ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptiprleml GIF version

Theorem aptiprleml 6829
Description: Lemma for aptipr 6831. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptiprleml ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (1st𝐴) ⊆ (1st𝐵))

Proof of Theorem aptiprleml
Dummy variables 𝑓 𝑔 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6665 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prnmaxl 6678 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → ∃𝑠 ∈ (1st𝐴)𝑥 <Q 𝑠)
31, 2sylan 277 . . . . . 6 ((𝐴P𝑥 ∈ (1st𝐴)) → ∃𝑠 ∈ (1st𝐴)𝑥 <Q 𝑠)
43ad2ant2rl 494 . . . . 5 (((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) → ∃𝑠 ∈ (1st𝐴)𝑥 <Q 𝑠)
5 ltexnqi 6599 . . . . . . 7 (𝑥 <Q 𝑠 → ∃𝑡Q (𝑥 +Q 𝑡) = 𝑠)
65ad2antll 474 . . . . . 6 ((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) → ∃𝑡Q (𝑥 +Q 𝑡) = 𝑠)
7 simplr 496 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) → 𝐵P)
87ad2antrr 471 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) → 𝐵P)
9 simprl 497 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) → 𝑡Q)
10 prop 6665 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
11 prarloc2 6694 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐵)(𝑢 +Q 𝑡) ∈ (2nd𝐵))
1210, 11sylan 277 . . . . . . . 8 ((𝐵P𝑡Q) → ∃𝑢 ∈ (1st𝐵)(𝑢 +Q 𝑡) ∈ (2nd𝐵))
138, 9, 12syl2anc 403 . . . . . . 7 (((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) → ∃𝑢 ∈ (1st𝐵)(𝑢 +Q 𝑡) ∈ (2nd𝐵))
148adantr 270 . . . . . . . . . 10 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝐵P)
15 simprl 497 . . . . . . . . . 10 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝑢 ∈ (1st𝐵))
16 elprnql 6671 . . . . . . . . . . 11 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑢 ∈ (1st𝐵)) → 𝑢Q)
1710, 16sylan 277 . . . . . . . . . 10 ((𝐵P𝑢 ∈ (1st𝐵)) → 𝑢Q)
1814, 15, 17syl2anc 403 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝑢Q)
19 simpll 495 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) → 𝐴P)
2019ad3antrrr 475 . . . . . . . . . 10 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝐴P)
21 simprr 498 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) → 𝑥 ∈ (1st𝐴))
2221ad3antrrr 475 . . . . . . . . . 10 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝑥 ∈ (1st𝐴))
23 elprnql 6671 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → 𝑥Q)
241, 23sylan 277 . . . . . . . . . 10 ((𝐴P𝑥 ∈ (1st𝐴)) → 𝑥Q)
2520, 22, 24syl2anc 403 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝑥Q)
26 nqtri3or 6586 . . . . . . . . 9 ((𝑢Q𝑥Q) → (𝑢 <Q 𝑥𝑢 = 𝑥𝑥 <Q 𝑢))
2718, 25, 26syl2anc 403 . . . . . . . 8 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑢 <Q 𝑥𝑢 = 𝑥𝑥 <Q 𝑢))
2818adantr 270 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → 𝑢Q)
29 simplrl 501 . . . . . . . . . . . . . . 15 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝑡Q)
3029adantr 270 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → 𝑡Q)
31 addclnq 6565 . . . . . . . . . . . . . 14 ((𝑢Q𝑡Q) → (𝑢 +Q 𝑡) ∈ Q)
3228, 30, 31syl2anc 403 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → (𝑢 +Q 𝑡) ∈ Q)
33 ltanqg 6590 . . . . . . . . . . . . . . . . . 18 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3433adantl 271 . . . . . . . . . . . . . . . . 17 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
35 addcomnqg 6571 . . . . . . . . . . . . . . . . . 18 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3635adantl 271 . . . . . . . . . . . . . . . . 17 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3734, 18, 25, 29, 36caovord2d 5690 . . . . . . . . . . . . . . . 16 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑢 <Q 𝑥 ↔ (𝑢 +Q 𝑡) <Q (𝑥 +Q 𝑡)))
38 simplrr 502 . . . . . . . . . . . . . . . . . 18 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑥 +Q 𝑡) = 𝑠)
39 simprl 497 . . . . . . . . . . . . . . . . . . 19 ((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) → 𝑠 ∈ (1st𝐴))
4039ad2antrr 471 . . . . . . . . . . . . . . . . . 18 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝑠 ∈ (1st𝐴))
4138, 40eqeltrd 2155 . . . . . . . . . . . . . . . . 17 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑥 +Q 𝑡) ∈ (1st𝐴))
42 prcdnql 6674 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (𝑥 +Q 𝑡) ∈ (1st𝐴)) → ((𝑢 +Q 𝑡) <Q (𝑥 +Q 𝑡) → (𝑢 +Q 𝑡) ∈ (1st𝐴)))
431, 42sylan 277 . . . . . . . . . . . . . . . . 17 ((𝐴P ∧ (𝑥 +Q 𝑡) ∈ (1st𝐴)) → ((𝑢 +Q 𝑡) <Q (𝑥 +Q 𝑡) → (𝑢 +Q 𝑡) ∈ (1st𝐴)))
4420, 41, 43syl2anc 403 . . . . . . . . . . . . . . . 16 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → ((𝑢 +Q 𝑡) <Q (𝑥 +Q 𝑡) → (𝑢 +Q 𝑡) ∈ (1st𝐴)))
4537, 44sylbid 148 . . . . . . . . . . . . . . 15 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑢 <Q 𝑥 → (𝑢 +Q 𝑡) ∈ (1st𝐴)))
46 simprr 498 . . . . . . . . . . . . . . 15 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑢 +Q 𝑡) ∈ (2nd𝐵))
4745, 46jctild 309 . . . . . . . . . . . . . 14 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑢 <Q 𝑥 → ((𝑢 +Q 𝑡) ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (1st𝐴))))
4847imp 122 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → ((𝑢 +Q 𝑡) ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (1st𝐴)))
49 eleq1 2141 . . . . . . . . . . . . . . 15 (𝑣 = (𝑢 +Q 𝑡) → (𝑣 ∈ (2nd𝐵) ↔ (𝑢 +Q 𝑡) ∈ (2nd𝐵)))
50 eleq1 2141 . . . . . . . . . . . . . . 15 (𝑣 = (𝑢 +Q 𝑡) → (𝑣 ∈ (1st𝐴) ↔ (𝑢 +Q 𝑡) ∈ (1st𝐴)))
5149, 50anbi12d 456 . . . . . . . . . . . . . 14 (𝑣 = (𝑢 +Q 𝑡) → ((𝑣 ∈ (2nd𝐵) ∧ 𝑣 ∈ (1st𝐴)) ↔ ((𝑢 +Q 𝑡) ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (1st𝐴))))
5251rspcev 2701 . . . . . . . . . . . . 13 (((𝑢 +Q 𝑡) ∈ Q ∧ ((𝑢 +Q 𝑡) ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (1st𝐴))) → ∃𝑣Q (𝑣 ∈ (2nd𝐵) ∧ 𝑣 ∈ (1st𝐴)))
5332, 48, 52syl2anc 403 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → ∃𝑣Q (𝑣 ∈ (2nd𝐵) ∧ 𝑣 ∈ (1st𝐴)))
54 ltdfpr 6696 . . . . . . . . . . . . . 14 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ∃𝑣Q (𝑣 ∈ (2nd𝐵) ∧ 𝑣 ∈ (1st𝐴))))
5514, 20, 54syl2anc 403 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝐵<P 𝐴 ↔ ∃𝑣Q (𝑣 ∈ (2nd𝐵) ∧ 𝑣 ∈ (1st𝐴))))
5655adantr 270 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → (𝐵<P 𝐴 ↔ ∃𝑣Q (𝑣 ∈ (2nd𝐵) ∧ 𝑣 ∈ (1st𝐴))))
5753, 56mpbird 165 . . . . . . . . . . 11 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → 𝐵<P 𝐴)
58 simplrl 501 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) → ¬ 𝐵<P 𝐴)
5958ad3antrrr 475 . . . . . . . . . . 11 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → ¬ 𝐵<P 𝐴)
6057, 59pm2.21dd 582 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) ∧ 𝑢 <Q 𝑥) → 𝑥 ∈ (1st𝐵))
6160ex 113 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑢 <Q 𝑥𝑥 ∈ (1st𝐵)))
62 eleq1 2141 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 ∈ (1st𝐵) ↔ 𝑥 ∈ (1st𝐵)))
6315, 62syl5ibcom 153 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑢 = 𝑥𝑥 ∈ (1st𝐵)))
64 prcdnql 6674 . . . . . . . . . . 11 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑢 ∈ (1st𝐵)) → (𝑥 <Q 𝑢𝑥 ∈ (1st𝐵)))
6510, 64sylan 277 . . . . . . . . . 10 ((𝐵P𝑢 ∈ (1st𝐵)) → (𝑥 <Q 𝑢𝑥 ∈ (1st𝐵)))
6614, 15, 65syl2anc 403 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → (𝑥 <Q 𝑢𝑥 ∈ (1st𝐵)))
6761, 63, 663jaod 1235 . . . . . . . 8 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → ((𝑢 <Q 𝑥𝑢 = 𝑥𝑥 <Q 𝑢) → 𝑥 ∈ (1st𝐵)))
6827, 67mpd 13 . . . . . . 7 ((((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐵))) → 𝑥 ∈ (1st𝐵))
6913, 68rexlimddv 2481 . . . . . 6 (((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡Q ∧ (𝑥 +Q 𝑡) = 𝑠)) → 𝑥 ∈ (1st𝐵))
706, 69rexlimddv 2481 . . . . 5 ((((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) ∧ (𝑠 ∈ (1st𝐴) ∧ 𝑥 <Q 𝑠)) → 𝑥 ∈ (1st𝐵))
714, 70rexlimddv 2481 . . . 4 (((𝐴P𝐵P) ∧ (¬ 𝐵<P 𝐴𝑥 ∈ (1st𝐴))) → 𝑥 ∈ (1st𝐵))
7271expr 367 . . 3 (((𝐴P𝐵P) ∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (1st𝐴) → 𝑥 ∈ (1st𝐵)))
73723impa 1133 . 2 ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (1st𝐴) → 𝑥 ∈ (1st𝐵)))
7473ssrdv 3005 1 ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (1st𝐴) ⊆ (1st𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3o 918  w3a 919   = wceq 1284  wcel 1433  wrex 2349  wss 2973  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   +Q cplq 6472   <Q cltq 6475  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iltp 6660
This theorem is referenced by:  aptipr  6831
  Copyright terms: Public domain W3C validator