LLVM API Documentation
00001 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This implements the ScheduleDAGInstrs class, which implements re-scheduling 00011 // of MachineInstrs. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 00016 #include "llvm/ADT/MapVector.h" 00017 #include "llvm/ADT/SmallPtrSet.h" 00018 #include "llvm/ADT/SmallSet.h" 00019 #include "llvm/Analysis/AliasAnalysis.h" 00020 #include "llvm/Analysis/ValueTracking.h" 00021 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00022 #include "llvm/CodeGen/MachineFunctionPass.h" 00023 #include "llvm/CodeGen/MachineInstrBuilder.h" 00024 #include "llvm/CodeGen/MachineMemOperand.h" 00025 #include "llvm/CodeGen/MachineRegisterInfo.h" 00026 #include "llvm/CodeGen/PseudoSourceValue.h" 00027 #include "llvm/CodeGen/RegisterPressure.h" 00028 #include "llvm/CodeGen/ScheduleDFS.h" 00029 #include "llvm/IR/Operator.h" 00030 #include "llvm/MC/MCInstrItineraries.h" 00031 #include "llvm/Support/CommandLine.h" 00032 #include "llvm/Support/Debug.h" 00033 #include "llvm/Support/Format.h" 00034 #include "llvm/Support/raw_ostream.h" 00035 #include "llvm/Target/TargetInstrInfo.h" 00036 #include "llvm/Target/TargetMachine.h" 00037 #include "llvm/Target/TargetRegisterInfo.h" 00038 #include "llvm/Target/TargetSubtargetInfo.h" 00039 #include <queue> 00040 00041 using namespace llvm; 00042 00043 #define DEBUG_TYPE "misched" 00044 00045 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 00046 cl::ZeroOrMore, cl::init(false), 00047 cl::desc("Enable use of AA during MI GAD construction")); 00048 00049 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 00050 cl::init(true), cl::desc("Enable use of TBAA during MI GAD construction")); 00051 00052 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 00053 const MachineLoopInfo *mli, 00054 bool IsPostRAFlag, 00055 bool RemoveKillFlags, 00056 LiveIntervals *lis) 00057 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis), 00058 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), 00059 CanHandleTerminators(false), FirstDbgValue(nullptr) { 00060 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); 00061 DbgValues.clear(); 00062 assert(!(IsPostRA && MRI.getNumVirtRegs()) && 00063 "Virtual registers must be removed prior to PostRA scheduling"); 00064 00065 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 00066 SchedModel.init(ST.getSchedModel(), &ST, TII); 00067 } 00068 00069 /// getUnderlyingObjectFromInt - This is the function that does the work of 00070 /// looking through basic ptrtoint+arithmetic+inttoptr sequences. 00071 static const Value *getUnderlyingObjectFromInt(const Value *V) { 00072 do { 00073 if (const Operator *U = dyn_cast<Operator>(V)) { 00074 // If we find a ptrtoint, we can transfer control back to the 00075 // regular getUnderlyingObjectFromInt. 00076 if (U->getOpcode() == Instruction::PtrToInt) 00077 return U->getOperand(0); 00078 // If we find an add of a constant, a multiplied value, or a phi, it's 00079 // likely that the other operand will lead us to the base 00080 // object. We don't have to worry about the case where the 00081 // object address is somehow being computed by the multiply, 00082 // because our callers only care when the result is an 00083 // identifiable object. 00084 if (U->getOpcode() != Instruction::Add || 00085 (!isa<ConstantInt>(U->getOperand(1)) && 00086 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 00087 !isa<PHINode>(U->getOperand(1)))) 00088 return V; 00089 V = U->getOperand(0); 00090 } else { 00091 return V; 00092 } 00093 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 00094 } while (1); 00095 } 00096 00097 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects 00098 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. 00099 static void getUnderlyingObjects(const Value *V, 00100 SmallVectorImpl<Value *> &Objects) { 00101 SmallPtrSet<const Value *, 16> Visited; 00102 SmallVector<const Value *, 4> Working(1, V); 00103 do { 00104 V = Working.pop_back_val(); 00105 00106 SmallVector<Value *, 4> Objs; 00107 GetUnderlyingObjects(const_cast<Value *>(V), Objs); 00108 00109 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 00110 I != IE; ++I) { 00111 V = *I; 00112 if (!Visited.insert(V)) 00113 continue; 00114 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 00115 const Value *O = 00116 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 00117 if (O->getType()->isPointerTy()) { 00118 Working.push_back(O); 00119 continue; 00120 } 00121 } 00122 Objects.push_back(const_cast<Value *>(V)); 00123 } 00124 } while (!Working.empty()); 00125 } 00126 00127 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 00128 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> 00129 UnderlyingObjectsVector; 00130 00131 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference 00132 /// information and it can be tracked to a normal reference to a known 00133 /// object, return the Value for that object. 00134 static void getUnderlyingObjectsForInstr(const MachineInstr *MI, 00135 const MachineFrameInfo *MFI, 00136 UnderlyingObjectsVector &Objects) { 00137 if (!MI->hasOneMemOperand() || 00138 (!(*MI->memoperands_begin())->getValue() && 00139 !(*MI->memoperands_begin())->getPseudoValue()) || 00140 (*MI->memoperands_begin())->isVolatile()) 00141 return; 00142 00143 if (const PseudoSourceValue *PSV = 00144 (*MI->memoperands_begin())->getPseudoValue()) { 00145 // For now, ignore PseudoSourceValues which may alias LLVM IR values 00146 // because the code that uses this function has no way to cope with 00147 // such aliases. 00148 if (!PSV->isAliased(MFI)) { 00149 bool MayAlias = PSV->mayAlias(MFI); 00150 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); 00151 } 00152 return; 00153 } 00154 00155 const Value *V = (*MI->memoperands_begin())->getValue(); 00156 if (!V) 00157 return; 00158 00159 SmallVector<Value *, 4> Objs; 00160 getUnderlyingObjects(V, Objs); 00161 00162 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); 00163 I != IE; ++I) { 00164 V = *I; 00165 00166 if (!isIdentifiedObject(V)) { 00167 Objects.clear(); 00168 return; 00169 } 00170 00171 Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); 00172 } 00173 } 00174 00175 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 00176 BB = bb; 00177 } 00178 00179 void ScheduleDAGInstrs::finishBlock() { 00180 // Subclasses should no longer refer to the old block. 00181 BB = nullptr; 00182 } 00183 00184 /// Initialize the DAG and common scheduler state for the current scheduling 00185 /// region. This does not actually create the DAG, only clears it. The 00186 /// scheduling driver may call BuildSchedGraph multiple times per scheduling 00187 /// region. 00188 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 00189 MachineBasicBlock::iterator begin, 00190 MachineBasicBlock::iterator end, 00191 unsigned regioninstrs) { 00192 assert(bb == BB && "startBlock should set BB"); 00193 RegionBegin = begin; 00194 RegionEnd = end; 00195 NumRegionInstrs = regioninstrs; 00196 } 00197 00198 /// Close the current scheduling region. Don't clear any state in case the 00199 /// driver wants to refer to the previous scheduling region. 00200 void ScheduleDAGInstrs::exitRegion() { 00201 // Nothing to do. 00202 } 00203 00204 /// addSchedBarrierDeps - Add dependencies from instructions in the current 00205 /// list of instructions being scheduled to scheduling barrier by adding 00206 /// the exit SU to the register defs and use list. This is because we want to 00207 /// make sure instructions which define registers that are either used by 00208 /// the terminator or are live-out are properly scheduled. This is 00209 /// especially important when the definition latency of the return value(s) 00210 /// are too high to be hidden by the branch or when the liveout registers 00211 /// used by instructions in the fallthrough block. 00212 void ScheduleDAGInstrs::addSchedBarrierDeps() { 00213 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; 00214 ExitSU.setInstr(ExitMI); 00215 bool AllDepKnown = ExitMI && 00216 (ExitMI->isCall() || ExitMI->isBarrier()); 00217 if (ExitMI && AllDepKnown) { 00218 // If it's a call or a barrier, add dependencies on the defs and uses of 00219 // instruction. 00220 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { 00221 const MachineOperand &MO = ExitMI->getOperand(i); 00222 if (!MO.isReg() || MO.isDef()) continue; 00223 unsigned Reg = MO.getReg(); 00224 if (Reg == 0) continue; 00225 00226 if (TRI->isPhysicalRegister(Reg)) 00227 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 00228 else { 00229 assert(!IsPostRA && "Virtual register encountered after regalloc."); 00230 if (MO.readsReg()) // ignore undef operands 00231 addVRegUseDeps(&ExitSU, i); 00232 } 00233 } 00234 } else { 00235 // For others, e.g. fallthrough, conditional branch, assume the exit 00236 // uses all the registers that are livein to the successor blocks. 00237 assert(Uses.empty() && "Uses in set before adding deps?"); 00238 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 00239 SE = BB->succ_end(); SI != SE; ++SI) 00240 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 00241 E = (*SI)->livein_end(); I != E; ++I) { 00242 unsigned Reg = *I; 00243 if (!Uses.contains(Reg)) 00244 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); 00245 } 00246 } 00247 } 00248 00249 /// MO is an operand of SU's instruction that defines a physical register. Add 00250 /// data dependencies from SU to any uses of the physical register. 00251 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 00252 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 00253 assert(MO.isDef() && "expect physreg def"); 00254 00255 // Ask the target if address-backscheduling is desirable, and if so how much. 00256 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 00257 00258 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 00259 Alias.isValid(); ++Alias) { 00260 if (!Uses.contains(*Alias)) 00261 continue; 00262 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { 00263 SUnit *UseSU = I->SU; 00264 if (UseSU == SU) 00265 continue; 00266 00267 // Adjust the dependence latency using operand def/use information, 00268 // then allow the target to perform its own adjustments. 00269 int UseOp = I->OpIdx; 00270 MachineInstr *RegUse = nullptr; 00271 SDep Dep; 00272 if (UseOp < 0) 00273 Dep = SDep(SU, SDep::Artificial); 00274 else { 00275 // Set the hasPhysRegDefs only for physreg defs that have a use within 00276 // the scheduling region. 00277 SU->hasPhysRegDefs = true; 00278 Dep = SDep(SU, SDep::Data, *Alias); 00279 RegUse = UseSU->getInstr(); 00280 } 00281 Dep.setLatency( 00282 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, 00283 UseOp)); 00284 00285 ST.adjustSchedDependency(SU, UseSU, Dep); 00286 UseSU->addPred(Dep); 00287 } 00288 } 00289 } 00290 00291 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from 00292 /// this SUnit to following instructions in the same scheduling region that 00293 /// depend the physical register referenced at OperIdx. 00294 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 00295 MachineInstr *MI = SU->getInstr(); 00296 MachineOperand &MO = MI->getOperand(OperIdx); 00297 00298 // Optionally add output and anti dependencies. For anti 00299 // dependencies we use a latency of 0 because for a multi-issue 00300 // target we want to allow the defining instruction to issue 00301 // in the same cycle as the using instruction. 00302 // TODO: Using a latency of 1 here for output dependencies assumes 00303 // there's no cost for reusing registers. 00304 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 00305 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); 00306 Alias.isValid(); ++Alias) { 00307 if (!Defs.contains(*Alias)) 00308 continue; 00309 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { 00310 SUnit *DefSU = I->SU; 00311 if (DefSU == &ExitSU) 00312 continue; 00313 if (DefSU != SU && 00314 (Kind != SDep::Output || !MO.isDead() || 00315 !DefSU->getInstr()->registerDefIsDead(*Alias))) { 00316 if (Kind == SDep::Anti) 00317 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); 00318 else { 00319 SDep Dep(SU, Kind, /*Reg=*/*Alias); 00320 Dep.setLatency( 00321 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 00322 DefSU->addPred(Dep); 00323 } 00324 } 00325 } 00326 } 00327 00328 if (!MO.isDef()) { 00329 SU->hasPhysRegUses = true; 00330 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 00331 // retrieve the existing SUnits list for this register's uses. 00332 // Push this SUnit on the use list. 00333 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); 00334 if (RemoveKillFlags) 00335 MO.setIsKill(false); 00336 } 00337 else { 00338 addPhysRegDataDeps(SU, OperIdx); 00339 unsigned Reg = MO.getReg(); 00340 00341 // clear this register's use list 00342 if (Uses.contains(Reg)) 00343 Uses.eraseAll(Reg); 00344 00345 if (!MO.isDead()) { 00346 Defs.eraseAll(Reg); 00347 } else if (SU->isCall) { 00348 // Calls will not be reordered because of chain dependencies (see 00349 // below). Since call operands are dead, calls may continue to be added 00350 // to the DefList making dependence checking quadratic in the size of 00351 // the block. Instead, we leave only one call at the back of the 00352 // DefList. 00353 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); 00354 Reg2SUnitsMap::iterator B = P.first; 00355 Reg2SUnitsMap::iterator I = P.second; 00356 for (bool isBegin = I == B; !isBegin; /* empty */) { 00357 isBegin = (--I) == B; 00358 if (!I->SU->isCall) 00359 break; 00360 I = Defs.erase(I); 00361 } 00362 } 00363 00364 // Defs are pushed in the order they are visited and never reordered. 00365 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); 00366 } 00367 } 00368 00369 /// addVRegDefDeps - Add register output and data dependencies from this SUnit 00370 /// to instructions that occur later in the same scheduling region if they read 00371 /// from or write to the virtual register defined at OperIdx. 00372 /// 00373 /// TODO: Hoist loop induction variable increments. This has to be 00374 /// reevaluated. Generally, IV scheduling should be done before coalescing. 00375 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 00376 const MachineInstr *MI = SU->getInstr(); 00377 unsigned Reg = MI->getOperand(OperIdx).getReg(); 00378 00379 // Singly defined vregs do not have output/anti dependencies. 00380 // The current operand is a def, so we have at least one. 00381 // Check here if there are any others... 00382 if (MRI.hasOneDef(Reg)) 00383 return; 00384 00385 // Add output dependence to the next nearest def of this vreg. 00386 // 00387 // Unless this definition is dead, the output dependence should be 00388 // transitively redundant with antidependencies from this definition's 00389 // uses. We're conservative for now until we have a way to guarantee the uses 00390 // are not eliminated sometime during scheduling. The output dependence edge 00391 // is also useful if output latency exceeds def-use latency. 00392 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 00393 if (DefI == VRegDefs.end()) 00394 VRegDefs.insert(VReg2SUnit(Reg, SU)); 00395 else { 00396 SUnit *DefSU = DefI->SU; 00397 if (DefSU != SU && DefSU != &ExitSU) { 00398 SDep Dep(SU, SDep::Output, Reg); 00399 Dep.setLatency( 00400 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 00401 DefSU->addPred(Dep); 00402 } 00403 DefI->SU = SU; 00404 } 00405 } 00406 00407 /// addVRegUseDeps - Add a register data dependency if the instruction that 00408 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a 00409 /// register antidependency from this SUnit to instructions that occur later in 00410 /// the same scheduling region if they write the virtual register. 00411 /// 00412 /// TODO: Handle ExitSU "uses" properly. 00413 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 00414 MachineInstr *MI = SU->getInstr(); 00415 unsigned Reg = MI->getOperand(OperIdx).getReg(); 00416 00417 // Record this local VReg use. 00418 VReg2UseMap::iterator UI = VRegUses.find(Reg); 00419 for (; UI != VRegUses.end(); ++UI) { 00420 if (UI->SU == SU) 00421 break; 00422 } 00423 if (UI == VRegUses.end()) 00424 VRegUses.insert(VReg2SUnit(Reg, SU)); 00425 00426 // Lookup this operand's reaching definition. 00427 assert(LIS && "vreg dependencies requires LiveIntervals"); 00428 LiveQueryResult LRQ 00429 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); 00430 VNInfo *VNI = LRQ.valueIn(); 00431 00432 // VNI will be valid because MachineOperand::readsReg() is checked by caller. 00433 assert(VNI && "No value to read by operand"); 00434 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); 00435 // Phis and other noninstructions (after coalescing) have a NULL Def. 00436 if (Def) { 00437 SUnit *DefSU = getSUnit(Def); 00438 if (DefSU) { 00439 // The reaching Def lives within this scheduling region. 00440 // Create a data dependence. 00441 SDep dep(DefSU, SDep::Data, Reg); 00442 // Adjust the dependence latency using operand def/use information, then 00443 // allow the target to perform its own adjustments. 00444 int DefOp = Def->findRegisterDefOperandIdx(Reg); 00445 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); 00446 00447 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 00448 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); 00449 SU->addPred(dep); 00450 } 00451 } 00452 00453 // Add antidependence to the following def of the vreg it uses. 00454 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); 00455 if (DefI != VRegDefs.end() && DefI->SU != SU) 00456 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); 00457 } 00458 00459 /// Return true if MI is an instruction we are unable to reason about 00460 /// (like a call or something with unmodeled side effects). 00461 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { 00462 if (MI->isCall() || MI->hasUnmodeledSideEffects() || 00463 (MI->hasOrderedMemoryRef() && 00464 (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) 00465 return true; 00466 return false; 00467 } 00468 00469 // This MI might have either incomplete info, or known to be unsafe 00470 // to deal with (i.e. volatile object). 00471 static inline bool isUnsafeMemoryObject(MachineInstr *MI, 00472 const MachineFrameInfo *MFI) { 00473 if (!MI || MI->memoperands_empty()) 00474 return true; 00475 // We purposefully do no check for hasOneMemOperand() here 00476 // in hope to trigger an assert downstream in order to 00477 // finish implementation. 00478 if ((*MI->memoperands_begin())->isVolatile() || 00479 MI->hasUnmodeledSideEffects()) 00480 return true; 00481 00482 if ((*MI->memoperands_begin())->getPseudoValue()) { 00483 // Similarly to getUnderlyingObjectForInstr: 00484 // For now, ignore PseudoSourceValues which may alias LLVM IR values 00485 // because the code that uses this function has no way to cope with 00486 // such aliases. 00487 return true; 00488 } 00489 00490 const Value *V = (*MI->memoperands_begin())->getValue(); 00491 if (!V) 00492 return true; 00493 00494 SmallVector<Value *, 4> Objs; 00495 getUnderlyingObjects(V, Objs); 00496 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), 00497 IE = Objs.end(); I != IE; ++I) { 00498 // Does this pointer refer to a distinct and identifiable object? 00499 if (!isIdentifiedObject(*I)) 00500 return true; 00501 } 00502 00503 return false; 00504 } 00505 00506 /// This returns true if the two MIs need a chain edge betwee them. 00507 /// If these are not even memory operations, we still may need 00508 /// chain deps between them. The question really is - could 00509 /// these two MIs be reordered during scheduling from memory dependency 00510 /// point of view. 00511 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, 00512 MachineInstr *MIa, 00513 MachineInstr *MIb) { 00514 const MachineFunction *MF = MIa->getParent()->getParent(); 00515 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 00516 00517 // Cover a trivial case - no edge is need to itself. 00518 if (MIa == MIb) 00519 return false; 00520 00521 // Let the target decide if memory accesses cannot possibly overlap. 00522 if ((MIa->mayLoad() || MIa->mayStore()) && 00523 (MIb->mayLoad() || MIb->mayStore())) 00524 if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) 00525 return false; 00526 00527 // FIXME: Need to handle multiple memory operands to support all targets. 00528 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) 00529 return true; 00530 00531 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) 00532 return true; 00533 00534 // If we are dealing with two "normal" loads, we do not need an edge 00535 // between them - they could be reordered. 00536 if (!MIa->mayStore() && !MIb->mayStore()) 00537 return false; 00538 00539 // To this point analysis is generic. From here on we do need AA. 00540 if (!AA) 00541 return true; 00542 00543 MachineMemOperand *MMOa = *MIa->memoperands_begin(); 00544 MachineMemOperand *MMOb = *MIb->memoperands_begin(); 00545 00546 if (!MMOa->getValue() || !MMOb->getValue()) 00547 return true; 00548 00549 // The following interface to AA is fashioned after DAGCombiner::isAlias 00550 // and operates with MachineMemOperand offset with some important 00551 // assumptions: 00552 // - LLVM fundamentally assumes flat address spaces. 00553 // - MachineOperand offset can *only* result from legalization and 00554 // cannot affect queries other than the trivial case of overlap 00555 // checking. 00556 // - These offsets never wrap and never step outside 00557 // of allocated objects. 00558 // - There should never be any negative offsets here. 00559 // 00560 // FIXME: Modify API to hide this math from "user" 00561 // FIXME: Even before we go to AA we can reason locally about some 00562 // memory objects. It can save compile time, and possibly catch some 00563 // corner cases not currently covered. 00564 00565 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); 00566 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); 00567 00568 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); 00569 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; 00570 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; 00571 00572 AliasAnalysis::AliasResult AAResult = AA->alias( 00573 AliasAnalysis::Location(MMOa->getValue(), Overlapa, 00574 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 00575 AliasAnalysis::Location(MMOb->getValue(), Overlapb, 00576 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 00577 00578 return (AAResult != AliasAnalysis::NoAlias); 00579 } 00580 00581 /// This recursive function iterates over chain deps of SUb looking for 00582 /// "latest" node that needs a chain edge to SUa. 00583 static unsigned 00584 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, 00585 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, 00586 SmallPtrSetImpl<const SUnit*> &Visited) { 00587 if (!SUa || !SUb || SUb == ExitSU) 00588 return *Depth; 00589 00590 // Remember visited nodes. 00591 if (!Visited.insert(SUb)) 00592 return *Depth; 00593 // If there is _some_ dependency already in place, do not 00594 // descend any further. 00595 // TODO: Need to make sure that if that dependency got eliminated or ignored 00596 // for any reason in the future, we would not violate DAG topology. 00597 // Currently it does not happen, but makes an implicit assumption about 00598 // future implementation. 00599 // 00600 // Independently, if we encounter node that is some sort of global 00601 // object (like a call) we already have full set of dependencies to it 00602 // and we can stop descending. 00603 if (SUa->isSucc(SUb) || 00604 isGlobalMemoryObject(AA, SUb->getInstr())) 00605 return *Depth; 00606 00607 // If we do need an edge, or we have exceeded depth budget, 00608 // add that edge to the predecessors chain of SUb, 00609 // and stop descending. 00610 if (*Depth > 200 || 00611 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 00612 SUb->addPred(SDep(SUa, SDep::MayAliasMem)); 00613 return *Depth; 00614 } 00615 // Track current depth. 00616 (*Depth)++; 00617 // Iterate over chain dependencies only. 00618 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); 00619 I != E; ++I) 00620 if (I->isCtrl()) 00621 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); 00622 return *Depth; 00623 } 00624 00625 /// This function assumes that "downward" from SU there exist 00626 /// tail/leaf of already constructed DAG. It iterates downward and 00627 /// checks whether SU can be aliasing any node dominated 00628 /// by it. 00629 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, 00630 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList, 00631 unsigned LatencyToLoad) { 00632 if (!SU) 00633 return; 00634 00635 SmallPtrSet<const SUnit*, 16> Visited; 00636 unsigned Depth = 0; 00637 00638 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); 00639 I != IE; ++I) { 00640 if (SU == *I) 00641 continue; 00642 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { 00643 SDep Dep(SU, SDep::MayAliasMem); 00644 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); 00645 (*I)->addPred(Dep); 00646 } 00647 // Now go through all the chain successors and iterate from them. 00648 // Keep track of visited nodes. 00649 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), 00650 JE = (*I)->Succs.end(); J != JE; ++J) 00651 if (J->isCtrl()) 00652 iterateChainSucc (AA, MFI, SU, J->getSUnit(), 00653 ExitSU, &Depth, Visited); 00654 } 00655 } 00656 00657 /// Check whether two objects need a chain edge, if so, add it 00658 /// otherwise remember the rejected SU. 00659 static inline 00660 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, 00661 SUnit *SUa, SUnit *SUb, 00662 std::set<SUnit *> &RejectList, 00663 unsigned TrueMemOrderLatency = 0, 00664 bool isNormalMemory = false) { 00665 // If this is a false dependency, 00666 // do not add the edge, but rememeber the rejected node. 00667 if (MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { 00668 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); 00669 Dep.setLatency(TrueMemOrderLatency); 00670 SUb->addPred(Dep); 00671 } 00672 else { 00673 // Duplicate entries should be ignored. 00674 RejectList.insert(SUb); 00675 DEBUG(dbgs() << "\tReject chain dep between SU(" 00676 << SUa->NodeNum << ") and SU(" 00677 << SUb->NodeNum << ")\n"); 00678 } 00679 } 00680 00681 /// Create an SUnit for each real instruction, numbered in top-down toplological 00682 /// order. The instruction order A < B, implies that no edge exists from B to A. 00683 /// 00684 /// Map each real instruction to its SUnit. 00685 /// 00686 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 00687 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 00688 /// instead of pointers. 00689 /// 00690 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 00691 /// the original instruction list. 00692 void ScheduleDAGInstrs::initSUnits() { 00693 // We'll be allocating one SUnit for each real instruction in the region, 00694 // which is contained within a basic block. 00695 SUnits.reserve(NumRegionInstrs); 00696 00697 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { 00698 MachineInstr *MI = I; 00699 if (MI->isDebugValue()) 00700 continue; 00701 00702 SUnit *SU = newSUnit(MI); 00703 MISUnitMap[MI] = SU; 00704 00705 SU->isCall = MI->isCall(); 00706 SU->isCommutable = MI->isCommutable(); 00707 00708 // Assign the Latency field of SU using target-provided information. 00709 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 00710 00711 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 00712 // 00713 // Reserved resources block an instruction from issuing and stall the 00714 // entire pipeline. These are identified by BufferSize=0. 00715 // 00716 // Unbuffered resources prevent execution of subsequent instructions that 00717 // require the same resources. This is used for in-order execution pipelines 00718 // within an out-of-order core. These are identified by BufferSize=1. 00719 if (SchedModel.hasInstrSchedModel()) { 00720 const MCSchedClassDesc *SC = getSchedClass(SU); 00721 for (TargetSchedModel::ProcResIter 00722 PI = SchedModel.getWriteProcResBegin(SC), 00723 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 00724 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { 00725 case 0: 00726 SU->hasReservedResource = true; 00727 break; 00728 case 1: 00729 SU->isUnbuffered = true; 00730 break; 00731 default: 00732 break; 00733 } 00734 } 00735 } 00736 } 00737 } 00738 00739 /// If RegPressure is non-null, compute register pressure as a side effect. The 00740 /// DAG builder is an efficient place to do it because it already visits 00741 /// operands. 00742 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, 00743 RegPressureTracker *RPTracker, 00744 PressureDiffs *PDiffs) { 00745 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 00746 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 00747 : ST.useAA(); 00748 AliasAnalysis *AAForDep = UseAA ? AA : nullptr; 00749 00750 MISUnitMap.clear(); 00751 ScheduleDAG::clearDAG(); 00752 00753 // Create an SUnit for each real instruction. 00754 initSUnits(); 00755 00756 if (PDiffs) 00757 PDiffs->init(SUnits.size()); 00758 00759 // We build scheduling units by walking a block's instruction list from bottom 00760 // to top. 00761 00762 // Remember where a generic side-effecting instruction is as we procede. 00763 SUnit *BarrierChain = nullptr, *AliasChain = nullptr; 00764 00765 // Memory references to specific known memory locations are tracked 00766 // so that they can be given more precise dependencies. We track 00767 // separately the known memory locations that may alias and those 00768 // that are known not to alias 00769 MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; 00770 MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; 00771 std::set<SUnit*> RejectMemNodes; 00772 00773 // Remove any stale debug info; sometimes BuildSchedGraph is called again 00774 // without emitting the info from the previous call. 00775 DbgValues.clear(); 00776 FirstDbgValue = nullptr; 00777 00778 assert(Defs.empty() && Uses.empty() && 00779 "Only BuildGraph should update Defs/Uses"); 00780 Defs.setUniverse(TRI->getNumRegs()); 00781 Uses.setUniverse(TRI->getNumRegs()); 00782 00783 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); 00784 VRegUses.clear(); 00785 VRegDefs.setUniverse(MRI.getNumVirtRegs()); 00786 VRegUses.setUniverse(MRI.getNumVirtRegs()); 00787 00788 // Model data dependencies between instructions being scheduled and the 00789 // ExitSU. 00790 addSchedBarrierDeps(); 00791 00792 // Walk the list of instructions, from bottom moving up. 00793 MachineInstr *DbgMI = nullptr; 00794 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 00795 MII != MIE; --MII) { 00796 MachineInstr *MI = std::prev(MII); 00797 if (MI && DbgMI) { 00798 DbgValues.push_back(std::make_pair(DbgMI, MI)); 00799 DbgMI = nullptr; 00800 } 00801 00802 if (MI->isDebugValue()) { 00803 DbgMI = MI; 00804 continue; 00805 } 00806 SUnit *SU = MISUnitMap[MI]; 00807 assert(SU && "No SUnit mapped to this MI"); 00808 00809 if (RPTracker) { 00810 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; 00811 RPTracker->recede(/*LiveUses=*/nullptr, PDiff); 00812 assert(RPTracker->getPos() == std::prev(MII) && 00813 "RPTracker can't find MI"); 00814 } 00815 00816 assert( 00817 (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && 00818 "Cannot schedule terminators or labels!"); 00819 00820 // Add register-based dependencies (data, anti, and output). 00821 bool HasVRegDef = false; 00822 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { 00823 const MachineOperand &MO = MI->getOperand(j); 00824 if (!MO.isReg()) continue; 00825 unsigned Reg = MO.getReg(); 00826 if (Reg == 0) continue; 00827 00828 if (TRI->isPhysicalRegister(Reg)) 00829 addPhysRegDeps(SU, j); 00830 else { 00831 assert(!IsPostRA && "Virtual register encountered!"); 00832 if (MO.isDef()) { 00833 HasVRegDef = true; 00834 addVRegDefDeps(SU, j); 00835 } 00836 else if (MO.readsReg()) // ignore undef operands 00837 addVRegUseDeps(SU, j); 00838 } 00839 } 00840 // If we haven't seen any uses in this scheduling region, create a 00841 // dependence edge to ExitSU to model the live-out latency. This is required 00842 // for vreg defs with no in-region use, and prefetches with no vreg def. 00843 // 00844 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 00845 // check currently relies on being called before adding chain deps. 00846 if (SU->NumSuccs == 0 && SU->Latency > 1 00847 && (HasVRegDef || MI->mayLoad())) { 00848 SDep Dep(SU, SDep::Artificial); 00849 Dep.setLatency(SU->Latency - 1); 00850 ExitSU.addPred(Dep); 00851 } 00852 00853 // Add chain dependencies. 00854 // Chain dependencies used to enforce memory order should have 00855 // latency of 0 (except for true dependency of Store followed by 00856 // aliased Load... we estimate that with a single cycle of latency 00857 // assuming the hardware will bypass) 00858 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable 00859 // after stack slots are lowered to actual addresses. 00860 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and 00861 // produce more precise dependence information. 00862 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; 00863 if (isGlobalMemoryObject(AA, MI)) { 00864 // Be conservative with these and add dependencies on all memory 00865 // references, even those that are known to not alias. 00866 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 00867 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { 00868 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 00869 I->second[i]->addPred(SDep(SU, SDep::Barrier)); 00870 } 00871 } 00872 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 00873 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { 00874 for (unsigned i = 0, e = I->second.size(); i != e; ++i) { 00875 SDep Dep(SU, SDep::Barrier); 00876 Dep.setLatency(TrueMemOrderLatency); 00877 I->second[i]->addPred(Dep); 00878 } 00879 } 00880 // Add SU to the barrier chain. 00881 if (BarrierChain) 00882 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 00883 BarrierChain = SU; 00884 // This is a barrier event that acts as a pivotal node in the DAG, 00885 // so it is safe to clear list of exposed nodes. 00886 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 00887 TrueMemOrderLatency); 00888 RejectMemNodes.clear(); 00889 NonAliasMemDefs.clear(); 00890 NonAliasMemUses.clear(); 00891 00892 // fall-through 00893 new_alias_chain: 00894 // Chain all possibly aliasing memory references though SU. 00895 if (AliasChain) { 00896 unsigned ChainLatency = 0; 00897 if (AliasChain->getInstr()->mayLoad()) 00898 ChainLatency = TrueMemOrderLatency; 00899 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, 00900 ChainLatency); 00901 } 00902 AliasChain = SU; 00903 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 00904 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 00905 TrueMemOrderLatency); 00906 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 00907 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { 00908 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 00909 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes); 00910 } 00911 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 00912 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { 00913 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 00914 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 00915 TrueMemOrderLatency); 00916 } 00917 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 00918 TrueMemOrderLatency); 00919 PendingLoads.clear(); 00920 AliasMemDefs.clear(); 00921 AliasMemUses.clear(); 00922 } else if (MI->mayStore()) { 00923 UnderlyingObjectsVector Objs; 00924 getUnderlyingObjectsForInstr(MI, MFI, Objs); 00925 00926 if (Objs.empty()) { 00927 // Treat all other stores conservatively. 00928 goto new_alias_chain; 00929 } 00930 00931 bool MayAlias = false; 00932 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); 00933 K != KE; ++K) { 00934 ValueType V = K->getPointer(); 00935 bool ThisMayAlias = K->getInt(); 00936 if (ThisMayAlias) 00937 MayAlias = true; 00938 00939 // A store to a specific PseudoSourceValue. Add precise dependencies. 00940 // Record the def in MemDefs, first adding a dep if there is 00941 // an existing def. 00942 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 00943 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 00944 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 00945 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 00946 if (I != IE) { 00947 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 00948 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 00949 0, true); 00950 00951 // If we're not using AA, then we only need one store per object. 00952 if (!AAForDep) 00953 I->second.clear(); 00954 I->second.push_back(SU); 00955 } else { 00956 if (ThisMayAlias) { 00957 if (!AAForDep) 00958 AliasMemDefs[V].clear(); 00959 AliasMemDefs[V].push_back(SU); 00960 } else { 00961 if (!AAForDep) 00962 NonAliasMemDefs[V].clear(); 00963 NonAliasMemDefs[V].push_back(SU); 00964 } 00965 } 00966 // Handle the uses in MemUses, if there are any. 00967 MapVector<ValueType, std::vector<SUnit *> >::iterator J = 00968 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); 00969 MapVector<ValueType, std::vector<SUnit *> >::iterator JE = 00970 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); 00971 if (J != JE) { 00972 for (unsigned i = 0, e = J->second.size(); i != e; ++i) 00973 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, 00974 TrueMemOrderLatency, true); 00975 J->second.clear(); 00976 } 00977 } 00978 if (MayAlias) { 00979 // Add dependencies from all the PendingLoads, i.e. loads 00980 // with no underlying object. 00981 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) 00982 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, 00983 TrueMemOrderLatency); 00984 // Add dependence on alias chain, if needed. 00985 if (AliasChain) 00986 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 00987 // But we also should check dependent instructions for the 00988 // SU in question. 00989 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, 00990 TrueMemOrderLatency); 00991 } 00992 // Add dependence on barrier chain, if needed. 00993 // There is no point to check aliasing on barrier event. Even if 00994 // SU and barrier _could_ be reordered, they should not. In addition, 00995 // we have lost all RejectMemNodes below barrier. 00996 if (BarrierChain) 00997 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 00998 } else if (MI->mayLoad()) { 00999 bool MayAlias = true; 01000 if (MI->isInvariantLoad(AA)) { 01001 // Invariant load, no chain dependencies needed! 01002 } else { 01003 UnderlyingObjectsVector Objs; 01004 getUnderlyingObjectsForInstr(MI, MFI, Objs); 01005 01006 if (Objs.empty()) { 01007 // A load with no underlying object. Depend on all 01008 // potentially aliasing stores. 01009 for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = 01010 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) 01011 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 01012 addChainDependency(AAForDep, MFI, SU, I->second[i], 01013 RejectMemNodes); 01014 01015 PendingLoads.push_back(SU); 01016 MayAlias = true; 01017 } else { 01018 MayAlias = false; 01019 } 01020 01021 for (UnderlyingObjectsVector::iterator 01022 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { 01023 ValueType V = J->getPointer(); 01024 bool ThisMayAlias = J->getInt(); 01025 01026 if (ThisMayAlias) 01027 MayAlias = true; 01028 01029 // A load from a specific PseudoSourceValue. Add precise dependencies. 01030 MapVector<ValueType, std::vector<SUnit *> >::iterator I = 01031 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); 01032 MapVector<ValueType, std::vector<SUnit *> >::iterator IE = 01033 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); 01034 if (I != IE) 01035 for (unsigned i = 0, e = I->second.size(); i != e; ++i) 01036 addChainDependency(AAForDep, MFI, SU, I->second[i], 01037 RejectMemNodes, 0, true); 01038 if (ThisMayAlias) 01039 AliasMemUses[V].push_back(SU); 01040 else 01041 NonAliasMemUses[V].push_back(SU); 01042 } 01043 if (MayAlias) 01044 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); 01045 // Add dependencies on alias and barrier chains, if needed. 01046 if (MayAlias && AliasChain) 01047 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); 01048 if (BarrierChain) 01049 BarrierChain->addPred(SDep(SU, SDep::Barrier)); 01050 } 01051 } 01052 } 01053 if (DbgMI) 01054 FirstDbgValue = DbgMI; 01055 01056 Defs.clear(); 01057 Uses.clear(); 01058 VRegDefs.clear(); 01059 PendingLoads.clear(); 01060 } 01061 01062 /// \brief Initialize register live-range state for updating kills. 01063 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { 01064 // Start with no live registers. 01065 LiveRegs.reset(); 01066 01067 // Examine the live-in regs of all successors. 01068 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 01069 SE = BB->succ_end(); SI != SE; ++SI) { 01070 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 01071 E = (*SI)->livein_end(); I != E; ++I) { 01072 unsigned Reg = *I; 01073 // Repeat, for reg and all subregs. 01074 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 01075 SubRegs.isValid(); ++SubRegs) 01076 LiveRegs.set(*SubRegs); 01077 } 01078 } 01079 } 01080 01081 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { 01082 // Setting kill flag... 01083 if (!MO.isKill()) { 01084 MO.setIsKill(true); 01085 return false; 01086 } 01087 01088 // If MO itself is live, clear the kill flag... 01089 if (LiveRegs.test(MO.getReg())) { 01090 MO.setIsKill(false); 01091 return false; 01092 } 01093 01094 // If any subreg of MO is live, then create an imp-def for that 01095 // subreg and keep MO marked as killed. 01096 MO.setIsKill(false); 01097 bool AllDead = true; 01098 const unsigned SuperReg = MO.getReg(); 01099 MachineInstrBuilder MIB(MF, MI); 01100 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { 01101 if (LiveRegs.test(*SubRegs)) { 01102 MIB.addReg(*SubRegs, RegState::ImplicitDefine); 01103 AllDead = false; 01104 } 01105 } 01106 01107 if(AllDead) 01108 MO.setIsKill(true); 01109 return false; 01110 } 01111 01112 // FIXME: Reuse the LivePhysRegs utility for this. 01113 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { 01114 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 01115 01116 LiveRegs.resize(TRI->getNumRegs()); 01117 BitVector killedRegs(TRI->getNumRegs()); 01118 01119 startBlockForKills(MBB); 01120 01121 // Examine block from end to start... 01122 unsigned Count = MBB->size(); 01123 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 01124 I != E; --Count) { 01125 MachineInstr *MI = --I; 01126 if (MI->isDebugValue()) 01127 continue; 01128 01129 // Update liveness. Registers that are defed but not used in this 01130 // instruction are now dead. Mark register and all subregs as they 01131 // are completely defined. 01132 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 01133 MachineOperand &MO = MI->getOperand(i); 01134 if (MO.isRegMask()) 01135 LiveRegs.clearBitsNotInMask(MO.getRegMask()); 01136 if (!MO.isReg()) continue; 01137 unsigned Reg = MO.getReg(); 01138 if (Reg == 0) continue; 01139 if (!MO.isDef()) continue; 01140 // Ignore two-addr defs. 01141 if (MI->isRegTiedToUseOperand(i)) continue; 01142 01143 // Repeat for reg and all subregs. 01144 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 01145 SubRegs.isValid(); ++SubRegs) 01146 LiveRegs.reset(*SubRegs); 01147 } 01148 01149 // Examine all used registers and set/clear kill flag. When a 01150 // register is used multiple times we only set the kill flag on 01151 // the first use. Don't set kill flags on undef operands. 01152 killedRegs.reset(); 01153 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 01154 MachineOperand &MO = MI->getOperand(i); 01155 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 01156 unsigned Reg = MO.getReg(); 01157 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 01158 01159 bool kill = false; 01160 if (!killedRegs.test(Reg)) { 01161 kill = true; 01162 // A register is not killed if any subregs are live... 01163 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 01164 if (LiveRegs.test(*SubRegs)) { 01165 kill = false; 01166 break; 01167 } 01168 } 01169 01170 // If subreg is not live, then register is killed if it became 01171 // live in this instruction 01172 if (kill) 01173 kill = !LiveRegs.test(Reg); 01174 } 01175 01176 if (MO.isKill() != kill) { 01177 DEBUG(dbgs() << "Fixing " << MO << " in "); 01178 // Warning: toggleKillFlag may invalidate MO. 01179 toggleKillFlag(MI, MO); 01180 DEBUG(MI->dump()); 01181 } 01182 01183 killedRegs.set(Reg); 01184 } 01185 01186 // Mark any used register (that is not using undef) and subregs as 01187 // now live... 01188 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 01189 MachineOperand &MO = MI->getOperand(i); 01190 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 01191 unsigned Reg = MO.getReg(); 01192 if ((Reg == 0) || MRI.isReserved(Reg)) continue; 01193 01194 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 01195 SubRegs.isValid(); ++SubRegs) 01196 LiveRegs.set(*SubRegs); 01197 } 01198 } 01199 } 01200 01201 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { 01202 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 01203 SU->getInstr()->dump(); 01204 #endif 01205 } 01206 01207 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 01208 std::string s; 01209 raw_string_ostream oss(s); 01210 if (SU == &EntrySU) 01211 oss << "<entry>"; 01212 else if (SU == &ExitSU) 01213 oss << "<exit>"; 01214 else 01215 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); 01216 return oss.str(); 01217 } 01218 01219 /// Return the basic block label. It is not necessarilly unique because a block 01220 /// contains multiple scheduling regions. But it is fine for visualization. 01221 std::string ScheduleDAGInstrs::getDAGName() const { 01222 return "dag." + BB->getFullName(); 01223 } 01224 01225 //===----------------------------------------------------------------------===// 01226 // SchedDFSResult Implementation 01227 //===----------------------------------------------------------------------===// 01228 01229 namespace llvm { 01230 /// \brief Internal state used to compute SchedDFSResult. 01231 class SchedDFSImpl { 01232 SchedDFSResult &R; 01233 01234 /// Join DAG nodes into equivalence classes by their subtree. 01235 IntEqClasses SubtreeClasses; 01236 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 01237 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; 01238 01239 struct RootData { 01240 unsigned NodeID; 01241 unsigned ParentNodeID; // Parent node (member of the parent subtree). 01242 unsigned SubInstrCount; // Instr count in this tree only, not children. 01243 01244 RootData(unsigned id): NodeID(id), 01245 ParentNodeID(SchedDFSResult::InvalidSubtreeID), 01246 SubInstrCount(0) {} 01247 01248 unsigned getSparseSetIndex() const { return NodeID; } 01249 }; 01250 01251 SparseSet<RootData> RootSet; 01252 01253 public: 01254 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 01255 RootSet.setUniverse(R.DFSNodeData.size()); 01256 } 01257 01258 /// Return true if this node been visited by the DFS traversal. 01259 /// 01260 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 01261 /// ID. Later, SubtreeID is updated but remains valid. 01262 bool isVisited(const SUnit *SU) const { 01263 return R.DFSNodeData[SU->NodeNum].SubtreeID 01264 != SchedDFSResult::InvalidSubtreeID; 01265 } 01266 01267 /// Initialize this node's instruction count. We don't need to flag the node 01268 /// visited until visitPostorder because the DAG cannot have cycles. 01269 void visitPreorder(const SUnit *SU) { 01270 R.DFSNodeData[SU->NodeNum].InstrCount = 01271 SU->getInstr()->isTransient() ? 0 : 1; 01272 } 01273 01274 /// Called once for each node after all predecessors are visited. Revisit this 01275 /// node's predecessors and potentially join them now that we know the ILP of 01276 /// the other predecessors. 01277 void visitPostorderNode(const SUnit *SU) { 01278 // Mark this node as the root of a subtree. It may be joined with its 01279 // successors later. 01280 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 01281 RootData RData(SU->NodeNum); 01282 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 01283 01284 // If any predecessors are still in their own subtree, they either cannot be 01285 // joined or are large enough to remain separate. If this parent node's 01286 // total instruction count is not greater than a child subtree by at least 01287 // the subtree limit, then try to join it now since splitting subtrees is 01288 // only useful if multiple high-pressure paths are possible. 01289 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 01290 for (SUnit::const_pred_iterator 01291 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 01292 if (PI->getKind() != SDep::Data) 01293 continue; 01294 unsigned PredNum = PI->getSUnit()->NodeNum; 01295 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 01296 joinPredSubtree(*PI, SU, /*CheckLimit=*/false); 01297 01298 // Either link or merge the TreeData entry from the child to the parent. 01299 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 01300 // If the predecessor's parent is invalid, this is a tree edge and the 01301 // current node is the parent. 01302 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 01303 RootSet[PredNum].ParentNodeID = SU->NodeNum; 01304 } 01305 else if (RootSet.count(PredNum)) { 01306 // The predecessor is not a root, but is still in the root set. This 01307 // must be the new parent that it was just joined to. Note that 01308 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 01309 // set to the original parent. 01310 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 01311 RootSet.erase(PredNum); 01312 } 01313 } 01314 RootSet[SU->NodeNum] = RData; 01315 } 01316 01317 /// Called once for each tree edge after calling visitPostOrderNode on the 01318 /// predecessor. Increment the parent node's instruction count and 01319 /// preemptively join this subtree to its parent's if it is small enough. 01320 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 01321 R.DFSNodeData[Succ->NodeNum].InstrCount 01322 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 01323 joinPredSubtree(PredDep, Succ); 01324 } 01325 01326 /// Add a connection for cross edges. 01327 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 01328 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); 01329 } 01330 01331 /// Set each node's subtree ID to the representative ID and record connections 01332 /// between trees. 01333 void finalize() { 01334 SubtreeClasses.compress(); 01335 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 01336 assert(SubtreeClasses.getNumClasses() == RootSet.size() 01337 && "number of roots should match trees"); 01338 for (SparseSet<RootData>::const_iterator 01339 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { 01340 unsigned TreeID = SubtreeClasses[RI->NodeID]; 01341 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) 01342 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; 01343 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; 01344 // Note that SubInstrCount may be greater than InstrCount if we joined 01345 // subtrees across a cross edge. InstrCount will be attributed to the 01346 // original parent, while SubInstrCount will be attributed to the joined 01347 // parent. 01348 } 01349 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 01350 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 01351 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 01352 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 01353 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 01354 DEBUG(dbgs() << " SU(" << Idx << ") in tree " 01355 << R.DFSNodeData[Idx].SubtreeID << '\n'); 01356 } 01357 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator 01358 I = ConnectionPairs.begin(), E = ConnectionPairs.end(); 01359 I != E; ++I) { 01360 unsigned PredTree = SubtreeClasses[I->first->NodeNum]; 01361 unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; 01362 if (PredTree == SuccTree) 01363 continue; 01364 unsigned Depth = I->first->getDepth(); 01365 addConnection(PredTree, SuccTree, Depth); 01366 addConnection(SuccTree, PredTree, Depth); 01367 } 01368 } 01369 01370 protected: 01371 /// Join the predecessor subtree with the successor that is its DFS 01372 /// parent. Apply some heuristics before joining. 01373 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 01374 bool CheckLimit = true) { 01375 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 01376 01377 // Check if the predecessor is already joined. 01378 const SUnit *PredSU = PredDep.getSUnit(); 01379 unsigned PredNum = PredSU->NodeNum; 01380 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 01381 return false; 01382 01383 // Four is the magic number of successors before a node is considered a 01384 // pinch point. 01385 unsigned NumDataSucs = 0; 01386 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), 01387 SE = PredSU->Succs.end(); SI != SE; ++SI) { 01388 if (SI->getKind() == SDep::Data) { 01389 if (++NumDataSucs >= 4) 01390 return false; 01391 } 01392 } 01393 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 01394 return false; 01395 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 01396 SubtreeClasses.join(Succ->NodeNum, PredNum); 01397 return true; 01398 } 01399 01400 /// Called by finalize() to record a connection between trees. 01401 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 01402 if (!Depth) 01403 return; 01404 01405 do { 01406 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 01407 R.SubtreeConnections[FromTree]; 01408 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator 01409 I = Connections.begin(), E = Connections.end(); I != E; ++I) { 01410 if (I->TreeID == ToTree) { 01411 I->Level = std::max(I->Level, Depth); 01412 return; 01413 } 01414 } 01415 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 01416 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 01417 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 01418 } 01419 }; 01420 } // namespace llvm 01421 01422 namespace { 01423 /// \brief Manage the stack used by a reverse depth-first search over the DAG. 01424 class SchedDAGReverseDFS { 01425 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; 01426 public: 01427 bool isComplete() const { return DFSStack.empty(); } 01428 01429 void follow(const SUnit *SU) { 01430 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); 01431 } 01432 void advance() { ++DFSStack.back().second; } 01433 01434 const SDep *backtrack() { 01435 DFSStack.pop_back(); 01436 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 01437 } 01438 01439 const SUnit *getCurr() const { return DFSStack.back().first; } 01440 01441 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 01442 01443 SUnit::const_pred_iterator getPredEnd() const { 01444 return getCurr()->Preds.end(); 01445 } 01446 }; 01447 } // anonymous 01448 01449 static bool hasDataSucc(const SUnit *SU) { 01450 for (SUnit::const_succ_iterator 01451 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { 01452 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) 01453 return true; 01454 } 01455 return false; 01456 } 01457 01458 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first 01459 /// search from this root. 01460 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 01461 if (!IsBottomUp) 01462 llvm_unreachable("Top-down ILP metric is unimplemnted"); 01463 01464 SchedDFSImpl Impl(*this); 01465 for (ArrayRef<SUnit>::const_iterator 01466 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { 01467 const SUnit *SU = &*SI; 01468 if (Impl.isVisited(SU) || hasDataSucc(SU)) 01469 continue; 01470 01471 SchedDAGReverseDFS DFS; 01472 Impl.visitPreorder(SU); 01473 DFS.follow(SU); 01474 for (;;) { 01475 // Traverse the leftmost path as far as possible. 01476 while (DFS.getPred() != DFS.getPredEnd()) { 01477 const SDep &PredDep = *DFS.getPred(); 01478 DFS.advance(); 01479 // Ignore non-data edges. 01480 if (PredDep.getKind() != SDep::Data 01481 || PredDep.getSUnit()->isBoundaryNode()) { 01482 continue; 01483 } 01484 // An already visited edge is a cross edge, assuming an acyclic DAG. 01485 if (Impl.isVisited(PredDep.getSUnit())) { 01486 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 01487 continue; 01488 } 01489 Impl.visitPreorder(PredDep.getSUnit()); 01490 DFS.follow(PredDep.getSUnit()); 01491 } 01492 // Visit the top of the stack in postorder and backtrack. 01493 const SUnit *Child = DFS.getCurr(); 01494 const SDep *PredDep = DFS.backtrack(); 01495 Impl.visitPostorderNode(Child); 01496 if (PredDep) 01497 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 01498 if (DFS.isComplete()) 01499 break; 01500 } 01501 } 01502 Impl.finalize(); 01503 } 01504 01505 /// The root of the given SubtreeID was just scheduled. For all subtrees 01506 /// connected to this tree, record the depth of the connection so that the 01507 /// nearest connected subtrees can be prioritized. 01508 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 01509 for (SmallVectorImpl<Connection>::const_iterator 01510 I = SubtreeConnections[SubtreeID].begin(), 01511 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { 01512 SubtreeConnectLevels[I->TreeID] = 01513 std::max(SubtreeConnectLevels[I->TreeID], I->Level); 01514 DEBUG(dbgs() << " Tree: " << I->TreeID 01515 << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); 01516 } 01517 } 01518 01519 LLVM_DUMP_METHOD 01520 void ILPValue::print(raw_ostream &OS) const { 01521 OS << InstrCount << " / " << Length << " = "; 01522 if (!Length) 01523 OS << "BADILP"; 01524 else 01525 OS << format("%g", ((double)InstrCount / Length)); 01526 } 01527 01528 LLVM_DUMP_METHOD 01529 void ILPValue::dump() const { 01530 dbgs() << *this << '\n'; 01531 } 01532 01533 namespace llvm { 01534 01535 LLVM_DUMP_METHOD 01536 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 01537 Val.print(OS); 01538 return OS; 01539 } 01540 01541 } // namespace llvm