ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1nq Unicode version

Theorem 1nq 6556
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.)
Assertion
Ref Expression
1nq  |-  1Q  e.  Q.

Proof of Theorem 1nq
StepHypRef Expression
1 1pi 6505 . . . 4  |-  1o  e.  N.
2 opelxpi 4394 . . . 4  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  ->  <. 1o ,  1o >.  e.  ( N.  X.  N. ) )
31, 1, 2mp2an 416 . . 3  |-  <. 1o ,  1o >.  e.  ( N. 
X.  N. )
4 enqex 6550 . . . 4  |-  ~Q  e.  _V
54ecelqsi 6183 . . 3  |-  ( <. 1o ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. 1o ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
63, 5ax-mp 7 . 2  |-  [ <. 1o ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
7 df-1nqqs 6541 . 2  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
8 df-nqqs 6538 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
96, 7, 83eltr4i 2160 1  |-  1Q  e.  Q.
Colors of variables: wff set class
Syntax hints:    e. wcel 1433   <.cop 3401    X. cxp 4361   1oc1o 6017   [cec 6127   /.cqs 6128   N.cnpi 6462    ~Q ceq 6469   Q.cnq 6470   1Qc1q 6471
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-suc 4126  df-iom 4332  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-1o 6024  df-ec 6131  df-qs 6135  df-ni 6494  df-enq 6537  df-nqqs 6538  df-1nqqs 6541
This theorem is referenced by:  recmulnqg  6581  rec1nq  6585  ltaddnq  6597  halfnqq  6600  addnqprllem  6717  addnqprulem  6718  1pr  6744  addnqpr1  6752  appdivnq  6753  1idprl  6780  1idpru  6781  recexprlemm  6814  recexprlem1ssl  6823  recexprlem1ssu  6824  cauappcvgprlemm  6835  caucvgprlemm  6858  caucvgprprlemmu  6885
  Copyright terms: Public domain W3C validator