ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuc GIF version

Theorem frecsuc 6014
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 15-Aug-2019.)
Assertion
Ref Expression
frecsuc ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem frecsuc
Dummy variables 𝑓 𝑔 𝑚 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4157 . . . . . . . . . 10 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
21eqeq2d 2092 . . . . . . . . 9 (𝑛 = 𝑚 → (dom 𝑓 = suc 𝑛 ↔ dom 𝑓 = suc 𝑚))
3 fveq2 5198 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
43fveq2d 5202 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐹‘(𝑓𝑛)) = (𝐹‘(𝑓𝑚)))
54eleq2d 2148 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑥 ∈ (𝐹‘(𝑓𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
62, 5anbi12d 456 . . . . . . . 8 (𝑛 = 𝑚 → ((dom 𝑓 = suc 𝑛𝑥 ∈ (𝐹‘(𝑓𝑛))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
76cbvrexv 2578 . . . . . . 7 (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑥 ∈ (𝐹‘(𝑓𝑛))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))))
87orbi1i 712 . . . . . 6 ((∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑥 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
98abbii 2194 . . . . 5 {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑥 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))}
10 eleq1 2141 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹‘(𝑓𝑚)) ↔ 𝑦 ∈ (𝐹‘(𝑓𝑚))))
1110anbi2d 451 . . . . . . . 8 (𝑥 = 𝑦 → ((dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚)))))
1211rexbidv 2369 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚)))))
13 eleq1 2141 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1413anbi2d 451 . . . . . . 7 (𝑥 = 𝑦 → ((dom 𝑓 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑦𝐴)))
1512, 14orbi12d 739 . . . . . 6 (𝑥 = 𝑦 → ((∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))))
1615cbvabv 2202 . . . . 5 {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} = {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}
179, 16eqtri 2101 . . . 4 {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑥 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} = {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}
1817mpteq2i 3865 . . 3 (𝑓 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑥 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))}) = (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))})
19 dmeq 4553 . . . . . . . . 9 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
2019eqeq1d 2089 . . . . . . . 8 (𝑓 = 𝑔 → (dom 𝑓 = suc 𝑚 ↔ dom 𝑔 = suc 𝑚))
21 fveq1 5197 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓𝑚) = (𝑔𝑚))
2221fveq2d 5202 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐹‘(𝑓𝑚)) = (𝐹‘(𝑔𝑚)))
2322eleq2d 2148 . . . . . . . 8 (𝑓 = 𝑔 → (𝑦 ∈ (𝐹‘(𝑓𝑚)) ↔ 𝑦 ∈ (𝐹‘(𝑔𝑚))))
2420, 23anbi12d 456 . . . . . . 7 (𝑓 = 𝑔 → ((dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ↔ (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))))
2524rexbidv 2369 . . . . . 6 (𝑓 = 𝑔 → (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))))
2619eqeq1d 2089 . . . . . . 7 (𝑓 = 𝑔 → (dom 𝑓 = ∅ ↔ dom 𝑔 = ∅))
2726anbi1d 452 . . . . . 6 (𝑓 = 𝑔 → ((dom 𝑓 = ∅ ∧ 𝑦𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑦𝐴)))
2825, 27orbi12d 739 . . . . 5 (𝑓 = 𝑔 → ((∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))))
2928abbidv 2196 . . . 4 (𝑓 = 𝑔 → {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))} = {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
3029cbvmptv 3873 . . 3 (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑦 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
3118, 30eqtri 2101 . 2 (𝑓 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑥 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
3231frecsuclem3 6013 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661  w3a 919  wal 1282   = wceq 1284  wcel 1433  {cab 2067  wrex 2349  Vcvv 2601  c0 3251  cmpt 3839  suc csuc 4120  ωcom 4331  dom cdm 4363  cfv 4922  freccfrec 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-frec 6001
This theorem is referenced by:  frecrdg  6015  freccl  6016  frec2uzzd  9402  frec2uzsucd  9403  frec2uzrdg  9411  frecuzrdgsuc  9417
  Copyright terms: Public domain W3C validator