LLVM API Documentation

FunctionLoweringInfo.cpp
Go to the documentation of this file.
00001 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This implements routines for translating functions from LLVM IR into
00011 // Machine IR.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "llvm/CodeGen/FunctionLoweringInfo.h"
00016 #include "llvm/ADT/PostOrderIterator.h"
00017 #include "llvm/CodeGen/Analysis.h"
00018 #include "llvm/CodeGen/MachineFrameInfo.h"
00019 #include "llvm/CodeGen/MachineFunction.h"
00020 #include "llvm/CodeGen/MachineInstrBuilder.h"
00021 #include "llvm/CodeGen/MachineModuleInfo.h"
00022 #include "llvm/CodeGen/MachineRegisterInfo.h"
00023 #include "llvm/IR/DataLayout.h"
00024 #include "llvm/IR/DebugInfo.h"
00025 #include "llvm/IR/DerivedTypes.h"
00026 #include "llvm/IR/Function.h"
00027 #include "llvm/IR/Instructions.h"
00028 #include "llvm/IR/IntrinsicInst.h"
00029 #include "llvm/IR/LLVMContext.h"
00030 #include "llvm/IR/Module.h"
00031 #include "llvm/Support/Debug.h"
00032 #include "llvm/Support/ErrorHandling.h"
00033 #include "llvm/Support/MathExtras.h"
00034 #include "llvm/Target/TargetFrameLowering.h"
00035 #include "llvm/Target/TargetInstrInfo.h"
00036 #include "llvm/Target/TargetLowering.h"
00037 #include "llvm/Target/TargetOptions.h"
00038 #include "llvm/Target/TargetRegisterInfo.h"
00039 #include "llvm/Target/TargetSubtargetInfo.h"
00040 #include <algorithm>
00041 using namespace llvm;
00042 
00043 #define DEBUG_TYPE "function-lowering-info"
00044 
00045 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
00046 /// PHI nodes or outside of the basic block that defines it, or used by a
00047 /// switch or atomic instruction, which may expand to multiple basic blocks.
00048 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
00049   if (I->use_empty()) return false;
00050   if (isa<PHINode>(I)) return true;
00051   const BasicBlock *BB = I->getParent();
00052   for (const User *U : I->users())
00053     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
00054       return true;
00055 
00056   return false;
00057 }
00058 
00059 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
00060                                SelectionDAG *DAG) {
00061   const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
00062 
00063   Fn = &fn;
00064   MF = &mf;
00065   RegInfo = &MF->getRegInfo();
00066 
00067   // Check whether the function can return without sret-demotion.
00068   SmallVector<ISD::OutputArg, 4> Outs;
00069   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
00070   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
00071                                        Fn->isVarArg(),
00072                                        Outs, Fn->getContext());
00073 
00074   // Initialize the mapping of values to registers.  This is only set up for
00075   // instruction values that are used outside of the block that defines
00076   // them.
00077   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
00078   for (; BB != EB; ++BB)
00079     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
00080          I != E; ++I) {
00081       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
00082         // Static allocas can be folded into the initial stack frame adjustment.
00083         if (AI->isStaticAlloca()) {
00084           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
00085           Type *Ty = AI->getAllocatedType();
00086           uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
00087           unsigned Align =
00088             std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
00089                      AI->getAlignment());
00090 
00091           TySize *= CUI->getZExtValue();   // Get total allocated size.
00092           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
00093 
00094           StaticAllocaMap[AI] =
00095             MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
00096 
00097         } else {
00098           unsigned Align = std::max(
00099               (unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
00100                 AI->getAllocatedType()),
00101               AI->getAlignment());
00102           unsigned StackAlign =
00103               TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment();
00104           if (Align <= StackAlign)
00105             Align = 0;
00106           // Inform the Frame Information that we have variable-sized objects.
00107           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
00108         }
00109       }
00110 
00111       // Look for inline asm that clobbers the SP register.
00112       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
00113         ImmutableCallSite CS(I);
00114         if (isa<InlineAsm>(CS.getCalledValue())) {
00115           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
00116           std::vector<TargetLowering::AsmOperandInfo> Ops =
00117             TLI->ParseConstraints(CS);
00118           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
00119             TargetLowering::AsmOperandInfo &Op = Ops[I];
00120             if (Op.Type == InlineAsm::isClobber) {
00121               // Clobbers don't have SDValue operands, hence SDValue().
00122               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
00123               std::pair<unsigned, const TargetRegisterClass*> PhysReg =
00124                 TLI->getRegForInlineAsmConstraint(Op.ConstraintCode,
00125                                                   Op.ConstraintVT);
00126               if (PhysReg.first == SP)
00127                 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
00128             }
00129           }
00130         }
00131       }
00132 
00133       // Look for calls to the @llvm.va_start intrinsic. We can omit some
00134       // prologue boilerplate for variadic functions that don't examine their
00135       // arguments.
00136       if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
00137         if (II->getIntrinsicID() == Intrinsic::vastart)
00138           MF->getFrameInfo()->setHasVAStart(true);
00139       }
00140 
00141       // If we have a musttail call in a variadic funciton, we need to ensure we
00142       // forward implicit register parameters.
00143       if (const auto *CI = dyn_cast<CallInst>(I)) {
00144         if (CI->isMustTailCall() && Fn->isVarArg())
00145           MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
00146       }
00147 
00148       // Mark values used outside their block as exported, by allocating
00149       // a virtual register for them.
00150       if (isUsedOutsideOfDefiningBlock(I))
00151         if (!isa<AllocaInst>(I) ||
00152             !StaticAllocaMap.count(cast<AllocaInst>(I)))
00153           InitializeRegForValue(I);
00154 
00155       // Collect llvm.dbg.declare information. This is done now instead of
00156       // during the initial isel pass through the IR so that it is done
00157       // in a predictable order.
00158       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
00159         MachineModuleInfo &MMI = MF->getMMI();
00160         DIVariable DIVar(DI->getVariable());
00161         assert((!DIVar || DIVar.isVariable()) &&
00162           "Variable in DbgDeclareInst should be either null or a DIVariable.");
00163         if (MMI.hasDebugInfo() &&
00164             DIVar &&
00165             !DI->getDebugLoc().isUnknown()) {
00166           // Don't handle byval struct arguments or VLAs, for example.
00167           // Non-byval arguments are handled here (they refer to the stack
00168           // temporary alloca at this point).
00169           const Value *Address = DI->getAddress();
00170           if (Address) {
00171             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
00172               Address = BCI->getOperand(0);
00173             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
00174               DenseMap<const AllocaInst *, int>::iterator SI =
00175                 StaticAllocaMap.find(AI);
00176               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
00177                 int FI = SI->second;
00178                 MMI.setVariableDbgInfo(DI->getVariable(),
00179                                        FI, DI->getDebugLoc());
00180               }
00181             }
00182           }
00183         }
00184       }
00185     }
00186 
00187   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
00188   // also creates the initial PHI MachineInstrs, though none of the input
00189   // operands are populated.
00190   for (BB = Fn->begin(); BB != EB; ++BB) {
00191     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
00192     MBBMap[BB] = MBB;
00193     MF->push_back(MBB);
00194 
00195     // Transfer the address-taken flag. This is necessary because there could
00196     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
00197     // the first one should be marked.
00198     if (BB->hasAddressTaken())
00199       MBB->setHasAddressTaken();
00200 
00201     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
00202     // appropriate.
00203     for (BasicBlock::const_iterator I = BB->begin();
00204          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
00205       if (PN->use_empty()) continue;
00206 
00207       // Skip empty types
00208       if (PN->getType()->isEmptyTy())
00209         continue;
00210 
00211       DebugLoc DL = PN->getDebugLoc();
00212       unsigned PHIReg = ValueMap[PN];
00213       assert(PHIReg && "PHI node does not have an assigned virtual register!");
00214 
00215       SmallVector<EVT, 4> ValueVTs;
00216       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
00217       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
00218         EVT VT = ValueVTs[vti];
00219         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
00220         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
00221         for (unsigned i = 0; i != NumRegisters; ++i)
00222           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
00223         PHIReg += NumRegisters;
00224       }
00225     }
00226   }
00227 
00228   // Mark landing pad blocks.
00229   for (BB = Fn->begin(); BB != EB; ++BB)
00230     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
00231       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
00232 }
00233 
00234 /// clear - Clear out all the function-specific state. This returns this
00235 /// FunctionLoweringInfo to an empty state, ready to be used for a
00236 /// different function.
00237 void FunctionLoweringInfo::clear() {
00238   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
00239          "Not all catch info was assigned to a landing pad!");
00240 
00241   MBBMap.clear();
00242   ValueMap.clear();
00243   StaticAllocaMap.clear();
00244 #ifndef NDEBUG
00245   CatchInfoLost.clear();
00246   CatchInfoFound.clear();
00247 #endif
00248   LiveOutRegInfo.clear();
00249   VisitedBBs.clear();
00250   ArgDbgValues.clear();
00251   ByValArgFrameIndexMap.clear();
00252   RegFixups.clear();
00253 }
00254 
00255 /// CreateReg - Allocate a single virtual register for the given type.
00256 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
00257   return RegInfo->createVirtualRegister(
00258       TM.getSubtargetImpl()->getTargetLowering()->getRegClassFor(VT));
00259 }
00260 
00261 /// CreateRegs - Allocate the appropriate number of virtual registers of
00262 /// the correctly promoted or expanded types.  Assign these registers
00263 /// consecutive vreg numbers and return the first assigned number.
00264 ///
00265 /// In the case that the given value has struct or array type, this function
00266 /// will assign registers for each member or element.
00267 ///
00268 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
00269   const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
00270 
00271   SmallVector<EVT, 4> ValueVTs;
00272   ComputeValueVTs(*TLI, Ty, ValueVTs);
00273 
00274   unsigned FirstReg = 0;
00275   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
00276     EVT ValueVT = ValueVTs[Value];
00277     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
00278 
00279     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
00280     for (unsigned i = 0; i != NumRegs; ++i) {
00281       unsigned R = CreateReg(RegisterVT);
00282       if (!FirstReg) FirstReg = R;
00283     }
00284   }
00285   return FirstReg;
00286 }
00287 
00288 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
00289 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
00290 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
00291 /// the larger bit width by zero extension. The bit width must be no smaller
00292 /// than the LiveOutInfo's existing bit width.
00293 const FunctionLoweringInfo::LiveOutInfo *
00294 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
00295   if (!LiveOutRegInfo.inBounds(Reg))
00296     return nullptr;
00297 
00298   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
00299   if (!LOI->IsValid)
00300     return nullptr;
00301 
00302   if (BitWidth > LOI->KnownZero.getBitWidth()) {
00303     LOI->NumSignBits = 1;
00304     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
00305     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
00306   }
00307 
00308   return LOI;
00309 }
00310 
00311 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
00312 /// register based on the LiveOutInfo of its operands.
00313 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
00314   Type *Ty = PN->getType();
00315   if (!Ty->isIntegerTy() || Ty->isVectorTy())
00316     return;
00317 
00318   const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
00319 
00320   SmallVector<EVT, 1> ValueVTs;
00321   ComputeValueVTs(*TLI, Ty, ValueVTs);
00322   assert(ValueVTs.size() == 1 &&
00323          "PHIs with non-vector integer types should have a single VT.");
00324   EVT IntVT = ValueVTs[0];
00325 
00326   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
00327     return;
00328   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
00329   unsigned BitWidth = IntVT.getSizeInBits();
00330 
00331   unsigned DestReg = ValueMap[PN];
00332   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
00333     return;
00334   LiveOutRegInfo.grow(DestReg);
00335   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
00336 
00337   Value *V = PN->getIncomingValue(0);
00338   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
00339     DestLOI.NumSignBits = 1;
00340     APInt Zero(BitWidth, 0);
00341     DestLOI.KnownZero = Zero;
00342     DestLOI.KnownOne = Zero;
00343     return;
00344   }
00345 
00346   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
00347     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
00348     DestLOI.NumSignBits = Val.getNumSignBits();
00349     DestLOI.KnownZero = ~Val;
00350     DestLOI.KnownOne = Val;
00351   } else {
00352     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
00353                                 "CopyToReg node was created.");
00354     unsigned SrcReg = ValueMap[V];
00355     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
00356       DestLOI.IsValid = false;
00357       return;
00358     }
00359     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
00360     if (!SrcLOI) {
00361       DestLOI.IsValid = false;
00362       return;
00363     }
00364     DestLOI = *SrcLOI;
00365   }
00366 
00367   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
00368          DestLOI.KnownOne.getBitWidth() == BitWidth &&
00369          "Masks should have the same bit width as the type.");
00370 
00371   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
00372     Value *V = PN->getIncomingValue(i);
00373     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
00374       DestLOI.NumSignBits = 1;
00375       APInt Zero(BitWidth, 0);
00376       DestLOI.KnownZero = Zero;
00377       DestLOI.KnownOne = Zero;
00378       return;
00379     }
00380 
00381     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
00382       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
00383       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
00384       DestLOI.KnownZero &= ~Val;
00385       DestLOI.KnownOne &= Val;
00386       continue;
00387     }
00388 
00389     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
00390                                 "its CopyToReg node was created.");
00391     unsigned SrcReg = ValueMap[V];
00392     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
00393       DestLOI.IsValid = false;
00394       return;
00395     }
00396     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
00397     if (!SrcLOI) {
00398       DestLOI.IsValid = false;
00399       return;
00400     }
00401     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
00402     DestLOI.KnownZero &= SrcLOI->KnownZero;
00403     DestLOI.KnownOne &= SrcLOI->KnownOne;
00404   }
00405 }
00406 
00407 /// setArgumentFrameIndex - Record frame index for the byval
00408 /// argument. This overrides previous frame index entry for this argument,
00409 /// if any.
00410 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
00411                                                  int FI) {
00412   ByValArgFrameIndexMap[A] = FI;
00413 }
00414 
00415 /// getArgumentFrameIndex - Get frame index for the byval argument.
00416 /// If the argument does not have any assigned frame index then 0 is
00417 /// returned.
00418 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
00419   DenseMap<const Argument *, int>::iterator I =
00420     ByValArgFrameIndexMap.find(A);
00421   if (I != ByValArgFrameIndexMap.end())
00422     return I->second;
00423   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
00424   return 0;
00425 }
00426 
00427 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
00428 /// being passed to this variadic function, and set the MachineModuleInfo's
00429 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
00430 /// reference to _fltused on Windows, which will link in MSVCRT's
00431 /// floating-point support.
00432 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
00433                                       MachineModuleInfo *MMI)
00434 {
00435   FunctionType *FT = cast<FunctionType>(
00436     I.getCalledValue()->getType()->getContainedType(0));
00437   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
00438     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
00439       Type* T = I.getArgOperand(i)->getType();
00440       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
00441            i != e; ++i) {
00442         if (i->isFloatingPointTy()) {
00443           MMI->setUsesVAFloatArgument(true);
00444           return;
00445         }
00446       }
00447     }
00448   }
00449 }
00450 
00451 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
00452 /// call, and add them to the specified machine basic block.
00453 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
00454                         MachineBasicBlock *MBB) {
00455   // Inform the MachineModuleInfo of the personality for this landing pad.
00456   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
00457   assert(CE->getOpcode() == Instruction::BitCast &&
00458          isa<Function>(CE->getOperand(0)) &&
00459          "Personality should be a function");
00460   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
00461 
00462   // Gather all the type infos for this landing pad and pass them along to
00463   // MachineModuleInfo.
00464   std::vector<const GlobalVariable *> TyInfo;
00465   unsigned N = I.getNumArgOperands();
00466 
00467   for (unsigned i = N - 1; i > 1; --i) {
00468     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
00469       unsigned FilterLength = CI->getZExtValue();
00470       unsigned FirstCatch = i + FilterLength + !FilterLength;
00471       assert(FirstCatch <= N && "Invalid filter length");
00472 
00473       if (FirstCatch < N) {
00474         TyInfo.reserve(N - FirstCatch);
00475         for (unsigned j = FirstCatch; j < N; ++j)
00476           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
00477         MMI->addCatchTypeInfo(MBB, TyInfo);
00478         TyInfo.clear();
00479       }
00480 
00481       if (!FilterLength) {
00482         // Cleanup.
00483         MMI->addCleanup(MBB);
00484       } else {
00485         // Filter.
00486         TyInfo.reserve(FilterLength - 1);
00487         for (unsigned j = i + 1; j < FirstCatch; ++j)
00488           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
00489         MMI->addFilterTypeInfo(MBB, TyInfo);
00490         TyInfo.clear();
00491       }
00492 
00493       N = i;
00494     }
00495   }
00496 
00497   if (N > 2) {
00498     TyInfo.reserve(N - 2);
00499     for (unsigned j = 2; j < N; ++j)
00500       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
00501     MMI->addCatchTypeInfo(MBB, TyInfo);
00502   }
00503 }
00504 
00505 /// AddLandingPadInfo - Extract the exception handling information from the
00506 /// landingpad instruction and add them to the specified machine module info.
00507 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
00508                              MachineBasicBlock *MBB) {
00509   MMI.addPersonality(MBB,
00510                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
00511 
00512   if (I.isCleanup())
00513     MMI.addCleanup(MBB);
00514 
00515   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
00516   //        but we need to do it this way because of how the DWARF EH emitter
00517   //        processes the clauses.
00518   for (unsigned i = I.getNumClauses(); i != 0; --i) {
00519     Value *Val = I.getClause(i - 1);
00520     if (I.isCatch(i - 1)) {
00521       MMI.addCatchTypeInfo(MBB,
00522                            dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
00523     } else {
00524       // Add filters in a list.
00525       Constant *CVal = cast<Constant>(Val);
00526       SmallVector<const GlobalVariable*, 4> FilterList;
00527       for (User::op_iterator
00528              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
00529         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
00530 
00531       MMI.addFilterTypeInfo(MBB, FilterList);
00532     }
00533   }
00534 }