LLVM API Documentation

NVPTXAsmPrinter.cpp
Go to the documentation of this file.
00001 //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file contains a printer that converts from our internal representation
00011 // of machine-dependent LLVM code to NVPTX assembly language.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "NVPTXAsmPrinter.h"
00016 #include "InstPrinter/NVPTXInstPrinter.h"
00017 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
00018 #include "NVPTX.h"
00019 #include "NVPTXInstrInfo.h"
00020 #include "NVPTXMachineFunctionInfo.h"
00021 #include "NVPTXMCExpr.h"
00022 #include "NVPTXRegisterInfo.h"
00023 #include "NVPTXTargetMachine.h"
00024 #include "NVPTXUtilities.h"
00025 #include "cl_common_defines.h"
00026 #include "llvm/ADT/StringExtras.h"
00027 #include "llvm/Analysis/ConstantFolding.h"
00028 #include "llvm/CodeGen/Analysis.h"
00029 #include "llvm/CodeGen/MachineFrameInfo.h"
00030 #include "llvm/CodeGen/MachineModuleInfo.h"
00031 #include "llvm/CodeGen/MachineRegisterInfo.h"
00032 #include "llvm/IR/DebugInfo.h"
00033 #include "llvm/IR/DerivedTypes.h"
00034 #include "llvm/IR/Function.h"
00035 #include "llvm/IR/GlobalVariable.h"
00036 #include "llvm/IR/Mangler.h"
00037 #include "llvm/IR/Module.h"
00038 #include "llvm/IR/Operator.h"
00039 #include "llvm/MC/MCStreamer.h"
00040 #include "llvm/MC/MCSymbol.h"
00041 #include "llvm/Support/CommandLine.h"
00042 #include "llvm/Support/ErrorHandling.h"
00043 #include "llvm/Support/FormattedStream.h"
00044 #include "llvm/Support/Path.h"
00045 #include "llvm/Support/TargetRegistry.h"
00046 #include "llvm/Support/TimeValue.h"
00047 #include "llvm/Target/TargetLoweringObjectFile.h"
00048 #include <sstream>
00049 using namespace llvm;
00050 
00051 #define DEPOTNAME "__local_depot"
00052 
00053 static cl::opt<bool>
00054 EmitLineNumbers("nvptx-emit-line-numbers", cl::Hidden,
00055                 cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
00056                 cl::init(true));
00057 
00058 static cl::opt<bool>
00059 InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore, cl::Hidden,
00060               cl::desc("NVPTX Specific: Emit source line in ptx file"),
00061               cl::init(false));
00062 
00063 namespace {
00064 /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
00065 /// depends.
00066 void DiscoverDependentGlobals(const Value *V,
00067                               DenseSet<const GlobalVariable *> &Globals) {
00068   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
00069     Globals.insert(GV);
00070   else {
00071     if (const User *U = dyn_cast<User>(V)) {
00072       for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
00073         DiscoverDependentGlobals(U->getOperand(i), Globals);
00074       }
00075     }
00076   }
00077 }
00078 
00079 /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
00080 /// instances to be emitted, but only after any dependents have been added
00081 /// first.
00082 void VisitGlobalVariableForEmission(
00083     const GlobalVariable *GV, SmallVectorImpl<const GlobalVariable *> &Order,
00084     DenseSet<const GlobalVariable *> &Visited,
00085     DenseSet<const GlobalVariable *> &Visiting) {
00086   // Have we already visited this one?
00087   if (Visited.count(GV))
00088     return;
00089 
00090   // Do we have a circular dependency?
00091   if (Visiting.count(GV))
00092     report_fatal_error("Circular dependency found in global variable set");
00093 
00094   // Start visiting this global
00095   Visiting.insert(GV);
00096 
00097   // Make sure we visit all dependents first
00098   DenseSet<const GlobalVariable *> Others;
00099   for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
00100     DiscoverDependentGlobals(GV->getOperand(i), Others);
00101 
00102   for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
00103                                                   E = Others.end();
00104        I != E; ++I)
00105     VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
00106 
00107   // Now we can visit ourself
00108   Order.push_back(GV);
00109   Visited.insert(GV);
00110   Visiting.erase(GV);
00111 }
00112 }
00113 
00114 // @TODO: This is a copy from AsmPrinter.cpp.  The function is static, so we
00115 // cannot just link to the existing version.
00116 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
00117 ///
00118 using namespace nvptx;
00119 const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
00120   MCContext &Ctx = AP.OutContext;
00121 
00122   if (CV->isNullValue() || isa<UndefValue>(CV))
00123     return MCConstantExpr::Create(0, Ctx);
00124 
00125   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
00126     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
00127 
00128   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
00129     return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
00130 
00131   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
00132     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
00133 
00134   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
00135   if (!CE)
00136     llvm_unreachable("Unknown constant value to lower!");
00137 
00138   switch (CE->getOpcode()) {
00139   default:
00140     // If the code isn't optimized, there may be outstanding folding
00141     // opportunities. Attempt to fold the expression using DataLayout as a
00142     // last resort before giving up.
00143     if (Constant *C = ConstantFoldConstantExpression(
00144             CE, AP.TM.getSubtargetImpl()->getDataLayout()))
00145       if (C != CE)
00146         return LowerConstant(C, AP);
00147 
00148     // Otherwise report the problem to the user.
00149     {
00150       std::string S;
00151       raw_string_ostream OS(S);
00152       OS << "Unsupported expression in static initializer: ";
00153       CE->printAsOperand(OS, /*PrintType=*/ false,
00154                          !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
00155       report_fatal_error(OS.str());
00156     }
00157   case Instruction::AddrSpaceCast: {
00158     // Strip any addrspace(1)->addrspace(0) addrspace casts. These will be
00159     // handled by the generic() logic in the MCExpr printer
00160     PointerType *DstTy            = cast<PointerType>(CE->getType());
00161     PointerType *SrcTy            = cast<PointerType>(CE->getOperand(0)->getType());
00162     if (SrcTy->getAddressSpace() == 1 && DstTy->getAddressSpace() == 0) {
00163       return LowerConstant(cast<const Constant>(CE->getOperand(0)), AP);
00164     }
00165     std::string S;
00166     raw_string_ostream OS(S);
00167     OS << "Unsupported expression in static initializer: ";
00168     CE->printAsOperand(OS, /*PrintType=*/ false,
00169                        !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
00170     report_fatal_error(OS.str());
00171   }
00172   case Instruction::GetElementPtr: {
00173     const DataLayout &TD = *AP.TM.getSubtargetImpl()->getDataLayout();
00174     // Generate a symbolic expression for the byte address
00175     APInt OffsetAI(TD.getPointerSizeInBits(), 0);
00176     cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
00177 
00178     const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
00179     if (!OffsetAI)
00180       return Base;
00181 
00182     int64_t Offset = OffsetAI.getSExtValue();
00183     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
00184                                    Ctx);
00185   }
00186 
00187   case Instruction::Trunc:
00188     // We emit the value and depend on the assembler to truncate the generated
00189     // expression properly.  This is important for differences between
00190     // blockaddress labels.  Since the two labels are in the same function, it
00191     // is reasonable to treat their delta as a 32-bit value.
00192   // FALL THROUGH.
00193   case Instruction::BitCast:
00194     return LowerConstant(CE->getOperand(0), AP);
00195 
00196   case Instruction::IntToPtr: {
00197     const DataLayout &TD = *AP.TM.getSubtargetImpl()->getDataLayout();
00198     // Handle casts to pointers by changing them into casts to the appropriate
00199     // integer type.  This promotes constant folding and simplifies this code.
00200     Constant *Op = CE->getOperand(0);
00201     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
00202                                       false /*ZExt*/);
00203     return LowerConstant(Op, AP);
00204   }
00205 
00206   case Instruction::PtrToInt: {
00207     const DataLayout &TD = *AP.TM.getSubtargetImpl()->getDataLayout();
00208     // Support only foldable casts to/from pointers that can be eliminated by
00209     // changing the pointer to the appropriately sized integer type.
00210     Constant *Op = CE->getOperand(0);
00211     Type *Ty = CE->getType();
00212 
00213     const MCExpr *OpExpr = LowerConstant(Op, AP);
00214 
00215     // We can emit the pointer value into this slot if the slot is an
00216     // integer slot equal to the size of the pointer.
00217     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
00218       return OpExpr;
00219 
00220     // Otherwise the pointer is smaller than the resultant integer, mask off
00221     // the high bits so we are sure to get a proper truncation if the input is
00222     // a constant expr.
00223     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
00224     const MCExpr *MaskExpr =
00225         MCConstantExpr::Create(~0ULL >> (64 - InBits), Ctx);
00226     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
00227   }
00228 
00229     // The MC library also has a right-shift operator, but it isn't consistently
00230   // signed or unsigned between different targets.
00231   case Instruction::Add:
00232   case Instruction::Sub:
00233   case Instruction::Mul:
00234   case Instruction::SDiv:
00235   case Instruction::SRem:
00236   case Instruction::Shl:
00237   case Instruction::And:
00238   case Instruction::Or:
00239   case Instruction::Xor: {
00240     const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
00241     const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
00242     switch (CE->getOpcode()) {
00243     default:
00244       llvm_unreachable("Unknown binary operator constant cast expr");
00245     case Instruction::Add:
00246       return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
00247     case Instruction::Sub:
00248       return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
00249     case Instruction::Mul:
00250       return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
00251     case Instruction::SDiv:
00252       return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
00253     case Instruction::SRem:
00254       return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
00255     case Instruction::Shl:
00256       return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
00257     case Instruction::And:
00258       return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
00259     case Instruction::Or:
00260       return MCBinaryExpr::CreateOr(LHS, RHS, Ctx);
00261     case Instruction::Xor:
00262       return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
00263     }
00264   }
00265   }
00266 }
00267 
00268 void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
00269   if (!EmitLineNumbers)
00270     return;
00271   if (ignoreLoc(MI))
00272     return;
00273 
00274   DebugLoc curLoc = MI.getDebugLoc();
00275 
00276   if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
00277     return;
00278 
00279   if (prevDebugLoc == curLoc)
00280     return;
00281 
00282   prevDebugLoc = curLoc;
00283 
00284   if (curLoc.isUnknown())
00285     return;
00286 
00287   const MachineFunction *MF = MI.getParent()->getParent();
00288   //const TargetMachine &TM = MF->getTarget();
00289 
00290   const LLVMContext &ctx = MF->getFunction()->getContext();
00291   DIScope Scope(curLoc.getScope(ctx));
00292 
00293   assert((!Scope || Scope.isScope()) &&
00294     "Scope of a DebugLoc should be null or a DIScope.");
00295   if (!Scope)
00296      return;
00297 
00298   StringRef fileName(Scope.getFilename());
00299   StringRef dirName(Scope.getDirectory());
00300   SmallString<128> FullPathName = dirName;
00301   if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
00302     sys::path::append(FullPathName, fileName);
00303     fileName = FullPathName.str();
00304   }
00305 
00306   if (filenameMap.find(fileName.str()) == filenameMap.end())
00307     return;
00308 
00309   // Emit the line from the source file.
00310   if (InterleaveSrc)
00311     this->emitSrcInText(fileName.str(), curLoc.getLine());
00312 
00313   std::stringstream temp;
00314   temp << "\t.loc " << filenameMap[fileName.str()] << " " << curLoc.getLine()
00315        << " " << curLoc.getCol();
00316   OutStreamer.EmitRawText(Twine(temp.str().c_str()));
00317 }
00318 
00319 void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
00320   SmallString<128> Str;
00321   raw_svector_ostream OS(Str);
00322   if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
00323     emitLineNumberAsDotLoc(*MI);
00324 
00325   MCInst Inst;
00326   lowerToMCInst(MI, Inst);
00327   EmitToStreamer(OutStreamer, Inst);
00328 }
00329 
00330 // Handle symbol backtracking for targets that do not support image handles
00331 bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
00332                                            unsigned OpNo, MCOperand &MCOp) {
00333   const MachineOperand &MO = MI->getOperand(OpNo);
00334   const MCInstrDesc &MCID = MI->getDesc();
00335 
00336   if (MCID.TSFlags & NVPTXII::IsTexFlag) {
00337     // This is a texture fetch, so operand 4 is a texref and operand 5 is
00338     // a samplerref
00339     if (OpNo == 4 && MO.isImm()) {
00340       lowerImageHandleSymbol(MO.getImm(), MCOp);
00341       return true;
00342     }
00343     if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
00344       lowerImageHandleSymbol(MO.getImm(), MCOp);
00345       return true;
00346     }
00347 
00348     return false;
00349   } else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
00350     unsigned VecSize =
00351       1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
00352 
00353     // For a surface load of vector size N, the Nth operand will be the surfref
00354     if (OpNo == VecSize && MO.isImm()) {
00355       lowerImageHandleSymbol(MO.getImm(), MCOp);
00356       return true;
00357     }
00358 
00359     return false;
00360   } else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
00361     // This is a surface store, so operand 0 is a surfref
00362     if (OpNo == 0 && MO.isImm()) {
00363       lowerImageHandleSymbol(MO.getImm(), MCOp);
00364       return true;
00365     }
00366 
00367     return false;
00368   } else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
00369     // This is a query, so operand 1 is a surfref/texref
00370     if (OpNo == 1 && MO.isImm()) {
00371       lowerImageHandleSymbol(MO.getImm(), MCOp);
00372       return true;
00373     }
00374 
00375     return false;
00376   }
00377 
00378   return false;
00379 }
00380 
00381 void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
00382   // Ewwww
00383   TargetMachine &TM = const_cast<TargetMachine&>(MF->getTarget());
00384   NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
00385   const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
00386   const char *Sym = MFI->getImageHandleSymbol(Index);
00387   std::string *SymNamePtr =
00388     nvTM.getManagedStrPool()->getManagedString(Sym);
00389   MCOp = GetSymbolRef(OutContext.GetOrCreateSymbol(
00390     StringRef(SymNamePtr->c_str())));
00391 }
00392 
00393 void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
00394   OutMI.setOpcode(MI->getOpcode());
00395   const NVPTXSubtarget &ST = TM.getSubtarget<NVPTXSubtarget>();
00396 
00397   // Special: Do not mangle symbol operand of CALL_PROTOTYPE
00398   if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
00399     const MachineOperand &MO = MI->getOperand(0);
00400     OutMI.addOperand(GetSymbolRef(
00401       OutContext.GetOrCreateSymbol(Twine(MO.getSymbolName()))));
00402     return;
00403   }
00404 
00405   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
00406     const MachineOperand &MO = MI->getOperand(i);
00407 
00408     MCOperand MCOp;
00409     if (!ST.hasImageHandles()) {
00410       if (lowerImageHandleOperand(MI, i, MCOp)) {
00411         OutMI.addOperand(MCOp);
00412         continue;
00413       }
00414     }
00415 
00416     if (lowerOperand(MO, MCOp))
00417       OutMI.addOperand(MCOp);
00418   }
00419 }
00420 
00421 bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
00422                                    MCOperand &MCOp) {
00423   switch (MO.getType()) {
00424   default: llvm_unreachable("unknown operand type");
00425   case MachineOperand::MO_Register:
00426     MCOp = MCOperand::CreateReg(encodeVirtualRegister(MO.getReg()));
00427     break;
00428   case MachineOperand::MO_Immediate:
00429     MCOp = MCOperand::CreateImm(MO.getImm());
00430     break;
00431   case MachineOperand::MO_MachineBasicBlock:
00432     MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
00433         MO.getMBB()->getSymbol(), OutContext));
00434     break;
00435   case MachineOperand::MO_ExternalSymbol:
00436     MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
00437     break;
00438   case MachineOperand::MO_GlobalAddress:
00439     MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
00440     break;
00441   case MachineOperand::MO_FPImmediate: {
00442     const ConstantFP *Cnt = MO.getFPImm();
00443     APFloat Val = Cnt->getValueAPF();
00444 
00445     switch (Cnt->getType()->getTypeID()) {
00446     default: report_fatal_error("Unsupported FP type"); break;
00447     case Type::FloatTyID:
00448       MCOp = MCOperand::CreateExpr(
00449         NVPTXFloatMCExpr::CreateConstantFPSingle(Val, OutContext));
00450       break;
00451     case Type::DoubleTyID:
00452       MCOp = MCOperand::CreateExpr(
00453         NVPTXFloatMCExpr::CreateConstantFPDouble(Val, OutContext));
00454       break;
00455     }
00456     break;
00457   }
00458   }
00459   return true;
00460 }
00461 
00462 unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
00463   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
00464     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
00465 
00466     DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
00467     unsigned RegNum = RegMap[Reg];
00468 
00469     // Encode the register class in the upper 4 bits
00470     // Must be kept in sync with NVPTXInstPrinter::printRegName
00471     unsigned Ret = 0;
00472     if (RC == &NVPTX::Int1RegsRegClass) {
00473       Ret = (1 << 28);
00474     } else if (RC == &NVPTX::Int16RegsRegClass) {
00475       Ret = (2 << 28);
00476     } else if (RC == &NVPTX::Int32RegsRegClass) {
00477       Ret = (3 << 28);
00478     } else if (RC == &NVPTX::Int64RegsRegClass) {
00479       Ret = (4 << 28);
00480     } else if (RC == &NVPTX::Float32RegsRegClass) {
00481       Ret = (5 << 28);
00482     } else if (RC == &NVPTX::Float64RegsRegClass) {
00483       Ret = (6 << 28);
00484     } else {
00485       report_fatal_error("Bad register class");
00486     }
00487 
00488     // Insert the vreg number
00489     Ret |= (RegNum & 0x0FFFFFFF);
00490     return Ret;
00491   } else {
00492     // Some special-use registers are actually physical registers.
00493     // Encode this as the register class ID of 0 and the real register ID.
00494     return Reg & 0x0FFFFFFF;
00495   }
00496 }
00497 
00498 MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
00499   const MCExpr *Expr;
00500   Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None,
00501                                  OutContext);
00502   return MCOperand::CreateExpr(Expr);
00503 }
00504 
00505 void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
00506   const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
00507   const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
00508 
00509   Type *Ty = F->getReturnType();
00510 
00511   bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
00512 
00513   if (Ty->getTypeID() == Type::VoidTyID)
00514     return;
00515 
00516   O << " (";
00517 
00518   if (isABI) {
00519     if (Ty->isFloatingPointTy() || Ty->isIntegerTy()) {
00520       unsigned size = 0;
00521       if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
00522         size = ITy->getBitWidth();
00523         if (size < 32)
00524           size = 32;
00525       } else {
00526         assert(Ty->isFloatingPointTy() && "Floating point type expected here");
00527         size = Ty->getPrimitiveSizeInBits();
00528       }
00529 
00530       O << ".param .b" << size << " func_retval0";
00531     } else if (isa<PointerType>(Ty)) {
00532       O << ".param .b" << TLI->getPointerTy().getSizeInBits()
00533         << " func_retval0";
00534     } else {
00535       if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
00536         unsigned totalsz = TD->getTypeAllocSize(Ty);
00537         unsigned retAlignment = 0;
00538         if (!llvm::getAlign(*F, 0, retAlignment))
00539           retAlignment = TD->getABITypeAlignment(Ty);
00540         O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
00541           << "]";
00542       } else
00543         assert(false && "Unknown return type");
00544     }
00545   } else {
00546     SmallVector<EVT, 16> vtparts;
00547     ComputeValueVTs(*TLI, Ty, vtparts);
00548     unsigned idx = 0;
00549     for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
00550       unsigned elems = 1;
00551       EVT elemtype = vtparts[i];
00552       if (vtparts[i].isVector()) {
00553         elems = vtparts[i].getVectorNumElements();
00554         elemtype = vtparts[i].getVectorElementType();
00555       }
00556 
00557       for (unsigned j = 0, je = elems; j != je; ++j) {
00558         unsigned sz = elemtype.getSizeInBits();
00559         if (elemtype.isInteger() && (sz < 32))
00560           sz = 32;
00561         O << ".reg .b" << sz << " func_retval" << idx;
00562         if (j < je - 1)
00563           O << ", ";
00564         ++idx;
00565       }
00566       if (i < e - 1)
00567         O << ", ";
00568     }
00569   }
00570   O << ") ";
00571   return;
00572 }
00573 
00574 void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
00575                                         raw_ostream &O) {
00576   const Function *F = MF.getFunction();
00577   printReturnValStr(F, O);
00578 }
00579 
00580 void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
00581   SmallString<128> Str;
00582   raw_svector_ostream O(Str);
00583 
00584   if (!GlobalsEmitted) {
00585     emitGlobals(*MF->getFunction()->getParent());
00586     GlobalsEmitted = true;
00587   }
00588   
00589   // Set up
00590   MRI = &MF->getRegInfo();
00591   F = MF->getFunction();
00592   emitLinkageDirective(F, O);
00593   if (llvm::isKernelFunction(*F))
00594     O << ".entry ";
00595   else {
00596     O << ".func ";
00597     printReturnValStr(*MF, O);
00598   }
00599 
00600   O << *CurrentFnSym;
00601 
00602   emitFunctionParamList(*MF, O);
00603 
00604   if (llvm::isKernelFunction(*F))
00605     emitKernelFunctionDirectives(*F, O);
00606 
00607   OutStreamer.EmitRawText(O.str());
00608 
00609   prevDebugLoc = DebugLoc();
00610 }
00611 
00612 void NVPTXAsmPrinter::EmitFunctionBodyStart() {
00613   VRegMapping.clear();
00614   OutStreamer.EmitRawText(StringRef("{\n"));
00615   setAndEmitFunctionVirtualRegisters(*MF);
00616 
00617   SmallString<128> Str;
00618   raw_svector_ostream O(Str);
00619   emitDemotedVars(MF->getFunction(), O);
00620   OutStreamer.EmitRawText(O.str());
00621 }
00622 
00623 void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
00624   OutStreamer.EmitRawText(StringRef("}\n"));
00625   VRegMapping.clear();
00626 }
00627 
00628 void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
00629   unsigned RegNo = MI->getOperand(0).getReg();
00630   const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
00631   if (TRI->isVirtualRegister(RegNo)) {
00632     OutStreamer.AddComment(Twine("implicit-def: ") +
00633                            getVirtualRegisterName(RegNo));
00634   } else {
00635     OutStreamer.AddComment(
00636         Twine("implicit-def: ") +
00637         TM.getSubtargetImpl()->getRegisterInfo()->getName(RegNo));
00638   }
00639   OutStreamer.AddBlankLine();
00640 }
00641 
00642 void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
00643                                                    raw_ostream &O) const {
00644   // If the NVVM IR has some of reqntid* specified, then output
00645   // the reqntid directive, and set the unspecified ones to 1.
00646   // If none of reqntid* is specified, don't output reqntid directive.
00647   unsigned reqntidx, reqntidy, reqntidz;
00648   bool specified = false;
00649   if (llvm::getReqNTIDx(F, reqntidx) == false)
00650     reqntidx = 1;
00651   else
00652     specified = true;
00653   if (llvm::getReqNTIDy(F, reqntidy) == false)
00654     reqntidy = 1;
00655   else
00656     specified = true;
00657   if (llvm::getReqNTIDz(F, reqntidz) == false)
00658     reqntidz = 1;
00659   else
00660     specified = true;
00661 
00662   if (specified)
00663     O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
00664       << "\n";
00665 
00666   // If the NVVM IR has some of maxntid* specified, then output
00667   // the maxntid directive, and set the unspecified ones to 1.
00668   // If none of maxntid* is specified, don't output maxntid directive.
00669   unsigned maxntidx, maxntidy, maxntidz;
00670   specified = false;
00671   if (llvm::getMaxNTIDx(F, maxntidx) == false)
00672     maxntidx = 1;
00673   else
00674     specified = true;
00675   if (llvm::getMaxNTIDy(F, maxntidy) == false)
00676     maxntidy = 1;
00677   else
00678     specified = true;
00679   if (llvm::getMaxNTIDz(F, maxntidz) == false)
00680     maxntidz = 1;
00681   else
00682     specified = true;
00683 
00684   if (specified)
00685     O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
00686       << "\n";
00687 
00688   unsigned mincta;
00689   if (llvm::getMinCTASm(F, mincta))
00690     O << ".minnctapersm " << mincta << "\n";
00691 }
00692 
00693 std::string
00694 NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
00695   const TargetRegisterClass *RC = MRI->getRegClass(Reg);
00696 
00697   std::string Name;
00698   raw_string_ostream NameStr(Name);
00699 
00700   VRegRCMap::const_iterator I = VRegMapping.find(RC);
00701   assert(I != VRegMapping.end() && "Bad register class");
00702   const DenseMap<unsigned, unsigned> &RegMap = I->second;
00703 
00704   VRegMap::const_iterator VI = RegMap.find(Reg);
00705   assert(VI != RegMap.end() && "Bad virtual register");
00706   unsigned MappedVR = VI->second;
00707 
00708   NameStr << getNVPTXRegClassStr(RC) << MappedVR;
00709 
00710   NameStr.flush();
00711   return Name;
00712 }
00713 
00714 void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
00715                                           raw_ostream &O) {
00716   O << getVirtualRegisterName(vr);
00717 }
00718 
00719 void NVPTXAsmPrinter::printVecModifiedImmediate(
00720     const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
00721   static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
00722   int Imm = (int) MO.getImm();
00723   if (0 == strcmp(Modifier, "vecelem"))
00724     O << "_" << vecelem[Imm];
00725   else if (0 == strcmp(Modifier, "vecv4comm1")) {
00726     if ((Imm < 0) || (Imm > 3))
00727       O << "//";
00728   } else if (0 == strcmp(Modifier, "vecv4comm2")) {
00729     if ((Imm < 4) || (Imm > 7))
00730       O << "//";
00731   } else if (0 == strcmp(Modifier, "vecv4pos")) {
00732     if (Imm < 0)
00733       Imm = 0;
00734     O << "_" << vecelem[Imm % 4];
00735   } else if (0 == strcmp(Modifier, "vecv2comm1")) {
00736     if ((Imm < 0) || (Imm > 1))
00737       O << "//";
00738   } else if (0 == strcmp(Modifier, "vecv2comm2")) {
00739     if ((Imm < 2) || (Imm > 3))
00740       O << "//";
00741   } else if (0 == strcmp(Modifier, "vecv2pos")) {
00742     if (Imm < 0)
00743       Imm = 0;
00744     O << "_" << vecelem[Imm % 2];
00745   } else
00746     llvm_unreachable("Unknown Modifier on immediate operand");
00747 }
00748 
00749 
00750 
00751 void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
00752 
00753   emitLinkageDirective(F, O);
00754   if (llvm::isKernelFunction(*F))
00755     O << ".entry ";
00756   else
00757     O << ".func ";
00758   printReturnValStr(F, O);
00759   O << *getSymbol(F) << "\n";
00760   emitFunctionParamList(F, O);
00761   O << ";\n";
00762 }
00763 
00764 static bool usedInGlobalVarDef(const Constant *C) {
00765   if (!C)
00766     return false;
00767 
00768   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
00769     if (GV->getName().str() == "llvm.used")
00770       return false;
00771     return true;
00772   }
00773 
00774   for (const User *U : C->users())
00775     if (const Constant *C = dyn_cast<Constant>(U))
00776       if (usedInGlobalVarDef(C))
00777         return true;
00778 
00779   return false;
00780 }
00781 
00782 static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
00783   if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
00784     if (othergv->getName().str() == "llvm.used")
00785       return true;
00786   }
00787 
00788   if (const Instruction *instr = dyn_cast<Instruction>(U)) {
00789     if (instr->getParent() && instr->getParent()->getParent()) {
00790       const Function *curFunc = instr->getParent()->getParent();
00791       if (oneFunc && (curFunc != oneFunc))
00792         return false;
00793       oneFunc = curFunc;
00794       return true;
00795     } else
00796       return false;
00797   }
00798 
00799   if (const MDNode *md = dyn_cast<MDNode>(U))
00800     if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
00801                           (md->getName().str() == "llvm.dbg.sp")))
00802       return true;
00803 
00804   for (const User *UU : U->users())
00805     if (usedInOneFunc(UU, oneFunc) == false)
00806       return false;
00807 
00808   return true;
00809 }
00810 
00811 /* Find out if a global variable can be demoted to local scope.
00812  * Currently, this is valid for CUDA shared variables, which have local
00813  * scope and global lifetime. So the conditions to check are :
00814  * 1. Is the global variable in shared address space?
00815  * 2. Does it have internal linkage?
00816  * 3. Is the global variable referenced only in one function?
00817  */
00818 static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
00819   if (gv->hasInternalLinkage() == false)
00820     return false;
00821   const PointerType *Pty = gv->getType();
00822   if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
00823     return false;
00824 
00825   const Function *oneFunc = nullptr;
00826 
00827   bool flag = usedInOneFunc(gv, oneFunc);
00828   if (flag == false)
00829     return false;
00830   if (!oneFunc)
00831     return false;
00832   f = oneFunc;
00833   return true;
00834 }
00835 
00836 static bool useFuncSeen(const Constant *C,
00837                         llvm::DenseMap<const Function *, bool> &seenMap) {
00838   for (const User *U : C->users()) {
00839     if (const Constant *cu = dyn_cast<Constant>(U)) {
00840       if (useFuncSeen(cu, seenMap))
00841         return true;
00842     } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
00843       const BasicBlock *bb = I->getParent();
00844       if (!bb)
00845         continue;
00846       const Function *caller = bb->getParent();
00847       if (!caller)
00848         continue;
00849       if (seenMap.find(caller) != seenMap.end())
00850         return true;
00851     }
00852   }
00853   return false;
00854 }
00855 
00856 void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
00857   llvm::DenseMap<const Function *, bool> seenMap;
00858   for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
00859     const Function *F = FI;
00860 
00861     if (F->isDeclaration()) {
00862       if (F->use_empty())
00863         continue;
00864       if (F->getIntrinsicID())
00865         continue;
00866       emitDeclaration(F, O);
00867       continue;
00868     }
00869     for (const User *U : F->users()) {
00870       if (const Constant *C = dyn_cast<Constant>(U)) {
00871         if (usedInGlobalVarDef(C)) {
00872           // The use is in the initialization of a global variable
00873           // that is a function pointer, so print a declaration
00874           // for the original function
00875           emitDeclaration(F, O);
00876           break;
00877         }
00878         // Emit a declaration of this function if the function that
00879         // uses this constant expr has already been seen.
00880         if (useFuncSeen(C, seenMap)) {
00881           emitDeclaration(F, O);
00882           break;
00883         }
00884       }
00885 
00886       if (!isa<Instruction>(U))
00887         continue;
00888       const Instruction *instr = cast<Instruction>(U);
00889       const BasicBlock *bb = instr->getParent();
00890       if (!bb)
00891         continue;
00892       const Function *caller = bb->getParent();
00893       if (!caller)
00894         continue;
00895 
00896       // If a caller has already been seen, then the caller is
00897       // appearing in the module before the callee. so print out
00898       // a declaration for the callee.
00899       if (seenMap.find(caller) != seenMap.end()) {
00900         emitDeclaration(F, O);
00901         break;
00902       }
00903     }
00904     seenMap[F] = true;
00905   }
00906 }
00907 
00908 void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
00909   DebugInfoFinder DbgFinder;
00910   DbgFinder.processModule(M);
00911 
00912   unsigned i = 1;
00913   for (DICompileUnit DIUnit : DbgFinder.compile_units()) {
00914     StringRef Filename(DIUnit.getFilename());
00915     StringRef Dirname(DIUnit.getDirectory());
00916     SmallString<128> FullPathName = Dirname;
00917     if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
00918       sys::path::append(FullPathName, Filename);
00919       Filename = FullPathName.str();
00920     }
00921     if (filenameMap.find(Filename.str()) != filenameMap.end())
00922       continue;
00923     filenameMap[Filename.str()] = i;
00924     OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
00925     ++i;
00926   }
00927 
00928   for (DISubprogram SP : DbgFinder.subprograms()) {
00929     StringRef Filename(SP.getFilename());
00930     StringRef Dirname(SP.getDirectory());
00931     SmallString<128> FullPathName = Dirname;
00932     if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
00933       sys::path::append(FullPathName, Filename);
00934       Filename = FullPathName.str();
00935     }
00936     if (filenameMap.find(Filename.str()) != filenameMap.end())
00937       continue;
00938     filenameMap[Filename.str()] = i;
00939     ++i;
00940   }
00941 }
00942 
00943 bool NVPTXAsmPrinter::doInitialization(Module &M) {
00944 
00945   SmallString<128> Str1;
00946   raw_svector_ostream OS1(Str1);
00947 
00948   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
00949   MMI->AnalyzeModule(M);
00950 
00951   // We need to call the parent's one explicitly.
00952   //bool Result = AsmPrinter::doInitialization(M);
00953 
00954   // Initialize TargetLoweringObjectFile.
00955   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
00956       .Initialize(OutContext, TM);
00957 
00958   Mang = new Mangler(TM.getSubtargetImpl()->getDataLayout());
00959 
00960   // Emit header before any dwarf directives are emitted below.
00961   emitHeader(M, OS1);
00962   OutStreamer.EmitRawText(OS1.str());
00963 
00964   // Already commented out
00965   //bool Result = AsmPrinter::doInitialization(M);
00966 
00967   // Emit module-level inline asm if it exists.
00968   if (!M.getModuleInlineAsm().empty()) {
00969     OutStreamer.AddComment("Start of file scope inline assembly");
00970     OutStreamer.AddBlankLine();
00971     OutStreamer.EmitRawText(StringRef(M.getModuleInlineAsm()));
00972     OutStreamer.AddBlankLine();
00973     OutStreamer.AddComment("End of file scope inline assembly");
00974     OutStreamer.AddBlankLine();
00975   }
00976 
00977   if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
00978     recordAndEmitFilenames(M);
00979 
00980   GlobalsEmitted = false;
00981     
00982   return false; // success
00983 }
00984 
00985 void NVPTXAsmPrinter::emitGlobals(const Module &M) {
00986   SmallString<128> Str2;
00987   raw_svector_ostream OS2(Str2);
00988 
00989   emitDeclarations(M, OS2);
00990 
00991   // As ptxas does not support forward references of globals, we need to first
00992   // sort the list of module-level globals in def-use order. We visit each
00993   // global variable in order, and ensure that we emit it *after* its dependent
00994   // globals. We use a little extra memory maintaining both a set and a list to
00995   // have fast searches while maintaining a strict ordering.
00996   SmallVector<const GlobalVariable *, 8> Globals;
00997   DenseSet<const GlobalVariable *> GVVisited;
00998   DenseSet<const GlobalVariable *> GVVisiting;
00999 
01000   // Visit each global variable, in order
01001   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
01002        I != E; ++I)
01003     VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting);
01004 
01005   assert(GVVisited.size() == M.getGlobalList().size() &&
01006          "Missed a global variable");
01007   assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
01008 
01009   // Print out module-level global variables in proper order
01010   for (unsigned i = 0, e = Globals.size(); i != e; ++i)
01011     printModuleLevelGV(Globals[i], OS2);
01012 
01013   OS2 << '\n';
01014 
01015   OutStreamer.EmitRawText(OS2.str());
01016 }
01017 
01018 void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O) {
01019   O << "//\n";
01020   O << "// Generated by LLVM NVPTX Back-End\n";
01021   O << "//\n";
01022   O << "\n";
01023 
01024   unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
01025   O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
01026 
01027   O << ".target ";
01028   O << nvptxSubtarget.getTargetName();
01029 
01030   if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
01031     O << ", texmode_independent";
01032   if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
01033     if (!nvptxSubtarget.hasDouble())
01034       O << ", map_f64_to_f32";
01035   }
01036 
01037   if (MAI->doesSupportDebugInformation())
01038     O << ", debug";
01039 
01040   O << "\n";
01041 
01042   O << ".address_size ";
01043   if (nvptxSubtarget.is64Bit())
01044     O << "64";
01045   else
01046     O << "32";
01047   O << "\n";
01048 
01049   O << "\n";
01050 }
01051 
01052 bool NVPTXAsmPrinter::doFinalization(Module &M) {
01053 
01054   // If we did not emit any functions, then the global declarations have not
01055   // yet been emitted.
01056   if (!GlobalsEmitted) {
01057     emitGlobals(M);
01058     GlobalsEmitted = true;
01059   }
01060 
01061   // XXX Temproarily remove global variables so that doFinalization() will not
01062   // emit them again (global variables are emitted at beginning).
01063 
01064   Module::GlobalListType &global_list = M.getGlobalList();
01065   int i, n = global_list.size();
01066   GlobalVariable **gv_array = new GlobalVariable *[n];
01067 
01068   // first, back-up GlobalVariable in gv_array
01069   i = 0;
01070   for (Module::global_iterator I = global_list.begin(), E = global_list.end();
01071        I != E; ++I)
01072     gv_array[i++] = &*I;
01073 
01074   // second, empty global_list
01075   while (!global_list.empty())
01076     global_list.remove(global_list.begin());
01077 
01078   // call doFinalization
01079   bool ret = AsmPrinter::doFinalization(M);
01080 
01081   // now we restore global variables
01082   for (i = 0; i < n; i++)
01083     global_list.insert(global_list.end(), gv_array[i]);
01084 
01085   clearAnnotationCache(&M);
01086 
01087   delete[] gv_array;
01088   return ret;
01089 
01090   //bool Result = AsmPrinter::doFinalization(M);
01091   // Instead of calling the parents doFinalization, we may
01092   // clone parents doFinalization and customize here.
01093   // Currently, we if NVISA out the EmitGlobals() in
01094   // parent's doFinalization, which is too intrusive.
01095   //
01096   // Same for the doInitialization.
01097   //return Result;
01098 }
01099 
01100 // This function emits appropriate linkage directives for
01101 // functions and global variables.
01102 //
01103 // extern function declaration            -> .extern
01104 // extern function definition             -> .visible
01105 // external global variable with init     -> .visible
01106 // external without init                  -> .extern
01107 // appending                              -> not allowed, assert.
01108 // for any linkage other than
01109 // internal, private, linker_private,
01110 // linker_private_weak, linker_private_weak_def_auto,
01111 // we emit                                -> .weak.
01112 
01113 void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
01114                                            raw_ostream &O) {
01115   if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
01116     if (V->hasExternalLinkage()) {
01117       if (isa<GlobalVariable>(V)) {
01118         const GlobalVariable *GVar = cast<GlobalVariable>(V);
01119         if (GVar) {
01120           if (GVar->hasInitializer())
01121             O << ".visible ";
01122           else
01123             O << ".extern ";
01124         }
01125       } else if (V->isDeclaration())
01126         O << ".extern ";
01127       else
01128         O << ".visible ";
01129     } else if (V->hasAppendingLinkage()) {
01130       std::string msg;
01131       msg.append("Error: ");
01132       msg.append("Symbol ");
01133       if (V->hasName())
01134         msg.append(V->getName().str());
01135       msg.append("has unsupported appending linkage type");
01136       llvm_unreachable(msg.c_str());
01137     } else if (!V->hasInternalLinkage() &&
01138                !V->hasPrivateLinkage()) {
01139       O << ".weak ";
01140     }
01141   }
01142 }
01143 
01144 void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
01145                                          raw_ostream &O,
01146                                          bool processDemoted) {
01147 
01148   // Skip meta data
01149   if (GVar->hasSection()) {
01150     if (GVar->getSection() == StringRef("llvm.metadata"))
01151       return;
01152   }
01153 
01154   // Skip LLVM intrinsic global variables
01155   if (GVar->getName().startswith("llvm.") ||
01156       GVar->getName().startswith("nvvm."))
01157     return;
01158 
01159   const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
01160 
01161   // GlobalVariables are always constant pointers themselves.
01162   const PointerType *PTy = GVar->getType();
01163   Type *ETy = PTy->getElementType();
01164 
01165   if (GVar->hasExternalLinkage()) {
01166     if (GVar->hasInitializer())
01167       O << ".visible ";
01168     else
01169       O << ".extern ";
01170   } else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
01171              GVar->hasAvailableExternallyLinkage() ||
01172              GVar->hasCommonLinkage()) {
01173     O << ".weak ";
01174   }
01175 
01176   if (llvm::isTexture(*GVar)) {
01177     O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
01178     return;
01179   }
01180 
01181   if (llvm::isSurface(*GVar)) {
01182     O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
01183     return;
01184   }
01185 
01186   if (GVar->isDeclaration()) {
01187     // (extern) declarations, no definition or initializer
01188     // Currently the only known declaration is for an automatic __local
01189     // (.shared) promoted to global.
01190     emitPTXGlobalVariable(GVar, O);
01191     O << ";\n";
01192     return;
01193   }
01194 
01195   if (llvm::isSampler(*GVar)) {
01196     O << ".global .samplerref " << llvm::getSamplerName(*GVar);
01197 
01198     const Constant *Initializer = nullptr;
01199     if (GVar->hasInitializer())
01200       Initializer = GVar->getInitializer();
01201     const ConstantInt *CI = nullptr;
01202     if (Initializer)
01203       CI = dyn_cast<ConstantInt>(Initializer);
01204     if (CI) {
01205       unsigned sample = CI->getZExtValue();
01206 
01207       O << " = { ";
01208 
01209       for (int i = 0,
01210                addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
01211            i < 3; i++) {
01212         O << "addr_mode_" << i << " = ";
01213         switch (addr) {
01214         case 0:
01215           O << "wrap";
01216           break;
01217         case 1:
01218           O << "clamp_to_border";
01219           break;
01220         case 2:
01221           O << "clamp_to_edge";
01222           break;
01223         case 3:
01224           O << "wrap";
01225           break;
01226         case 4:
01227           O << "mirror";
01228           break;
01229         }
01230         O << ", ";
01231       }
01232       O << "filter_mode = ";
01233       switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
01234       case 0:
01235         O << "nearest";
01236         break;
01237       case 1:
01238         O << "linear";
01239         break;
01240       case 2:
01241         llvm_unreachable("Anisotropic filtering is not supported");
01242       default:
01243         O << "nearest";
01244         break;
01245       }
01246       if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
01247         O << ", force_unnormalized_coords = 1";
01248       }
01249       O << " }";
01250     }
01251 
01252     O << ";\n";
01253     return;
01254   }
01255 
01256   if (GVar->hasPrivateLinkage()) {
01257 
01258     if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
01259       return;
01260 
01261     // FIXME - need better way (e.g. Metadata) to avoid generating this global
01262     if (!strncmp(GVar->getName().data(), "filename", 8))
01263       return;
01264     if (GVar->use_empty())
01265       return;
01266   }
01267 
01268   const Function *demotedFunc = nullptr;
01269   if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
01270     O << "// " << GVar->getName().str() << " has been demoted\n";
01271     if (localDecls.find(demotedFunc) != localDecls.end())
01272       localDecls[demotedFunc].push_back(GVar);
01273     else {
01274       std::vector<const GlobalVariable *> temp;
01275       temp.push_back(GVar);
01276       localDecls[demotedFunc] = temp;
01277     }
01278     return;
01279   }
01280 
01281   O << ".";
01282   emitPTXAddressSpace(PTy->getAddressSpace(), O);
01283 
01284   if (isManaged(*GVar)) {
01285     O << " .attribute(.managed)";
01286   }
01287 
01288   if (GVar->getAlignment() == 0)
01289     O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
01290   else
01291     O << " .align " << GVar->getAlignment();
01292 
01293   if (ETy->isSingleValueType()) {
01294     O << " .";
01295     // Special case: ABI requires that we use .u8 for predicates
01296     if (ETy->isIntegerTy(1))
01297       O << "u8";
01298     else
01299       O << getPTXFundamentalTypeStr(ETy, false);
01300     O << " ";
01301     O << *getSymbol(GVar);
01302 
01303     // Ptx allows variable initilization only for constant and global state
01304     // spaces.
01305     if (GVar->hasInitializer()) {
01306       if ((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
01307           (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) {
01308         const Constant *Initializer = GVar->getInitializer();
01309         // 'undef' is treated as there is no value spefied.
01310         if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
01311           O << " = ";
01312           printScalarConstant(Initializer, O);
01313         }
01314       } else {
01315         // The frontend adds zero-initializer to variables that don't have an
01316         // initial value, so skip warning for this case.
01317         if (!GVar->getInitializer()->isNullValue()) {
01318           std::string warnMsg = "initial value of '" + GVar->getName().str() +
01319               "' is not allowed in addrspace(" +
01320               llvm::utostr_32(PTy->getAddressSpace()) + ")";
01321           report_fatal_error(warnMsg.c_str());
01322         }
01323       }
01324     }
01325   } else {
01326     unsigned int ElementSize = 0;
01327 
01328     // Although PTX has direct support for struct type and array type and
01329     // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
01330     // targets that support these high level field accesses. Structs, arrays
01331     // and vectors are lowered into arrays of bytes.
01332     switch (ETy->getTypeID()) {
01333     case Type::StructTyID:
01334     case Type::ArrayTyID:
01335     case Type::VectorTyID:
01336       ElementSize = TD->getTypeStoreSize(ETy);
01337       // Ptx allows variable initilization only for constant and
01338       // global state spaces.
01339       if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
01340            (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
01341           GVar->hasInitializer()) {
01342         const Constant *Initializer = GVar->getInitializer();
01343         if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
01344           AggBuffer aggBuffer(ElementSize, O, *this);
01345           bufferAggregateConstant(Initializer, &aggBuffer);
01346           if (aggBuffer.numSymbols) {
01347             if (nvptxSubtarget.is64Bit()) {
01348               O << " .u64 " << *getSymbol(GVar) << "[";
01349               O << ElementSize / 8;
01350             } else {
01351               O << " .u32 " << *getSymbol(GVar) << "[";
01352               O << ElementSize / 4;
01353             }
01354             O << "]";
01355           } else {
01356             O << " .b8 " << *getSymbol(GVar) << "[";
01357             O << ElementSize;
01358             O << "]";
01359           }
01360           O << " = {";
01361           aggBuffer.print();
01362           O << "}";
01363         } else {
01364           O << " .b8 " << *getSymbol(GVar);
01365           if (ElementSize) {
01366             O << "[";
01367             O << ElementSize;
01368             O << "]";
01369           }
01370         }
01371       } else {
01372         O << " .b8 " << *getSymbol(GVar);
01373         if (ElementSize) {
01374           O << "[";
01375           O << ElementSize;
01376           O << "]";
01377         }
01378       }
01379       break;
01380     default:
01381       llvm_unreachable("type not supported yet");
01382     }
01383 
01384   }
01385   O << ";\n";
01386 }
01387 
01388 void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
01389   if (localDecls.find(f) == localDecls.end())
01390     return;
01391 
01392   std::vector<const GlobalVariable *> &gvars = localDecls[f];
01393 
01394   for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
01395     O << "\t// demoted variable\n\t";
01396     printModuleLevelGV(gvars[i], O, true);
01397   }
01398 }
01399 
01400 void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
01401                                           raw_ostream &O) const {
01402   switch (AddressSpace) {
01403   case llvm::ADDRESS_SPACE_LOCAL:
01404     O << "local";
01405     break;
01406   case llvm::ADDRESS_SPACE_GLOBAL:
01407     O << "global";
01408     break;
01409   case llvm::ADDRESS_SPACE_CONST:
01410     O << "const";
01411     break;
01412   case llvm::ADDRESS_SPACE_SHARED:
01413     O << "shared";
01414     break;
01415   default:
01416     report_fatal_error("Bad address space found while emitting PTX");
01417     break;
01418   }
01419 }
01420 
01421 std::string
01422 NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, bool useB4PTR) const {
01423   switch (Ty->getTypeID()) {
01424   default:
01425     llvm_unreachable("unexpected type");
01426     break;
01427   case Type::IntegerTyID: {
01428     unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
01429     if (NumBits == 1)
01430       return "pred";
01431     else if (NumBits <= 64) {
01432       std::string name = "u";
01433       return name + utostr(NumBits);
01434     } else {
01435       llvm_unreachable("Integer too large");
01436       break;
01437     }
01438     break;
01439   }
01440   case Type::FloatTyID:
01441     return "f32";
01442   case Type::DoubleTyID:
01443     return "f64";
01444   case Type::PointerTyID:
01445     if (nvptxSubtarget.is64Bit())
01446       if (useB4PTR)
01447         return "b64";
01448       else
01449         return "u64";
01450     else if (useB4PTR)
01451       return "b32";
01452     else
01453       return "u32";
01454   }
01455   llvm_unreachable("unexpected type");
01456   return nullptr;
01457 }
01458 
01459 void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
01460                                             raw_ostream &O) {
01461 
01462   const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
01463 
01464   // GlobalVariables are always constant pointers themselves.
01465   const PointerType *PTy = GVar->getType();
01466   Type *ETy = PTy->getElementType();
01467 
01468   O << ".";
01469   emitPTXAddressSpace(PTy->getAddressSpace(), O);
01470   if (GVar->getAlignment() == 0)
01471     O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
01472   else
01473     O << " .align " << GVar->getAlignment();
01474 
01475   if (ETy->isSingleValueType()) {
01476     O << " .";
01477     O << getPTXFundamentalTypeStr(ETy);
01478     O << " ";
01479     O << *getSymbol(GVar);
01480     return;
01481   }
01482 
01483   int64_t ElementSize = 0;
01484 
01485   // Although PTX has direct support for struct type and array type and LLVM IR
01486   // is very similar to PTX, the LLVM CodeGen does not support for targets that
01487   // support these high level field accesses. Structs and arrays are lowered
01488   // into arrays of bytes.
01489   switch (ETy->getTypeID()) {
01490   case Type::StructTyID:
01491   case Type::ArrayTyID:
01492   case Type::VectorTyID:
01493     ElementSize = TD->getTypeStoreSize(ETy);
01494     O << " .b8 " << *getSymbol(GVar) << "[";
01495     if (ElementSize) {
01496       O << itostr(ElementSize);
01497     }
01498     O << "]";
01499     break;
01500   default:
01501     llvm_unreachable("type not supported yet");
01502   }
01503   return;
01504 }
01505 
01506 static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) {
01507   if (Ty->isSingleValueType())
01508     return TD->getPrefTypeAlignment(Ty);
01509 
01510   const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
01511   if (ATy)
01512     return getOpenCLAlignment(TD, ATy->getElementType());
01513 
01514   const VectorType *VTy = dyn_cast<VectorType>(Ty);
01515   if (VTy) {
01516     Type *ETy = VTy->getElementType();
01517     unsigned int numE = VTy->getNumElements();
01518     unsigned int alignE = TD->getPrefTypeAlignment(ETy);
01519     if (numE == 3)
01520       return 4 * alignE;
01521     else
01522       return numE * alignE;
01523   }
01524 
01525   const StructType *STy = dyn_cast<StructType>(Ty);
01526   if (STy) {
01527     unsigned int alignStruct = 1;
01528     // Go through each element of the struct and find the
01529     // largest alignment.
01530     for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
01531       Type *ETy = STy->getElementType(i);
01532       unsigned int align = getOpenCLAlignment(TD, ETy);
01533       if (align > alignStruct)
01534         alignStruct = align;
01535     }
01536     return alignStruct;
01537   }
01538 
01539   const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
01540   if (FTy)
01541     return TD->getPointerPrefAlignment();
01542   return TD->getPrefTypeAlignment(Ty);
01543 }
01544 
01545 void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
01546                                      int paramIndex, raw_ostream &O) {
01547   if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
01548       (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
01549     O << *getSymbol(I->getParent()) << "_param_" << paramIndex;
01550   else {
01551     std::string argName = I->getName();
01552     const char *p = argName.c_str();
01553     while (*p) {
01554       if (*p == '.')
01555         O << "_";
01556       else
01557         O << *p;
01558       p++;
01559     }
01560   }
01561 }
01562 
01563 void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
01564   Function::const_arg_iterator I, E;
01565   int i = 0;
01566 
01567   if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
01568       (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
01569     O << *CurrentFnSym << "_param_" << paramIndex;
01570     return;
01571   }
01572 
01573   for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
01574     if (i == paramIndex) {
01575       printParamName(I, paramIndex, O);
01576       return;
01577     }
01578   }
01579   llvm_unreachable("paramIndex out of bound");
01580 }
01581 
01582 void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
01583   const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
01584   const AttributeSet &PAL = F->getAttributes();
01585   const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
01586   Function::const_arg_iterator I, E;
01587   unsigned paramIndex = 0;
01588   bool first = true;
01589   bool isKernelFunc = llvm::isKernelFunction(*F);
01590   bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
01591   MVT thePointerTy = TLI->getPointerTy();
01592 
01593   O << "(\n";
01594 
01595   for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
01596     Type *Ty = I->getType();
01597 
01598     if (!first)
01599       O << ",\n";
01600 
01601     first = false;
01602 
01603     // Handle image/sampler parameters
01604     if (isKernelFunction(*F)) {
01605       if (isSampler(*I) || isImage(*I)) {
01606         if (isImage(*I)) {
01607           std::string sname = I->getName();
01608           if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
01609             if (nvptxSubtarget.hasImageHandles())
01610               O << "\t.param .u64 .ptr .surfref ";
01611             else
01612               O << "\t.param .surfref ";
01613             O << *CurrentFnSym << "_param_" << paramIndex;
01614           }
01615           else { // Default image is read_only
01616             if (nvptxSubtarget.hasImageHandles())
01617               O << "\t.param .u64 .ptr .texref ";
01618             else
01619               O << "\t.param .texref ";
01620             O << *CurrentFnSym << "_param_" << paramIndex;
01621           }
01622         } else {
01623           if (nvptxSubtarget.hasImageHandles())
01624             O << "\t.param .u64 .ptr .samplerref ";
01625           else
01626             O << "\t.param .samplerref ";
01627           O << *CurrentFnSym << "_param_" << paramIndex;
01628         }
01629         continue;
01630       }
01631     }
01632 
01633     if (PAL.hasAttribute(paramIndex + 1, Attribute::ByVal) == false) {
01634       if (Ty->isAggregateType() || Ty->isVectorTy()) {
01635         // Just print .param .align <a> .b8 .param[size];
01636         // <a> = PAL.getparamalignment
01637         // size = typeallocsize of element type
01638         unsigned align = PAL.getParamAlignment(paramIndex + 1);
01639         if (align == 0)
01640           align = TD->getABITypeAlignment(Ty);
01641 
01642         unsigned sz = TD->getTypeAllocSize(Ty);
01643         O << "\t.param .align " << align << " .b8 ";
01644         printParamName(I, paramIndex, O);
01645         O << "[" << sz << "]";
01646 
01647         continue;
01648       }
01649       // Just a scalar
01650       const PointerType *PTy = dyn_cast<PointerType>(Ty);
01651       if (isKernelFunc) {
01652         if (PTy) {
01653           // Special handling for pointer arguments to kernel
01654           O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
01655 
01656           if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
01657             Type *ETy = PTy->getElementType();
01658             int addrSpace = PTy->getAddressSpace();
01659             switch (addrSpace) {
01660             default:
01661               O << ".ptr ";
01662               break;
01663             case llvm::ADDRESS_SPACE_CONST:
01664               O << ".ptr .const ";
01665               break;
01666             case llvm::ADDRESS_SPACE_SHARED:
01667               O << ".ptr .shared ";
01668               break;
01669             case llvm::ADDRESS_SPACE_GLOBAL:
01670               O << ".ptr .global ";
01671               break;
01672             }
01673             O << ".align " << (int) getOpenCLAlignment(TD, ETy) << " ";
01674           }
01675           printParamName(I, paramIndex, O);
01676           continue;
01677         }
01678 
01679         // non-pointer scalar to kernel func
01680         O << "\t.param .";
01681         // Special case: predicate operands become .u8 types
01682         if (Ty->isIntegerTy(1))
01683           O << "u8";
01684         else
01685           O << getPTXFundamentalTypeStr(Ty);
01686         O << " ";
01687         printParamName(I, paramIndex, O);
01688         continue;
01689       }
01690       // Non-kernel function, just print .param .b<size> for ABI
01691       // and .reg .b<size> for non-ABI
01692       unsigned sz = 0;
01693       if (isa<IntegerType>(Ty)) {
01694         sz = cast<IntegerType>(Ty)->getBitWidth();
01695         if (sz < 32)
01696           sz = 32;
01697       } else if (isa<PointerType>(Ty))
01698         sz = thePointerTy.getSizeInBits();
01699       else
01700         sz = Ty->getPrimitiveSizeInBits();
01701       if (isABI)
01702         O << "\t.param .b" << sz << " ";
01703       else
01704         O << "\t.reg .b" << sz << " ";
01705       printParamName(I, paramIndex, O);
01706       continue;
01707     }
01708 
01709     // param has byVal attribute. So should be a pointer
01710     const PointerType *PTy = dyn_cast<PointerType>(Ty);
01711     assert(PTy && "Param with byval attribute should be a pointer type");
01712     Type *ETy = PTy->getElementType();
01713 
01714     if (isABI || isKernelFunc) {
01715       // Just print .param .align <a> .b8 .param[size];
01716       // <a> = PAL.getparamalignment
01717       // size = typeallocsize of element type
01718       unsigned align = PAL.getParamAlignment(paramIndex + 1);
01719       if (align == 0)
01720         align = TD->getABITypeAlignment(ETy);
01721 
01722       unsigned sz = TD->getTypeAllocSize(ETy);
01723       O << "\t.param .align " << align << " .b8 ";
01724       printParamName(I, paramIndex, O);
01725       O << "[" << sz << "]";
01726       continue;
01727     } else {
01728       // Split the ETy into constituent parts and
01729       // print .param .b<size> <name> for each part.
01730       // Further, if a part is vector, print the above for
01731       // each vector element.
01732       SmallVector<EVT, 16> vtparts;
01733       ComputeValueVTs(*TLI, ETy, vtparts);
01734       for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
01735         unsigned elems = 1;
01736         EVT elemtype = vtparts[i];
01737         if (vtparts[i].isVector()) {
01738           elems = vtparts[i].getVectorNumElements();
01739           elemtype = vtparts[i].getVectorElementType();
01740         }
01741 
01742         for (unsigned j = 0, je = elems; j != je; ++j) {
01743           unsigned sz = elemtype.getSizeInBits();
01744           if (elemtype.isInteger() && (sz < 32))
01745             sz = 32;
01746           O << "\t.reg .b" << sz << " ";
01747           printParamName(I, paramIndex, O);
01748           if (j < je - 1)
01749             O << ",\n";
01750           ++paramIndex;
01751         }
01752         if (i < e - 1)
01753           O << ",\n";
01754       }
01755       --paramIndex;
01756       continue;
01757     }
01758   }
01759 
01760   O << "\n)\n";
01761 }
01762 
01763 void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
01764                                             raw_ostream &O) {
01765   const Function *F = MF.getFunction();
01766   emitFunctionParamList(F, O);
01767 }
01768 
01769 void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
01770     const MachineFunction &MF) {
01771   SmallString<128> Str;
01772   raw_svector_ostream O(Str);
01773 
01774   // Map the global virtual register number to a register class specific
01775   // virtual register number starting from 1 with that class.
01776   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
01777   //unsigned numRegClasses = TRI->getNumRegClasses();
01778 
01779   // Emit the Fake Stack Object
01780   const MachineFrameInfo *MFI = MF.getFrameInfo();
01781   int NumBytes = (int) MFI->getStackSize();
01782   if (NumBytes) {
01783     O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME
01784       << getFunctionNumber() << "[" << NumBytes << "];\n";
01785     if (nvptxSubtarget.is64Bit()) {
01786       O << "\t.reg .b64 \t%SP;\n";
01787       O << "\t.reg .b64 \t%SPL;\n";
01788     } else {
01789       O << "\t.reg .b32 \t%SP;\n";
01790       O << "\t.reg .b32 \t%SPL;\n";
01791     }
01792   }
01793 
01794   // Go through all virtual registers to establish the mapping between the
01795   // global virtual
01796   // register number and the per class virtual register number.
01797   // We use the per class virtual register number in the ptx output.
01798   unsigned int numVRs = MRI->getNumVirtRegs();
01799   for (unsigned i = 0; i < numVRs; i++) {
01800     unsigned int vr = TRI->index2VirtReg(i);
01801     const TargetRegisterClass *RC = MRI->getRegClass(vr);
01802     DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
01803     int n = regmap.size();
01804     regmap.insert(std::make_pair(vr, n + 1));
01805   }
01806 
01807   // Emit register declarations
01808   // @TODO: Extract out the real register usage
01809   // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
01810   // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
01811   // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
01812   // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
01813   // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
01814   // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
01815   // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
01816 
01817   // Emit declaration of the virtual registers or 'physical' registers for
01818   // each register class
01819   for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
01820     const TargetRegisterClass *RC = TRI->getRegClass(i);
01821     DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
01822     std::string rcname = getNVPTXRegClassName(RC);
01823     std::string rcStr = getNVPTXRegClassStr(RC);
01824     int n = regmap.size();
01825 
01826     // Only declare those registers that may be used.
01827     if (n) {
01828        O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
01829          << ">;\n";
01830     }
01831   }
01832 
01833   OutStreamer.EmitRawText(O.str());
01834 }
01835 
01836 void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
01837   APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
01838   bool ignored;
01839   unsigned int numHex;
01840   const char *lead;
01841 
01842   if (Fp->getType()->getTypeID() == Type::FloatTyID) {
01843     numHex = 8;
01844     lead = "0f";
01845     APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
01846   } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
01847     numHex = 16;
01848     lead = "0d";
01849     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
01850   } else
01851     llvm_unreachable("unsupported fp type");
01852 
01853   APInt API = APF.bitcastToAPInt();
01854   std::string hexstr(utohexstr(API.getZExtValue()));
01855   O << lead;
01856   if (hexstr.length() < numHex)
01857     O << std::string(numHex - hexstr.length(), '0');
01858   O << utohexstr(API.getZExtValue());
01859 }
01860 
01861 void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
01862   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
01863     O << CI->getValue();
01864     return;
01865   }
01866   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
01867     printFPConstant(CFP, O);
01868     return;
01869   }
01870   if (isa<ConstantPointerNull>(CPV)) {
01871     O << "0";
01872     return;
01873   }
01874   if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
01875     PointerType *PTy = dyn_cast<PointerType>(GVar->getType());
01876     bool IsNonGenericPointer = false;
01877     if (PTy && PTy->getAddressSpace() != 0) {
01878       IsNonGenericPointer = true;
01879     }
01880     if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
01881       O << "generic(";
01882       O << *getSymbol(GVar);
01883       O << ")";
01884     } else {
01885       O << *getSymbol(GVar);
01886     }
01887     return;
01888   }
01889   if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
01890     const Value *v = Cexpr->stripPointerCasts();
01891     PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
01892     bool IsNonGenericPointer = false;
01893     if (PTy && PTy->getAddressSpace() != 0) {
01894       IsNonGenericPointer = true;
01895     }
01896     if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
01897       if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
01898         O << "generic(";
01899         O << *getSymbol(GVar);
01900         O << ")";
01901       } else {
01902         O << *getSymbol(GVar);
01903       }
01904       return;
01905     } else {
01906       O << *LowerConstant(CPV, *this);
01907       return;
01908     }
01909   }
01910   llvm_unreachable("Not scalar type found in printScalarConstant()");
01911 }
01912 
01913 void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
01914                                    AggBuffer *aggBuffer) {
01915 
01916   const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
01917 
01918   if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
01919     int s = TD->getTypeAllocSize(CPV->getType());
01920     if (s < Bytes)
01921       s = Bytes;
01922     aggBuffer->addZeros(s);
01923     return;
01924   }
01925 
01926   unsigned char *ptr;
01927   switch (CPV->getType()->getTypeID()) {
01928 
01929   case Type::IntegerTyID: {
01930     const Type *ETy = CPV->getType();
01931     if (ETy == Type::getInt8Ty(CPV->getContext())) {
01932       unsigned char c =
01933           (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
01934       ptr = &c;
01935       aggBuffer->addBytes(ptr, 1, Bytes);
01936     } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
01937       short int16 = (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
01938       ptr = (unsigned char *)&int16;
01939       aggBuffer->addBytes(ptr, 2, Bytes);
01940     } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
01941       if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
01942         int int32 = (int)(constInt->getZExtValue());
01943         ptr = (unsigned char *)&int32;
01944         aggBuffer->addBytes(ptr, 4, Bytes);
01945         break;
01946       } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
01947         if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
01948                 ConstantFoldConstantExpression(Cexpr, TD))) {
01949           int int32 = (int)(constInt->getZExtValue());
01950           ptr = (unsigned char *)&int32;
01951           aggBuffer->addBytes(ptr, 4, Bytes);
01952           break;
01953         }
01954         if (Cexpr->getOpcode() == Instruction::PtrToInt) {
01955           Value *v = Cexpr->getOperand(0)->stripPointerCasts();
01956           aggBuffer->addSymbol(v);
01957           aggBuffer->addZeros(4);
01958           break;
01959         }
01960       }
01961       llvm_unreachable("unsupported integer const type");
01962     } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
01963       if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
01964         long long int64 = (long long)(constInt->getZExtValue());
01965         ptr = (unsigned char *)&int64;
01966         aggBuffer->addBytes(ptr, 8, Bytes);
01967         break;
01968       } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
01969         if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
01970                 ConstantFoldConstantExpression(Cexpr, TD))) {
01971           long long int64 = (long long)(constInt->getZExtValue());
01972           ptr = (unsigned char *)&int64;
01973           aggBuffer->addBytes(ptr, 8, Bytes);
01974           break;
01975         }
01976         if (Cexpr->getOpcode() == Instruction::PtrToInt) {
01977           Value *v = Cexpr->getOperand(0)->stripPointerCasts();
01978           aggBuffer->addSymbol(v);
01979           aggBuffer->addZeros(8);
01980           break;
01981         }
01982       }
01983       llvm_unreachable("unsupported integer const type");
01984     } else
01985       llvm_unreachable("unsupported integer const type");
01986     break;
01987   }
01988   case Type::FloatTyID:
01989   case Type::DoubleTyID: {
01990     const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
01991     const Type *Ty = CFP->getType();
01992     if (Ty == Type::getFloatTy(CPV->getContext())) {
01993       float float32 = (float) CFP->getValueAPF().convertToFloat();
01994       ptr = (unsigned char *)&float32;
01995       aggBuffer->addBytes(ptr, 4, Bytes);
01996     } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
01997       double float64 = CFP->getValueAPF().convertToDouble();
01998       ptr = (unsigned char *)&float64;
01999       aggBuffer->addBytes(ptr, 8, Bytes);
02000     } else {
02001       llvm_unreachable("unsupported fp const type");
02002     }
02003     break;
02004   }
02005   case Type::PointerTyID: {
02006     if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
02007       aggBuffer->addSymbol(GVar);
02008     } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
02009       const Value *v = Cexpr->stripPointerCasts();
02010       aggBuffer->addSymbol(v);
02011     }
02012     unsigned int s = TD->getTypeAllocSize(CPV->getType());
02013     aggBuffer->addZeros(s);
02014     break;
02015   }
02016 
02017   case Type::ArrayTyID:
02018   case Type::VectorTyID:
02019   case Type::StructTyID: {
02020     if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
02021         isa<ConstantStruct>(CPV) || isa<ConstantDataSequential>(CPV)) {
02022       int ElementSize = TD->getTypeAllocSize(CPV->getType());
02023       bufferAggregateConstant(CPV, aggBuffer);
02024       if (Bytes > ElementSize)
02025         aggBuffer->addZeros(Bytes - ElementSize);
02026     } else if (isa<ConstantAggregateZero>(CPV))
02027       aggBuffer->addZeros(Bytes);
02028     else
02029       llvm_unreachable("Unexpected Constant type");
02030     break;
02031   }
02032 
02033   default:
02034     llvm_unreachable("unsupported type");
02035   }
02036 }
02037 
02038 void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
02039                                               AggBuffer *aggBuffer) {
02040   const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout();
02041   int Bytes;
02042 
02043   // Old constants
02044   if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
02045     if (CPV->getNumOperands())
02046       for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
02047         bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
02048     return;
02049   }
02050 
02051   if (const ConstantDataSequential *CDS =
02052           dyn_cast<ConstantDataSequential>(CPV)) {
02053     if (CDS->getNumElements())
02054       for (unsigned i = 0; i < CDS->getNumElements(); ++i)
02055         bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
02056                      aggBuffer);
02057     return;
02058   }
02059 
02060   if (isa<ConstantStruct>(CPV)) {
02061     if (CPV->getNumOperands()) {
02062       StructType *ST = cast<StructType>(CPV->getType());
02063       for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
02064         if (i == (e - 1))
02065           Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
02066                   TD->getTypeAllocSize(ST) -
02067                   TD->getStructLayout(ST)->getElementOffset(i);
02068         else
02069           Bytes = TD->getStructLayout(ST)->getElementOffset(i + 1) -
02070                   TD->getStructLayout(ST)->getElementOffset(i);
02071         bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
02072       }
02073     }
02074     return;
02075   }
02076   llvm_unreachable("unsupported constant type in printAggregateConstant()");
02077 }
02078 
02079 // buildTypeNameMap - Run through symbol table looking for type names.
02080 //
02081 
02082 bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
02083 
02084   std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
02085 
02086   if (PI != TypeNameMap.end() && (!PI->second.compare("struct._image1d_t") ||
02087                                   !PI->second.compare("struct._image2d_t") ||
02088                                   !PI->second.compare("struct._image3d_t")))
02089     return true;
02090 
02091   return false;
02092 }
02093 
02094 
02095 bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
02096   switch (MI.getOpcode()) {
02097   default:
02098     return false;
02099   case NVPTX::CallArgBeginInst:
02100   case NVPTX::CallArgEndInst0:
02101   case NVPTX::CallArgEndInst1:
02102   case NVPTX::CallArgF32:
02103   case NVPTX::CallArgF64:
02104   case NVPTX::CallArgI16:
02105   case NVPTX::CallArgI32:
02106   case NVPTX::CallArgI32imm:
02107   case NVPTX::CallArgI64:
02108   case NVPTX::CallArgParam:
02109   case NVPTX::CallVoidInst:
02110   case NVPTX::CallVoidInstReg:
02111   case NVPTX::Callseq_End:
02112   case NVPTX::CallVoidInstReg64:
02113   case NVPTX::DeclareParamInst:
02114   case NVPTX::DeclareRetMemInst:
02115   case NVPTX::DeclareRetRegInst:
02116   case NVPTX::DeclareRetScalarInst:
02117   case NVPTX::DeclareScalarParamInst:
02118   case NVPTX::DeclareScalarRegInst:
02119   case NVPTX::StoreParamF32:
02120   case NVPTX::StoreParamF64:
02121   case NVPTX::StoreParamI16:
02122   case NVPTX::StoreParamI32:
02123   case NVPTX::StoreParamI64:
02124   case NVPTX::StoreParamI8:
02125   case NVPTX::StoreRetvalF32:
02126   case NVPTX::StoreRetvalF64:
02127   case NVPTX::StoreRetvalI16:
02128   case NVPTX::StoreRetvalI32:
02129   case NVPTX::StoreRetvalI64:
02130   case NVPTX::StoreRetvalI8:
02131   case NVPTX::LastCallArgF32:
02132   case NVPTX::LastCallArgF64:
02133   case NVPTX::LastCallArgI16:
02134   case NVPTX::LastCallArgI32:
02135   case NVPTX::LastCallArgI32imm:
02136   case NVPTX::LastCallArgI64:
02137   case NVPTX::LastCallArgParam:
02138   case NVPTX::LoadParamMemF32:
02139   case NVPTX::LoadParamMemF64:
02140   case NVPTX::LoadParamMemI16:
02141   case NVPTX::LoadParamMemI32:
02142   case NVPTX::LoadParamMemI64:
02143   case NVPTX::LoadParamMemI8:
02144   case NVPTX::PrototypeInst:
02145   case NVPTX::DBG_VALUE:
02146     return true;
02147   }
02148   return false;
02149 }
02150 
02151 /// PrintAsmOperand - Print out an operand for an inline asm expression.
02152 ///
02153 bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
02154                                       unsigned AsmVariant,
02155                                       const char *ExtraCode, raw_ostream &O) {
02156   if (ExtraCode && ExtraCode[0]) {
02157     if (ExtraCode[1] != 0)
02158       return true; // Unknown modifier.
02159 
02160     switch (ExtraCode[0]) {
02161     default:
02162       // See if this is a generic print operand
02163       return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
02164     case 'r':
02165       break;
02166     }
02167   }
02168 
02169   printOperand(MI, OpNo, O);
02170 
02171   return false;
02172 }
02173 
02174 bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
02175     const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
02176     const char *ExtraCode, raw_ostream &O) {
02177   if (ExtraCode && ExtraCode[0])
02178     return true; // Unknown modifier
02179 
02180   O << '[';
02181   printMemOperand(MI, OpNo, O);
02182   O << ']';
02183 
02184   return false;
02185 }
02186 
02187 void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
02188                                    raw_ostream &O, const char *Modifier) {
02189   const MachineOperand &MO = MI->getOperand(opNum);
02190   switch (MO.getType()) {
02191   case MachineOperand::MO_Register:
02192     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
02193       if (MO.getReg() == NVPTX::VRDepot)
02194         O << DEPOTNAME << getFunctionNumber();
02195       else
02196         O << NVPTXInstPrinter::getRegisterName(MO.getReg());
02197     } else {
02198       emitVirtualRegister(MO.getReg(), O);
02199     }
02200     return;
02201 
02202   case MachineOperand::MO_Immediate:
02203     if (!Modifier)
02204       O << MO.getImm();
02205     else if (strstr(Modifier, "vec") == Modifier)
02206       printVecModifiedImmediate(MO, Modifier, O);
02207     else
02208       llvm_unreachable(
02209           "Don't know how to handle modifier on immediate operand");
02210     return;
02211 
02212   case MachineOperand::MO_FPImmediate:
02213     printFPConstant(MO.getFPImm(), O);
02214     break;
02215 
02216   case MachineOperand::MO_GlobalAddress:
02217     O << *getSymbol(MO.getGlobal());
02218     break;
02219 
02220   case MachineOperand::MO_MachineBasicBlock:
02221     O << *MO.getMBB()->getSymbol();
02222     return;
02223 
02224   default:
02225     llvm_unreachable("Operand type not supported.");
02226   }
02227 }
02228 
02229 void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
02230                                       raw_ostream &O, const char *Modifier) {
02231   printOperand(MI, opNum, O);
02232 
02233   if (Modifier && !strcmp(Modifier, "add")) {
02234     O << ", ";
02235     printOperand(MI, opNum + 1, O);
02236   } else {
02237     if (MI->getOperand(opNum + 1).isImm() &&
02238         MI->getOperand(opNum + 1).getImm() == 0)
02239       return; // don't print ',0' or '+0'
02240     O << "+";
02241     printOperand(MI, opNum + 1, O);
02242   }
02243 }
02244 
02245 
02246 // Force static initialization.
02247 extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
02248   RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
02249   RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
02250 }
02251 
02252 void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
02253   std::stringstream temp;
02254   LineReader *reader = this->getReader(filename.str());
02255   temp << "\n//";
02256   temp << filename.str();
02257   temp << ":";
02258   temp << line;
02259   temp << " ";
02260   temp << reader->readLine(line);
02261   temp << "\n";
02262   this->OutStreamer.EmitRawText(Twine(temp.str()));
02263 }
02264 
02265 LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
02266   if (!reader) {
02267     reader = new LineReader(filename);
02268   }
02269 
02270   if (reader->fileName() != filename) {
02271     delete reader;
02272     reader = new LineReader(filename);
02273   }
02274 
02275   return reader;
02276 }
02277 
02278 std::string LineReader::readLine(unsigned lineNum) {
02279   if (lineNum < theCurLine) {
02280     theCurLine = 0;
02281     fstr.seekg(0, std::ios::beg);
02282   }
02283   while (theCurLine < lineNum) {
02284     fstr.getline(buff, 500);
02285     theCurLine++;
02286   }
02287   return buff;
02288 }
02289 
02290 // Force static initialization.
02291 extern "C" void LLVMInitializeNVPTXAsmPrinter() {
02292   RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
02293   RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
02294 }