ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrdg Unicode version

Theorem frec2uzrdg 9411
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function 
F ( x ,  y ) and initial value  A. This lemma shows that evaluating  R at an element of  om gives an ordered pair whose first element is the index (translated from  om to  ( ZZ>= `  C )). See comment in frec2uz0d 9401 which describes  G and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
uzrdg.s  |-  ( ph  ->  S  e.  V )
uzrdg.a  |-  ( ph  ->  A  e.  S )
uzrdg.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
uzrdg.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
uzrdg.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
frec2uzrdg  |-  ( ph  ->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    B( x, y)    R( x, y)    G( x)    V( x, y)

Proof of Theorem frec2uzrdg
Dummy variables  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzrdg.b . 2  |-  ( ph  ->  B  e.  om )
2 fveq2 5198 . . . . 5  |-  ( z  =  B  ->  ( R `  z )  =  ( R `  B ) )
3 fveq2 5198 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
42fveq2d 5202 . . . . . 6  |-  ( z  =  B  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  B )
) )
53, 4opeq12d 3578 . . . . 5  |-  ( z  =  B  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
62, 5eqeq12d 2095 . . . 4  |-  ( z  =  B  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) )
76imbi2d 228 . . 3  |-  ( z  =  B  ->  (
( ph  ->  ( R `
 z )  = 
<. ( G `  z
) ,  ( 2nd `  ( R `  z
) ) >. )  <->  (
ph  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) ) )
8 fveq2 5198 . . . . 5  |-  ( z  =  (/)  ->  ( R `
 z )  =  ( R `  (/) ) )
9 fveq2 5198 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
108fveq2d 5202 . . . . . 6  |-  ( z  =  (/)  ->  ( 2nd `  ( R `  z
) )  =  ( 2nd `  ( R `
 (/) ) ) )
119, 10opeq12d 3578 . . . . 5  |-  ( z  =  (/)  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. )
128, 11eqeq12d 2095 . . . 4  |-  ( z  =  (/)  ->  ( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `
 z ) )
>. 
<->  ( R `  (/) )  = 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. ) )
13 fveq2 5198 . . . . 5  |-  ( z  =  v  ->  ( R `  z )  =  ( R `  v ) )
14 fveq2 5198 . . . . . 6  |-  ( z  =  v  ->  ( G `  z )  =  ( G `  v ) )
1513fveq2d 5202 . . . . . 6  |-  ( z  =  v  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  v )
) )
1614, 15opeq12d 3578 . . . . 5  |-  ( z  =  v  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. )
1713, 16eqeq12d 2095 . . . 4  |-  ( z  =  v  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  v
)  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. ) )
18 fveq2 5198 . . . . 5  |-  ( z  =  suc  v  -> 
( R `  z
)  =  ( R `
 suc  v )
)
19 fveq2 5198 . . . . . 6  |-  ( z  =  suc  v  -> 
( G `  z
)  =  ( G `
 suc  v )
)
2018fveq2d 5202 . . . . . 6  |-  ( z  =  suc  v  -> 
( 2nd `  ( R `  z )
)  =  ( 2nd `  ( R `  suc  v ) ) )
2119, 20opeq12d 3578 . . . . 5  |-  ( z  =  suc  v  ->  <. ( G `  z
) ,  ( 2nd `  ( R `  z
) ) >.  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
)
2218, 21eqeq12d 2095 . . . 4  |-  ( z  =  suc  v  -> 
( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  suc  v )  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
) )
23 uzrdg.2 . . . . . . 7  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
2423fveq1i 5199 . . . . . 6  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  (/) )
25 frec2uz.1 . . . . . . . 8  |-  ( ph  ->  C  e.  ZZ )
26 uzrdg.a . . . . . . . 8  |-  ( ph  ->  A  e.  S )
27 opexg 3983 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  A  e.  S )  -> 
<. C ,  A >.  e. 
_V )
2825, 26, 27syl2anc 403 . . . . . . 7  |-  ( ph  -> 
<. C ,  A >.  e. 
_V )
29 frec0g 6006 . . . . . . 7  |-  ( <. C ,  A >.  e. 
_V  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
3028, 29syl 14 . . . . . 6  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
3124, 30syl5eq 2125 . . . . 5  |-  ( ph  ->  ( R `  (/) )  = 
<. C ,  A >. )
32 frec2uz.2 . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3325, 32frec2uz0d 9401 . . . . . 6  |-  ( ph  ->  ( G `  (/) )  =  C )
3431fveq2d 5202 . . . . . . 7  |-  ( ph  ->  ( 2nd `  ( R `  (/) ) )  =  ( 2nd `  <. C ,  A >. )
)
35 uzid 8633 . . . . . . . . 9  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
3625, 35syl 14 . . . . . . . 8  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
37 op2ndg 5798 . . . . . . . 8  |-  ( ( C  e.  ( ZZ>= `  C )  /\  A  e.  S )  ->  ( 2nd `  <. C ,  A >. )  =  A )
3836, 26, 37syl2anc 403 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. C ,  A >. )  =  A )
3934, 38eqtrd 2113 . . . . . 6  |-  ( ph  ->  ( 2nd `  ( R `  (/) ) )  =  A )
4033, 39opeq12d 3578 . . . . 5  |-  ( ph  -> 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>.  =  <. C ,  A >. )
4131, 40eqtr4d 2116 . . . 4  |-  ( ph  ->  ( R `  (/) )  = 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. )
42 zex 8360 . . . . . . . . . . . . . . . 16  |-  ZZ  e.  _V
43 uzssz 8638 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= `  C )  C_  ZZ
4442, 43ssexi 3916 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  C )  e.  _V
4544a1i 9 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  om )  ->  ( ZZ>= `  C )  e.  _V )
46 uzrdg.s . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  e.  V )
4746adantr 270 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  om )  ->  S  e.  V )
48 mpt2exga 5855 . . . . . . . . . . . . . 14  |-  ( ( ( ZZ>= `  C )  e.  _V  /\  S  e.  V )  ->  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V )
4945, 47, 48syl2anc 403 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  om )  ->  ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
)  e.  _V )
50 vex 2604 . . . . . . . . . . . . . 14  |-  z  e. 
_V
5150a1i 9 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  om )  ->  z  e.  _V )
52 fvexg 5214 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
)  e.  _V  /\  z  e.  _V )  ->  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
5349, 51, 52syl2anc 403 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V )
5453alrimiv 1795 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  A. z
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
5528adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  <. C ,  A >.  e.  _V )
56 simpr 108 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  v  e.  om )
57 frecsuc 6014 . . . . . . . . . . 11  |-  ( ( A. z ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V  /\ 
<. C ,  A >.  e. 
_V  /\  v  e.  om )  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  v )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  v
) ) )
5854, 55, 56, 57syl3anc 1169 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  om )  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  v )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  v
) ) )
5923fveq1i 5199 . . . . . . . . . 10  |-  ( R `
 suc  v )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  suc  v )
6023fveq1i 5199 . . . . . . . . . . 11  |-  ( R `
 v )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  v
)
6160fveq2i 5201 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  v
) )
6258, 59, 613eqtr4g 2138 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  om )  ->  ( R `  suc  v )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  v ) ) )
6362adantr 270 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( R `
 v ) ) )
64 fveq2 5198 . . . . . . . . 9  |-  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( R `
 v ) )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. ) )
65 df-ov 5535 . . . . . . . . . 10  |-  ( ( G `  v ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. )
6625adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  C  e.  ZZ )
6766, 32, 56frec2uzuzd 9404 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  ( G `  v )  e.  (
ZZ>= `  C ) )
68 uzrdg.f . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
6925, 32, 46, 26, 68, 23frecuzrdgrrn 9410 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( R `  v )  e.  ( ( ZZ>= `  C )  X.  S ) )
70 xp2nd 5813 . . . . . . . . . . . 12  |-  ( ( R `  v )  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  ( R `  v
) )  e.  S
)
7169, 70syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  ( 2nd `  ( R `  v
) )  e.  S
)
72 peano2uz 8671 . . . . . . . . . . . . 13  |-  ( ( G `  v )  e.  ( ZZ>= `  C
)  ->  ( ( G `  v )  +  1 )  e.  ( ZZ>= `  C )
)
7367, 72syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( ( G `  v )  +  1 )  e.  ( ZZ>= `  C )
)
7468caovclg 5673 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( z  e.  ( ZZ>= `  C )  /\  w  e.  S
) )  ->  (
z F w )  e.  S )
7574adantlr 460 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  om )  /\  (
z  e.  ( ZZ>= `  C )  /\  w  e.  S ) )  -> 
( z F w )  e.  S )
7675, 67, 71caovcld 5674 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  S
)
77 opelxp 4392 . . . . . . . . . . . 12  |-  ( <.
( ( G `  v )  +  1 ) ,  ( ( G `  v ) F ( 2nd `  ( R `  v )
) ) >.  e.  ( ( ZZ>= `  C )  X.  S )  <->  ( (
( G `  v
)  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  S
) )
7873, 76, 77sylanbrc 408 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  <. ( ( G `  v )  +  1 ) ,  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )
79 oveq1 5539 . . . . . . . . . . . . 13  |-  ( w  =  ( G `  v )  ->  (
w  +  1 )  =  ( ( G `
 v )  +  1 ) )
80 oveq1 5539 . . . . . . . . . . . . 13  |-  ( w  =  ( G `  v )  ->  (
w F z )  =  ( ( G `
 v ) F z ) )
8179, 80opeq12d 3578 . . . . . . . . . . . 12  |-  ( w  =  ( G `  v )  ->  <. (
w  +  1 ) ,  ( w F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F z ) >. )
82 oveq2 5540 . . . . . . . . . . . . 13  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  ( ( G `  v ) F z )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
8382opeq2d 3577 . . . . . . . . . . . 12  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  <. ( ( G `  v )  +  1 ) ,  ( ( G `  v ) F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
84 oveq1 5539 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
x  +  1 )  =  ( w  + 
1 ) )
85 oveq1 5539 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
x F y )  =  ( w F y ) )
8684, 85opeq12d 3578 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( w  +  1 ) ,  ( w F y ) >. )
87 oveq2 5540 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
w F y )  =  ( w F z ) )
8887opeq2d 3577 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  <. (
w  +  1 ) ,  ( w F y ) >.  =  <. ( w  +  1 ) ,  ( w F z ) >. )
8986, 88cbvmpt2v 5604 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
w  e.  ( ZZ>= `  C ) ,  z  e.  S  |->  <. (
w  +  1 ) ,  ( w F z ) >. )
9081, 83, 89ovmpt2g 5655 . . . . . . . . . . 11  |-  ( ( ( G `  v
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  v ) )  e.  S  /\  <. (
( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.  e.  ( ( ZZ>= `  C )  X.  S ) )  -> 
( ( G `  v ) ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
9167, 71, 78, 90syl3anc 1169 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  om )  ->  ( ( G `  v )
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
9265, 91syl5eqr 2127 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  om )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
9364, 92sylan9eqr 2135 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
9463, 93eqtrd 2113 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)
9566, 32, 56frec2uzsucd 9403 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  om )  ->  ( G `  suc  v )  =  ( ( G `  v )  +  1 ) )
9695adantr 270 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( G `
 suc  v )  =  ( ( G `
 v )  +  1 ) )
9794fveq2d 5202 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( 2nd `  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
)
9866, 32, 56frec2uzzd 9402 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  om )  ->  ( G `  v )  e.  ZZ )
9998peano2zd 8472 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  om )  ->  ( ( G `  v )  +  1 )  e.  ZZ )
10099adantr 270 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( ( G `  v )  +  1 )  e.  ZZ )
10176adantr 270 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  S
)
102 op2ndg 5798 . . . . . . . . . 10  |-  ( ( ( ( G `  v )  +  1 )  e.  ZZ  /\  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) )  e.  S )  ->  ( 2nd `  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )  =  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) )
103100, 101, 102syl2anc 403 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)  =  ( ( G `  v ) F ( 2nd `  ( R `  v )
) ) )
10497, 103eqtrd 2113 . . . . . . . 8  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
10596, 104opeq12d 3578 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  <. ( G `  suc  v ) ,  ( 2nd `  ( R `  suc  v ) ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
10694, 105eqtr4d 2116 . . . . . 6  |-  ( ( ( ph  /\  v  e.  om )  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. )
107106ex 113 . . . . 5  |-  ( (
ph  /\  v  e.  om )  ->  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( R `  suc  v )  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
) )
108107expcom 114 . . . 4  |-  ( v  e.  om  ->  ( ph  ->  ( ( R `
 v )  = 
<. ( G `  v
) ,  ( 2nd `  ( R `  v
) ) >.  ->  ( R `  suc  v )  =  <. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. ) ) )
10912, 17, 22, 41, 108finds2 4342 . . 3  |-  ( z  e.  om  ->  ( ph  ->  ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. ) )
1107, 109vtoclga 2664 . 2  |-  ( B  e.  om  ->  ( ph  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) )
1111, 110mpcom 36 1  |-  ( ph  ->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    = wceq 1284    e. wcel 1433   _Vcvv 2601   (/)c0 3251   <.cop 3401    |-> cmpt 3839   suc csuc 4120   omcom 4331    X. cxp 4361   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   2ndc2nd 5786  freccfrec 6000   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  frecuzrdglem  9413  frecuzrdgfn  9414  frecuzrdgsuc  9417
  Copyright terms: Public domain W3C validator