread_data_tx =
2599  (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2600  thread_dat_tx_offset);
2601  out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2602 
2603  /* vtagtable */
2604  for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2605  out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2606  ug_info->vtagtable[i]);
2607 
2608  /* iphoffset */
2609  for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2610  out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2611  ug_info->iphoffset[i]);
2612 
2613  /* SQPTR */
2614  /* Size varies with number of Tx queues */
2615  ugeth->send_q_mem_reg_offset =
2616  qe_muram_alloc(ug_info->numQueuesTx *
2617  sizeof(struct ucc_geth_send_queue_qd),
2619  if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2620  if (netif_msg_ifup(ugeth))
2621  ugeth_err
2622  ("%s: Can not allocate DPRAM memory for p_send_q_mem_reg.",
2623  __func__);
2624  return -ENOMEM;
2625  }
2626 
2627  ugeth->p_send_q_mem_reg =
2628  (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2629  send_q_mem_reg_offset);
2630  out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2631 
2632  /* Setup the table */
2633  /* Assume BD rings are already established */
2634  for (i = 0; i < ug_info->numQueuesTx; i++) {
2635  endOfRing =
2636  ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2637  1) * sizeof(struct qe_bd);
2638  if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2639  out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2640  (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2641  out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2642  last_bd_completed_address,
2643  (u32) virt_to_phys(endOfRing));
2644  } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2645  MEM_PART_MURAM) {
2646  out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2647  (u32) immrbar_virt_to_phys(ugeth->
2648  p_tx_bd_ring[i]));
2649  out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2650  last_bd_completed_address,
2651  (u32) immrbar_virt_to_phys(endOfRing));
2652  }
2653  }
2654 
2655  /* schedulerbasepointer */
2656 
2657  if (ug_info->numQueuesTx > 1) {
2658  /* scheduler exists only if more than 1 tx queue */
2659  ugeth->scheduler_offset =
2660  qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2662  if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2663  if (netif_msg_ifup(ugeth))
2664  ugeth_err
2665  ("%s: Can not allocate DPRAM memory for p_scheduler.",
2666  __func__);
2667  return -ENOMEM;
2668  }
2669 
2670  ugeth->p_scheduler =
2671  (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2672  scheduler_offset);
2673  out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2674  ugeth->scheduler_offset);
2675  /* Zero out p_scheduler */
2676  memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2677 
2678  /* Set values in scheduler */
2679  out_be32(&ugeth->p_scheduler->mblinterval,
2680  ug_info->mblinterval);
2681  out_be16(&ugeth->p_scheduler->nortsrbytetime,
2682  ug_info->nortsrbytetime);
2683  out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2684  out_8(&ugeth->p_scheduler->strictpriorityq,
2685  ug_info->strictpriorityq);
2686  out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2687  out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2688  for (i = 0; i < NUM_TX_QUEUES; i++)
2689  out_8(&ugeth->p_scheduler->weightfactor[i],
2690  ug_info->weightfactor[i]);
2691 
2692  /* Set pointers to cpucount registers in scheduler */
2693  ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2694  ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2695  ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2696  ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2697  ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2698  ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2699  ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2700  ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2701  }
2702 
2703  /* schedulerbasepointer */
2704  /* TxRMON_PTR (statistics) */
2705  if (ug_info->
2708  qe_muram_alloc(sizeof
2712  if (netif_msg_ifup(ugeth))
2713  ugeth_err
2714  ("%s: Can not allocate DPRAM memory for"
2715  " p_tx_fw_statistics_pram.",
2716  __func__);
2717  return -ENOMEM;
2718  }
2719  ugeth->p_tx_fw_statistics_pram =
2721  qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2722  /* Zero out p_tx_fw_statistics_pram */
2723  memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2724  0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2725  }
2726 
2727  /* temoder */
2728  /* Already has speed set */
2729 
2730  if (ug_info->numQueuesTx > 1)
2731  temoder |= TEMODER_SCHEDULER_ENABLE;
2732  if (ug_info->ipCheckSumGenerate)
2733  temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2734  temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2735  out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2736 
2737  test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2738 
2739  /* Function code register value to be used later */
2740  function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2741  /* Required for QE */
2742 
2743  /* function code register */
2744  out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2745 
2746  /* Rx global PRAM */
2747  /* Allocate global rx parameter RAM page */
2748  ugeth->rx_glbl_pram_offset =
2749  qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2751  if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2752  if (netif_msg_ifup(ugeth))
2753  ugeth_err
2754  ("%s: Can not allocate DPRAM memory for p_rx_glbl_pram.",
2755  __func__);
2756  return -ENOMEM;
2757  }
2758  ugeth->p_rx_glbl_pram =
2759  (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2760  rx_glbl_pram_offset);
2761  /* Zero out p_rx_glbl_pram */
2762  memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2763 
2764  /* Fill global PRAM */
2765 
2766  /* RQPTR */
2767  /* Size varies with number of Rx threads */
2768  ugeth->thread_dat_rx_offset =
2769  qe_muram_alloc(numThreadsRxNumerical *
2770  sizeof(struct ucc_geth_thread_data_rx),
2772  if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2773  if (netif_msg_ifup(ugeth))
2774  ugeth_err
2775  ("%s: Can not allocate DPRAM memory for p_thread_data_rx.",
2776  __func__);
2777  return -ENOMEM;
2778  }
2779 
2780  ugeth->p_thread_data_rx =
2781  (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2782  thread_dat_rx_offset);
2783  out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2784 
2785  /* typeorlen */
2786  out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2787 
2788  /* rxrmonbaseptr (statistics) */
2789  if (ug_info->
2792  qe_muram_alloc(sizeof
2796  if (netif_msg_ifup(ugeth))
2797  ugeth_err
2798  ("%s: Can not allocate DPRAM memory for"
2799  " p_rx_fw_statistics_pram.", __func__);
2800  return -ENOMEM;
2801  }
2802  ugeth->p_rx_fw_statistics_pram =
2804  qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2805  /* Zero out p_rx_fw_statistics_pram */
2806  memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2807  sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2808  }
2809 
2810  /* intCoalescingPtr */
2811 
2812  /* Size varies with number of Rx queues */
2814  qe_muram_alloc(ug_info->numQueuesRx *
2818  if (netif_msg_ifup(ugeth))
2819  ugeth_err
2820  ("%s: Can not allocate DPRAM memory for"
2821  " p_rx_irq_coalescing_tbl.", __func__);
2822  return -ENOMEM;
2823  }
2824 
2825  ugeth->p_rx_irq_coalescing_tbl =
2827  qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2828  out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2830 
2831  /* Fill interrupt coalescing table */
2832  for (i = 0; i < ug_info->numQueuesRx; i++) {
2833  out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2834  interruptcoalescingmaxvalue,
2835  ug_info->interruptcoalescingmaxvalue[i]);
2836  out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2837  interruptcoalescingcounter,
2838  ug_info->interruptcoalescingmaxvalue[i]);
2839  }
2840 
2841  /* MRBLR */
2842  init_max_rx_buff_len(uf_info->max_rx_buf_length,
2843  &ugeth->p_rx_glbl_pram->mrblr);
2844  /* MFLR */
2845  out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2846  /* MINFLR */
2847  init_min_frame_len(ug_info->minFrameLength,
2848  &ugeth->p_rx_glbl_pram->minflr,
2849  &ugeth->p_rx_glbl_pram->mrblr);
2850  /* MAXD1 */
2851  out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2852  /* MAXD2 */
2853  out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2854 
2855  /* l2qt */
2856  l2qt = 0;
2857  for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2858  l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2859  out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2860 
2861  /* l3qt */
2862  for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2863  l3qt = 0;
2864  for (i = 0; i < 8; i++)
2865  l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2866  out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2867  }
2868 
2869  /* vlantype */
2870  out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2871 
2872  /* vlantci */
2873  out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2874 
2875  /* ecamptr */
2876  out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2877 
2878  /* RBDQPTR */
2879  /* Size varies with number of Rx queues */
2880  ugeth->rx_bd_qs_tbl_offset =
2881  qe_muram_alloc(ug_info->numQueuesRx *
2882  (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2883  sizeof(struct ucc_geth_rx_prefetched_bds)),
2885  if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2886  if (netif_msg_ifup(ugeth))
2887  ugeth_err
2888  ("%s: Can not allocate DPRAM memory for p_rx_bd_qs_tbl.",
2889  __func__);
2890  return -ENOMEM;
2891  }
2892 
2893  ugeth->p_rx_bd_qs_tbl =
2894  (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2895  rx_bd_qs_tbl_offset);
2896  out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2897  /* Zero out p_rx_bd_qs_tbl */
2898  memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2899  0,
2900  ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2901  sizeof(struct ucc_geth_rx_prefetched_bds)));
2902 
2903  /* Setup the table */
2904  /* Assume BD rings are already established */
2905  for (i = 0; i < ug_info->numQueuesRx; i++) {
2906  if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2907  out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2908  (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2909  } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2910  MEM_PART_MURAM) {
2911  out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2912  (u32) immrbar_virt_to_phys(ugeth->
2913  p_rx_bd_ring[i]));
2914  }
2915  /* rest of fields handled by QE */
2916  }
2917 
2918  /* remoder */
2919  /* Already has speed set */
2920 
2921  if (ugeth->rx_extended_features)
2922  remoder |= REMODER_RX_EXTENDED_FEATURES;
2923  if (ug_info->rxExtendedFiltering)
2924  remoder |= REMODER_RX_EXTENDED_FILTERING;
2925  if (ug_info->dynamicMaxFrameLength)
2927  if (ug_info->dynamicMinFrameLength)
2929  remoder |=
2931  remoder |=
2932  ug_info->
2933  vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2934  remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2935  remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2936  if (ug_info->ipCheckSumCheck)
2937  remoder |= REMODER_IP_CHECKSUM_CHECK;
2938  if (ug_info->ipAddressAlignment)
2939  remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2940  out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2941 
2942  /* Note that this function must be called */
2943  /* ONLY AFTER p_tx_fw_statistics_pram */
2944  /* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2945  init_firmware_statistics_gathering_mode((ug_info->
2946  statisticsMode &
2947  UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2948  (ug_info->statisticsMode &
2949  UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2950  &ugeth->p_tx_glbl_pram->txrmonbaseptr,
2952  &ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2954  &ugeth->p_tx_glbl_pram->temoder,
2955  &ugeth->p_rx_glbl_pram->remoder);
2956 
2957  /* function code register */
2958  out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2959 
2960  /* initialize extended filtering */
2961  if (ug_info->rxExtendedFiltering) {
2962  if (!ug_info->extendedFilteringChainPointer) {
2963  if (netif_msg_ifup(ugeth))
2964  ugeth_err("%s: Null Extended Filtering Chain Pointer.",
2965  __func__);
2966  return -EINVAL;
2967  }
2968 
2969  /* Allocate memory for extended filtering Mode Global
2970  Parameters */
2971  ugeth->exf_glbl_param_offset =
2972  qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2974  if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2975  if (netif_msg_ifup(ugeth))
2976  ugeth_err
2977  ("%s: Can not allocate DPRAM memory for"
2978  " p_exf_glbl_param.", __func__);
2979  return -ENOMEM;
2980  }
2981 
2982  ugeth->p_exf_glbl_param =
2983  (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2984  exf_glbl_param_offset);
2985  out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2986  ugeth->exf_glbl_param_offset);
2987  out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2988  (u32) ug_info->extendedFilteringChainPointer);
2989 
2990  } else { /* initialize 82xx style address filtering */
2991 
2992  /* Init individual address recognition registers to disabled */
2993 
2994  for (j = 0; j < NUM_OF_PADDRS; j++)
2995  ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
2996 
2997  p_82xx_addr_filt =
2999  p_rx_glbl_pram->addressfiltering;
3000 
3001  ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
3003  ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
3005  }
3006 
3007  /*
3008  * Initialize UCC at QE level
3009  */
3010 
3011  command = QE_INIT_TX_RX;
3012 
3013  /* Allocate shadow InitEnet command parameter structure.
3014  * This is needed because after the InitEnet command is executed,
3015  * the structure in DPRAM is released, because DPRAM is a premium
3016  * resource.
3017  * This shadow structure keeps a copy of what was done so that the
3018  * allocated resources can be released when the channel is freed.
3019  */
3020  if (!(ugeth->p_init_enet_param_shadow =
3021  kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
3022  if (netif_msg_ifup(ugeth))
3023  ugeth_err
3024  ("%s: Can not allocate memory for"
3025  " p_UccInitEnetParamShadows.", __func__);
3026  return -ENOMEM;
3027  }
3028  /* Zero out *p_init_enet_param_shadow */
3029  memset((char *)ugeth->p_init_enet_param_shadow,
3030  0, sizeof(struct ucc_geth_init_pram));
3031 
3032  /* Fill shadow InitEnet command parameter structure */
3033 
3034  ugeth->p_init_enet_param_shadow->resinit1 =
3036  ugeth->p_init_enet_param_shadow->resinit2 =
3038  ugeth->p_init_enet_param_shadow->resinit3 =
3040  ugeth->p_init_enet_param_shadow->resinit4 =
3042  ugeth->p_init_enet_param_shadow->resinit5 =
3044  ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
3045  ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
3046  ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
3047  ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
3048 
3049  ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
3050  ugeth->rx_glbl_pram_offset | ug_info->riscRx;
3051  if ((ug_info->largestexternallookupkeysize !=
3052  QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
3053  (ug_info->largestexternallookupkeysize !=
3054  QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
3055  (ug_info->largestexternallookupkeysize !=
3056  QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
3057  if (netif_msg_ifup(ugeth))
3058  ugeth_err("%s: Invalid largest External Lookup Key Size.",
3059  __func__);
3060  return -EINVAL;
3061  }
3062  ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
3064  size = sizeof(struct ucc_geth_thread_rx_pram);
3065  if (ug_info->rxExtendedFiltering) {
3067  if (ug_info->largestexternallookupkeysize ==
3068  QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
3069  size +=
3071  if (ug_info->largestexternallookupkeysize ==
3072  QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
3073  size +=
3075  }
3076 
3077  if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
3078  p_init_enet_param_shadow->rxthread[0]),
3079  (u8) (numThreadsRxNumerical + 1)
3080  /* Rx needs one extra for terminator */
3082  ug_info->riscRx, 1)) != 0) {
3083  if (netif_msg_ifup(ugeth))
3084  ugeth_err("%s: Can not fill p_init_enet_param_shadow.",
3085  __func__);
3086  return ret_val;
3087  }
3088 
3089  ugeth->p_init_enet_param_shadow->txglobal =
3090  ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3091  if ((ret_val =
3092  fill_init_enet_entries(ugeth,
3093  &(ugeth->p_init_enet_param_shadow->
3094  txthread[0]), numThreadsTxNumerical,
3095  sizeof(struct ucc_geth_thread_tx_pram),
3097  ug_info->riscTx, 0)) != 0) {
3098  if (netif_msg_ifup(ugeth))
3099  ugeth_err("%s: Can not fill p_init_enet_param_shadow.",
3100  __func__);
3101  return ret_val;
3102  }
3103 
3104  /* Load Rx bds with buffers */
3105  for (i = 0; i < ug_info->numQueuesRx; i++) {
3106  if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3107  if (netif_msg_ifup(ugeth))
3108  ugeth_err("%s: Can not fill Rx bds with buffers.",
3109  __func__);
3110  return ret_val;
3111  }
3112  }
3113 
3114  /* Allocate InitEnet command parameter structure */
3115  init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3116  if (IS_ERR_VALUE(init_enet_pram_offset)) {
3117  if (netif_msg_ifup(ugeth))
3118  ugeth_err
3119  ("%s: Can not allocate DPRAM memory for p_init_enet_pram.",
3120  __func__);
3121  return -ENOMEM;
3122  }
3123  p_init_enet_pram =
3124  (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3125 
3126  /* Copy shadow InitEnet command parameter structure into PRAM */
3127  out_8(&p_init_enet_pram->resinit1,
3128  ugeth->p_init_enet_param_shadow->resinit1);
3129  out_8(&p_init_enet_pram->resinit2,
3130  ugeth->p_init_enet_param_shadow->resinit2);
3131  out_8(&p_init_enet_pram->resinit3,
3132  ugeth->p_init_enet_param_shadow->resinit3);
3133  out_8(&p_init_enet_pram->resinit4,
3134  ugeth->p_init_enet_param_shadow->resinit4);
3135  out_be16(&p_init_enet_pram->resinit5,
3136  ugeth->p_init_enet_param_shadow->resinit5);
3137  out_8(&p_init_enet_pram->largestexternallookupkeysize,
3138  ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3139  out_be32(&p_init_enet_pram->rgftgfrxglobal,
3140  ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3141  for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3142  out_be32(&p_init_enet_pram->rxthread[i],
3143  ugeth->p_init_enet_param_shadow->rxthread[i]);
3144  out_be32(&p_init_enet_pram->txglobal,
3145  ugeth->p_init_enet_param_shadow->txglobal);
3146  for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3147  out_be32(&p_init_enet_pram->txthread[i],
3148  ugeth->p_init_enet_param_shadow->txthread[i]);
3149 
3150  /* Issue QE command */
3151  cecr_subblock =
3152  ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3153  qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3154  init_enet_pram_offset);
3155 
3156  /* Free InitEnet command parameter */
3157  qe_muram_free(init_enet_pram_offset);
3158 
3159  return 0;
3160 }
3161 
3162 /* This is called by the kernel when a frame is ready for transmission. */
3163 /* It is pointed to by the dev->hard_start_xmit function pointer */
3164 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3165 {
3166  struct ucc_geth_private *ugeth = netdev_priv(dev);
3167 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3168  struct ucc_fast_private *uccf;
3169 #endif
3170  u8 __iomem *bd; /* BD pointer */
3171  u32 bd_status;
3172  u8 txQ = 0;
3173  unsigned long flags;
3174 
3175  ugeth_vdbg("%s: IN", __func__);
3176 
3177  spin_lock_irqsave(&ugeth->lock, flags);
3178 
3179  dev->stats.tx_bytes += skb->len;
3180 
3181  /* Start from the next BD that should be filled */
3182  bd = ugeth->txBd[txQ];
3183  bd_status = in_be32((u32 __iomem *)bd);
3184  /* Save the skb pointer so we can free it later */
3185  ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3186 
3187  /* Update the current skb pointer (wrapping if this was the last) */
3188  ugeth->skb_curtx[txQ] =
3189  (ugeth->skb_curtx[txQ] +
3190  1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3191 
3192  /* set up the buffer descriptor */
3193  out_be32(&((struct qe_bd __iomem *)bd)->buf,
3194  dma_map_single(ugeth->dev, skb->data,
3195  skb->len, DMA_TO_DEVICE));
3196 
3197  /* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3198 
3199  bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3200 
3201  /* set bd status and length */
3202  out_be32((u32 __iomem *)bd, bd_status);
3203 
3204  /* Move to next BD in the ring */
3205  if (!(bd_status & T_W))
3206  bd += sizeof(struct qe_bd);
3207  else
3208  bd = ugeth->p_tx_bd_ring[txQ];
3209 
3210  /* If the next BD still needs to be cleaned up, then the bds
3211  are full. We need to tell the kernel to stop sending us stuff. */
3212  if (bd == ugeth->confBd[txQ]) {
3213  if (!netif_queue_stopped(dev))
3214  netif_stop_queue(dev);
3215  }
3216 
3217  ugeth->txBd[txQ] = bd;
3218 
3219  skb_tx_timestamp(skb);
3220 
3221  if (ugeth->p_scheduler) {
3222  ugeth->cpucount[txQ]++;
3223  /* Indicate to QE that there are more Tx bds ready for
3224  transmission */
3225  /* This is done by writing a running counter of the bd
3226  count to the scheduler PRAM. */
3227  out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3228  }
3229 
3230 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3231  uccf = ugeth->uccf;
3232  out_be16(uccf->p_utodr, UCC_FAST_TOD);
3233 #endif
3234  spin_unlock_irqrestore(&ugeth->lock, flags);
3235 
3236  return NETDEV_TX_OK;
3237 }
3238 
3239 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3240 {
3241  struct sk_buff *skb;
3242  u8 __iomem *bd;
3243  u16 length, howmany = 0;
3244  u32 bd_status;
3245  u8 *bdBuffer;
3246  struct net_device *dev;
3247 
3248  ugeth_vdbg("%s: IN", __func__);
3249 
3250  dev = ugeth->ndev;
3251 
3252  /* collect received buffers */
3253  bd = ugeth->rxBd[rxQ];
3254 
3255  bd_status = in_be32((u32 __iomem *)bd);
3256 
3257  /* while there are received buffers and BD is full (~R_E) */
3258  while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3259  bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3260  length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3261  skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3262 
3263  /* determine whether buffer is first, last, first and last
3264  (single buffer frame) or middle (not first and not last) */
3265  if (!skb ||
3266  (!(bd_status & (R_F | R_L))) ||
3267  (bd_status & R_ERRORS_FATAL)) {
3268  if (netif_msg_rx_err(ugeth))
3269  ugeth_err("%s, %d: ERROR!!! skb - 0x%08x",
3270  __func__, __LINE__, (u32) skb);
3271  dev_kfree_skb(skb);
3272 
3273  ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3274  dev->stats.rx_dropped++;
3275  } else {
3276  dev->stats.rx_packets++;
3277  howmany++;
3278 
3279  /* Prep the skb for the packet */
3280  skb_put(skb, length);
3281 
3282  /* Tell the skb what kind of packet this is */
3283  skb->protocol = eth_type_trans(skb, ugeth->ndev);
3284 
3285  dev->stats.rx_bytes += length;
3286  /* Send the packet up the stack */
3287  netif_receive_skb(skb);
3288  }
3289 
3290  skb = get_new_skb(ugeth, bd);
3291  if (!skb) {
3292  if (netif_msg_rx_err(ugeth))
3293  ugeth_warn("%s: No Rx Data Buffer", __func__);
3294  dev->stats.rx_dropped++;
3295  break;
3296  }
3297 
3298  ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3299 
3300  /* update to point at the next skb */
3301  ugeth->skb_currx[rxQ] =
3302  (ugeth->skb_currx[rxQ] +
3303  1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3304 
3305  if (bd_status & R_W)
3306  bd = ugeth->p_rx_bd_ring[rxQ];
3307  else
3308  bd += sizeof(struct qe_bd);
3309 
3310  bd_status = in_be32((u32 __iomem *)bd);
3311  }
3312 
3313  ugeth->rxBd[rxQ] = bd;
3314  return howmany;
3315 }
3316 
3317 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3318 {
3319  /* Start from the next BD that should be filled */
3320  struct ucc_geth_private *ugeth = netdev_priv(dev);
3321  u8 __iomem *bd; /* BD pointer */
3322  u32 bd_status;
3323 
3324  bd = ugeth->confBd[txQ];
3325  bd_status = in_be32((u32 __iomem *)bd);
3326 
3327  /* Normal processing. */
3328  while ((bd_status & T_R) == 0) {
3329  struct sk_buff *skb;
3330 
3331  /* BD contains already transmitted buffer. */
3332  /* Handle the transmitted buffer and release */
3333  /* the BD to be used with the current frame */
3334 
3335  skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3336  if (!skb)
3337  break;
3338 
3339  dev->stats.tx_packets++;
3340 
3341  dev_kfree_skb(skb);
3342 
3343  ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3344  ugeth->skb_dirtytx[txQ] =
3345  (ugeth->skb_dirtytx[txQ] +
3346  1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3347 
3348  /* We freed a buffer, so now we can restart transmission */
3349  if (netif_queue_stopped(dev))
3350  netif_wake_queue(dev);
3351 
3352  /* Advance the confirmation BD pointer */
3353  if (!(bd_status & T_W))
3354  bd += sizeof(struct qe_bd);
3355  else
3356  bd = ugeth->p_tx_bd_ring[txQ];
3357  bd_status = in_be32((u32 __iomem *)bd);
3358  }
3359  ugeth->confBd[txQ] = bd;
3360  return 0;
3361 }
3362 
3363 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3364 {
3365  struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3366  struct ucc_geth_info *ug_info;
3367  int howmany, i;
3368 
3369  ug_info = ugeth->ug_info;
3370 
3371  /* Tx event processing */
3372  spin_lock(&ugeth->lock);
3373  for (i = 0; i < ug_info->numQueuesTx; i++)
3374  ucc_geth_tx(ugeth->ndev, i);
3375  spin_unlock(&ugeth->lock);
3376 
3377  howmany = 0;
3378  for (i = 0; i < ug_info->numQueuesRx; i++)
3379  howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3380 
3381  if (howmany < budget) {
3382  napi_complete(napi);
3383  setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3384  }
3385 
3386  return howmany;
3387 }
3388 
3389 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3390 {
3391  struct net_device *dev = info;
3392  struct ucc_geth_private *ugeth = netdev_priv(dev);
3393  struct ucc_fast_private *uccf;
3394  struct ucc_geth_info *ug_info;
3395  register u32 ucce;
3396  register u32 uccm;
3397 
3398  ugeth_vdbg("%s: IN", __func__);
3399 
3400  uccf = ugeth->uccf;
3401  ug_info = ugeth->ug_info;
3402 
3403  /* read and clear events */
3404  ucce = (u32) in_be32(uccf->p_ucce);
3405  uccm = (u32) in_be32(uccf->p_uccm);
3406  ucce &= uccm;
3407  out_be32(uccf->p_ucce, ucce);
3408 
3409  /* check for receive events that require processing */
3410  if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3411  if (napi_schedule_prep(&ugeth->napi)) {
3412  uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3413  out_be32(uccf->p_uccm, uccm);
3414  __napi_schedule(&ugeth->napi);
3415  }
3416  }
3417 
3418  /* Errors and other events */
3419  if (ucce & UCCE_OTHER) {
3420  if (ucce & UCC_GETH_UCCE_BSY)
3421  dev->stats.rx_errors++;
3422  if (ucce & UCC_GETH_UCCE_TXE)
3423  dev->stats.tx_errors++;
3424  }
3425 
3426  return IRQ_HANDLED;
3427 }
3428 
3429 #ifdef CONFIG_NET_POLL_CONTROLLER
3430 /*
3431  * Polling 'interrupt' - used by things like netconsole to send skbs
3432  * without having to re-enable interrupts. It's not called while
3433  * the interrupt routine is executing.
3434  */
3435 static void ucc_netpoll(struct net_device *dev)
3436 {
3437  struct ucc_geth_private *ugeth = netdev_priv(dev);
3438  int irq = ugeth->ug_info->uf_info.irq;
3439 
3440  disable_irq(irq);
3441  ucc_geth_irq_handler(irq, dev);
3442  enable_irq(irq);
3443 }
3444 #endif /* CONFIG_NET_POLL_CONTROLLER */
3445 
3446 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3447 {
3448  struct ucc_geth_private *ugeth = netdev_priv(dev);
3449  struct sockaddr *addr = p;
3450 
3451  if (!is_valid_ether_addr(addr->sa_data))
3452  return -EADDRNOTAVAIL;
3453 
3454  memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3455 
3456  /*
3457  * If device is not running, we will set mac addr register
3458  * when opening the device.
3459  */
3460  if (!netif_running(dev))
3461  return 0;
3462 
3463  spin_lock_irq(&ugeth->lock);
3464  init_mac_station_addr_regs(dev->dev_addr[0],
3465  dev->dev_addr[1],
3466  dev->dev_addr[2],
3467  dev->dev_addr[3],
3468  dev->dev_addr[4],
3469  dev->dev_addr[5],
3470  &ugeth->ug_regs->macstnaddr1,
3471  &ugeth->ug_regs->macstnaddr2);
3472  spin_unlock_irq(&ugeth->lock);
3473 
3474  return 0;
3475 }
3476 
3477 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3478 {
3479  struct net_device *dev = ugeth->ndev;
3480  int err;
3481 
3482  err = ucc_struct_init(ugeth);
3483  if (err) {
3484  if (netif_msg_ifup(ugeth))
3485  ugeth_err("%s: Cannot configure internal struct, "
3486  "aborting.", dev->name);
3487  goto err;
3488  }
3489 
3490  err = ucc_geth_startup(ugeth);
3491  if (err) {
3492  if (netif_msg_ifup(ugeth))
3493  ugeth_err("%s: Cannot configure net device, aborting.",
3494  dev->name);
3495  goto err;
3496  }
3497 
3498  err = adjust_enet_interface(ugeth);
3499  if (err) {
3500  if (netif_msg_ifup(ugeth))
3501  ugeth_err("%s: Cannot configure net device, aborting.",
3502  dev->name);
3503  goto err;
3504  }
3505 
3506  /* Set MACSTNADDR1, MACSTNADDR2 */
3507  /* For more details see the hardware spec. */
3508  init_mac_station_addr_regs(dev->dev_addr[0],
3509  dev->dev_addr[1],
3510  dev->dev_addr[2],
3511  dev->dev_addr[3],
3512  dev->dev_addr[4],
3513  dev->dev_addr[5],
3514  &ugeth->ug_regs->macstnaddr1,
3515  &ugeth->ug_regs->macstnaddr2);
3516 
3517  err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3518  if (err) {
3519  if (netif_msg_ifup(ugeth))
3520  ugeth_err("%s: Cannot enable net device, aborting.", dev->name);
3521  goto err;
3522  }
3523 
3524  return 0;
3525 err:
3526  ucc_geth_stop(ugeth);
3527  return err;
3528 }
3529 
3530 /* Called when something needs to use the ethernet device */
3531 /* Returns 0 for success. */
3532 static int ucc_geth_open(struct net_device *dev)
3533 {
3534  struct ucc_geth_private *ugeth = netdev_priv(dev);
3535  int err;
3536 
3537  ugeth_vdbg("%s: IN", __func__);
3538 
3539  /* Test station address */
3540  if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3541  if (netif_msg_ifup(ugeth))
3542  ugeth_err("%s: Multicast address used for station "
3543  "address - is this what you wanted?",
3544  __func__);
3545  return -EINVAL;
3546  }
3547 
3548  err = init_phy(dev);
3549  if (err) {
3550  if (netif_msg_ifup(ugeth))
3551  ugeth_err("%s: Cannot initialize PHY, aborting.",
3552  dev->name);
3553  return err;
3554  }
3555 
3556  err = ucc_geth_init_mac(ugeth);
3557  if (err) {
3558  if (netif_msg_ifup(ugeth))
3559  ugeth_err("%s: Cannot initialize MAC, aborting.",
3560  dev->name);
3561  goto err;
3562  }
3563 
3564  err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3565  0, "UCC Geth", dev);
3566  if (err) {
3567  if (netif_msg_ifup(ugeth))
3568  ugeth_err("%s: Cannot get IRQ for net device, aborting.",
3569  dev->name);
3570  goto err;
3571  }
3572 
3573  phy_start(ugeth->phydev);
3574  napi_enable(&ugeth->napi);
3575  netif_start_queue(dev);
3576 
3578  qe_alive_during_sleep() || ugeth->phydev->irq);
3579  device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3580 
3581  return err;
3582 
3583 err:
3584  ucc_geth_stop(ugeth);
3585  return err;
3586 }
3587 
3588 /* Stops the kernel queue, and halts the controller */
3589 static int ucc_geth_close(struct net_device *dev)
3590 {
3591  struct ucc_geth_private *ugeth = netdev_priv(dev);
3592 
3593  ugeth_vdbg("%s: IN", __func__);
3594 
3595  napi_disable(&ugeth->napi);
3596 
3597  cancel_work_sync(&ugeth->timeout_work);
3598  ucc_geth_stop(ugeth);
3599  phy_disconnect(ugeth->phydev);
3600  ugeth->phydev = NULL;
3601 
3602  free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3603 
3604  netif_stop_queue(dev);
3605 
3606  return 0;
3607 }
3608 
3609 /* Reopen device. This will reset the MAC and PHY. */
3610 static void ucc_geth_timeout_work(struct work_struct *work)
3611 {
3612  struct ucc_geth_private *ugeth;
3613  struct net_device *dev;
3614 
3615  ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3616  dev = ugeth->ndev;
3617 
3618  ugeth_vdbg("%s: IN", __func__);
3619 
3620  dev->stats.tx_errors++;
3621 
3622  ugeth_dump_regs(ugeth);
3623 
3624  if (dev->flags & IFF_UP) {
3625  /*
3626  * Must reset MAC *and* PHY. This is done by reopening
3627  * the device.
3628  */
3629  netif_tx_stop_all_queues(dev);
3630  ucc_geth_stop(ugeth);
3631  ucc_geth_init_mac(ugeth);
3632  /* Must start PHY here */
3633  phy_start(ugeth->phydev);
3634  netif_tx_start_all_queues(dev);
3635  }
3636 
3637  netif_tx_schedule_all(dev);
3638 }
3639 
3640 /*
3641  * ucc_geth_timeout gets called when a packet has not been
3642  * transmitted after a set amount of time.
3643  */
3644 static void ucc_geth_timeout(struct net_device *dev)
3645 {
3646  struct ucc_geth_private *ugeth = netdev_priv(dev);
3647 
3648  schedule_work(&ugeth->timeout_work);
3649 }
3650 
3651 
3652 #ifdef CONFIG_PM
3653 
3654 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3655 {
3656  struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
3657  struct ucc_geth_private *ugeth = netdev_priv(ndev);
3658 
3659  if (!netif_running(ndev))
3660  return 0;
3661 
3662  netif_device_detach(ndev);
3663  napi_disable(&ugeth->napi);
3664 
3665  /*
3666  * Disable the controller, otherwise we'll wakeup on any network
3667  * activity.
3668  */
3669  ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3670 
3671  if (ugeth->wol_en & WAKE_MAGIC) {
3672  setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3673  setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3674  ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3675  } else if (!(ugeth->wol_en & WAKE_PHY)) {
3676  phy_stop(ugeth->phydev);
3677  }
3678 
3679  return 0;
3680 }
3681 
3682 static int ucc_geth_resume(struct platform_device *ofdev)
3683 {
3684  struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
3685  struct ucc_geth_private *ugeth = netdev_priv(ndev);
3686  int err;
3687 
3688  if (!netif_running(ndev))
3689  return 0;
3690 
3691  if (qe_alive_during_sleep()) {
3692  if (ugeth->wol_en & WAKE_MAGIC) {
3693  ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3694  clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3695  clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3696  }
3697  ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3698  } else {
3699  /*
3700  * Full reinitialization is required if QE shuts down
3701  * during sleep.
3702  */
3703  ucc_geth_memclean(ugeth);
3704 
3705  err = ucc_geth_init_mac(ugeth);
3706  if (err) {
3707  ugeth_err("%s: Cannot initialize MAC, aborting.",
3708  ndev->name);
3709  return err;
3710  }
3711  }
3712 
3713  ugeth->oldlink = 0;
3714  ugeth->oldspeed = 0;
3715  ugeth->oldduplex = -1;
3716 
3717  phy_stop(ugeth->phydev);
3718  phy_start(ugeth->phydev);
3719 
3720  napi_enable(&ugeth->napi);
3721  netif_device_attach(ndev);
3722 
3723  return 0;
3724 }
3725 
3726 #else
3727 #define ucc_geth_suspend NULL
3728 #define ucc_geth_resume NULL
3729 #endif
3730 
3731 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3732 {
3733  if (strcasecmp(phy_connection_type, "mii") == 0)
3734  return PHY_INTERFACE_MODE_MII;
3735  if (strcasecmp(phy_connection_type, "gmii") == 0)
3736  return PHY_INTERFACE_MODE_GMII;
3737  if (strcasecmp(phy_connection_type, "tbi") == 0)
3738  return PHY_INTERFACE_MODE_TBI;
3739  if (strcasecmp(phy_connection_type, "rmii") == 0)
3740  return PHY_INTERFACE_MODE_RMII;
3741  if (strcasecmp(phy_connection_type, "rgmii") == 0)
3742  return PHY_INTERFACE_MODE_RGMII;
3743  if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3745  if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3747  if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3749  if (strcasecmp(phy_connection_type, "rtbi") == 0)
3750  return PHY_INTERFACE_MODE_RTBI;
3751  if (strcasecmp(phy_connection_type, "sgmii") == 0)
3752  return PHY_INTERFACE_MODE_SGMII;
3753 
3754  return PHY_INTERFACE_MODE_MII;
3755 }
3756 
3757 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3758 {
3759  struct ucc_geth_private *ugeth = netdev_priv(dev);
3760 
3761  if (!netif_running(dev))
3762  return -EINVAL;
3763 
3764  if (!ugeth->phydev)
3765  return -ENODEV;
3766 
3767  return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3768 }
3769 
3770 static const struct net_device_ops ucc_geth_netdev_ops = {
3771  .ndo_open = ucc_geth_open,
3772  .ndo_stop = ucc_geth_close,
3773  .ndo_start_xmit = ucc_geth_start_xmit,
3774  .ndo_validate_addr = eth_validate_addr,
3775  .ndo_set_mac_address = ucc_geth_set_mac_addr,
3776  .ndo_change_mtu = eth_change_mtu,
3777  .ndo_set_rx_mode = ucc_geth_set_multi,
3778  .ndo_tx_timeout = ucc_geth_timeout,
3779  .ndo_do_ioctl = ucc_geth_ioctl,
3780 #ifdef CONFIG_NET_POLL_CONTROLLER
3781  .ndo_poll_controller = ucc_netpoll,
3782 #endif
3783 };
3784 
3785 static int ucc_geth_probe(struct platform_device* ofdev)
3786 {
3787  struct device *device = &ofdev->dev;
3788  struct device_node *np = ofdev->dev.of_node;
3789  struct net_device *dev = NULL;
3790  struct ucc_geth_private *ugeth = NULL;
3791  struct ucc_geth_info *ug_info;
3792  struct resource res;
3793  int err, ucc_num, max_speed = 0;
3794  const unsigned int *prop;
3795  const char *sprop;
3796  const void *mac_addr;
3797  phy_interface_t phy_interface;
3798  static const int enet_to_speed[] = {
3802  };
3803  static const phy_interface_t enet_to_phy_interface[] = {
3810  };
3811 
3812  ugeth_vdbg("%s: IN", __func__);
3813 
3814  prop = of_get_property(np, "cell-index", NULL);
3815  if (!prop) {
3816  prop = of_get_property(np, "device-id", NULL);
3817  if (!prop)
3818  return -ENODEV;
3819  }
3820 
3821  ucc_num = *prop - 1;
3822  if ((ucc_num < 0) || (ucc_num > 7))
3823  return -ENODEV;
3824 
3825  ug_info = &ugeth_info[ucc_num];
3826  if (ug_info == NULL) {
3827  if (netif_msg_probe(&debug))
3828  ugeth_err("%s: [%d] Missing additional data!",
3829  __func__, ucc_num);
3830  return -ENODEV;
3831  }
3832 
3833  ug_info->uf_info.ucc_num = ucc_num;
3834 
3835  sprop = of_get_property(np, "rx-clock-name", NULL);
3836  if (sprop) {
3837  ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3838  if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3839  (ug_info->uf_info.rx_clock > QE_CLK24)) {
3841  "ucc_geth: invalid rx-clock-name property\n");
3842  return -EINVAL;
3843  }
3844  } else {
3845  prop = of_get_property(np, "rx-clock", NULL);
3846  if (!prop) {
3847  /* If both rx-clock-name and rx-clock are missing,
3848  we want to tell people to use rx-clock-name. */
3850  "ucc_geth: missing rx-clock-name property\n");
3851  return -EINVAL;
3852  }
3853  if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3855  "ucc_geth: invalid rx-clock propperty\n");
3856  return -EINVAL;
3857  }
3858  ug_info->uf_info.rx_clock = *prop;
3859  }
3860 
3861  sprop = of_get_property(np, "tx-clock-name", NULL);
3862  if (sprop) {
3863  ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3864  if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3865  (ug_info->uf_info.tx_clock > QE_CLK24)) {
3867  "ucc_geth: invalid tx-clock-name property\n");
3868  return -EINVAL;
3869  }
3870  } else {
3871  prop = of_get_property(np, "tx-clock", NULL);
3872  if (!prop) {
3874  "ucc_geth: missing tx-clock-name property\n");
3875  return -EINVAL;
3876  }
3877  if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3879  "ucc_geth: invalid tx-clock property\n");
3880  return -EINVAL;
3881  }
3882  ug_info->uf_info.tx_clock = *prop;
3883  }
3884 
3885  err = of_address_to_resource(np, 0, &res);
3886  if (err)
3887  return -EINVAL;
3888 
3889  ug_info->uf_info.regs = res.start;
3890  ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3891 
3892  ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3893 
3894  /* Find the TBI PHY node. If it's not there, we don't support SGMII */
3895  ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3896 
3897  /* get the phy interface type, or default to MII */
3898  prop = of_get_property(np, "phy-connection-type", NULL);
3899  if (!prop) {
3900  /* handle interface property present in old trees */
3901  prop = of_get_property(ug_info->phy_node, "interface", NULL);
3902  if (prop != NULL) {
3903  phy_interface = enet_to_phy_interface[*prop];
3904  max_speed = enet_to_speed[*prop];
3905  } else
3906  phy_interface = PHY_INTERFACE_MODE_MII;
3907  } else {
3908  phy_interface = to_phy_interface((const char *)prop);
3909  }
3910 
3911  /* get speed, or derive from PHY interface */
3912  if (max_speed == 0)
3913  switch (phy_interface) {
3922  max_speed = SPEED_1000;
3923  break;
3924  default:
3925  max_speed = SPEED_100;
3926  break;
3927  }
3928 
3929  if (max_speed == SPEED_1000) {
3930  unsigned int snums = qe_get_num_of_snums();
3931 
3932  /* configure muram FIFOs for gigabit operation */
3933  ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3934  ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3935  ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3936  ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3937  ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3938  ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3940 
3941  /* If QE's snum number is 46/76 which means we need to support
3942  * 4 UECs at 1000Base-T simultaneously, we need to allocate
3943  * more Threads to Rx.
3944  */
3945  if ((snums == 76) || (snums == 46))
3947  else
3949  }
3950 
3951  if (netif_msg_probe(&debug))
3952  printk(KERN_INFO "ucc_geth: UCC%1d at 0x%8x (irq = %d)\n",
3953  ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs,
3954  ug_info->uf_info.irq);
3955 
3956  /* Create an ethernet device instance */
3957  dev = alloc_etherdev(sizeof(*ugeth));
3958 
3959  if (dev == NULL)
3960  return -ENOMEM;
3961 
3962  ugeth = netdev_priv(dev);
3963  spin_lock_init(&ugeth->lock);
3964 
3965  /* Create CQs for hash tables */
3966  INIT_LIST_HEAD(&ugeth->group_hash_q);
3967  INIT_LIST_HEAD(&ugeth->ind_hash_q);
3968 
3969  dev_set_drvdata(device, dev);
3970 
3971  /* Set the dev->base_addr to the gfar reg region */
3972  dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3973 
3974  SET_NETDEV_DEV(dev, device);
3975 
3976  /* Fill in the dev structure */
3977  uec_set_ethtool_ops(dev);
3978  dev->netdev_ops = &ucc_geth_netdev_ops;
3979  dev->watchdog_timeo = TX_TIMEOUT;
3980  INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3981  netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
3982  dev->mtu = 1500;
3983 
3984  ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
3985  ugeth->phy_interface = phy_interface;
3986  ugeth->max_speed = max_speed;
3987 
3988  err = register_netdev(dev);
3989  if (err) {
3990  if (netif_msg_probe(ugeth))
3991  ugeth_err("%s: Cannot register net device, aborting.",
3992  dev->name);
3993  free_netdev(dev);
3994  return err;
3995  }
3996 
3997  mac_addr = of_get_mac_address(np);
3998  if (mac_addr)
3999  memcpy(dev->dev_addr, mac_addr, 6);
4000 
4001  ugeth->ug_info = ug_info;
4002  ugeth->dev = device;
4003  ugeth->ndev = dev;
4004  ugeth->node = np;
4005 
4006  return 0;
4007 }
4008 
4009 static int ucc_geth_remove(struct platform_device* ofdev)
4010 {
4011  struct device *device = &ofdev->dev;
4012  struct net_device *dev = dev_get_drvdata(device);
4013  struct ucc_geth_private *ugeth = netdev_priv(dev);
4014 
4015  unregister_netdev(dev);
4016  free_netdev(dev);
4017  ucc_geth_memclean(ugeth);
4018  dev_set_drvdata(device, NULL);
4019 
4020  return 0;
4021 }
4022 
4023 static struct of_device_id ucc_geth_match[] = {
4024  {
4025  .type = "network",
4026  .compatible = "ucc_geth",
4027  },
4028  {},
4029 };
4030 
4031 MODULE_DEVICE_TABLE(of, ucc_geth_match);
4032 
4033 static struct platform_driver ucc_geth_driver = {
4034  .driver = {
4035  .name = DRV_NAME,
4036  .owner = THIS_MODULE,
4037  .of_match_table = ucc_geth_match,
4038  },
4039  .probe = ucc_geth_probe,
4040  .remove = ucc_geth_remove,
4041  .suspend = ucc_geth_suspend,
4042  .resume = ucc_geth_resume,
4043 };
4044 
4045 static int __init ucc_geth_init(void)
4046 {
4047  int i, ret;
4048 
4049  if (netif_msg_drv(&debug))
4050  printk(KERN_INFO "ucc_geth: " DRV_DESC "\n");
4051  for (i = 0; i < 8; i++)
4052  memcpy(&(ugeth_info[i]), &ugeth_primary_info,
4053  sizeof(ugeth_primary_info));
4054 
4055  ret = platform_driver_register(&ucc_geth_driver);
4056 
4057  return ret;
4058 }
4059 
4060 static void __exit ucc_geth_exit(void)
4061 {
4062  platform_driver_unregister(&ucc_geth_driver);
4063 }
4064 
4065 module_init(ucc_geth_init);
4066 module_exit(ucc_geth_exit);
4067 
4068 MODULE_AUTHOR("Freescale Semiconductor, Inc");
4071 MODULE_LICENSE("GPL");