ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgfn Unicode version

Theorem frecuzrdgfn 9414
Description: The recursive definition generator on upper integers is a function. See comment in frec2uz0d 9401 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
uzrdg.s  |-  ( ph  ->  S  e.  V )
uzrdg.a  |-  ( ph  ->  A  e.  S )
uzrdg.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
uzrdg.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgfn.3  |-  ( ph  ->  T  =  ran  R
)
Assertion
Ref Expression
frecuzrdgfn  |-  ( ph  ->  T  Fn  ( ZZ>= `  C ) )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    R( x, y)    T( x, y)    G( x)    V( x, y)

Proof of Theorem frecuzrdgfn
Dummy variables  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgfn.3 . . . . . . . . 9  |-  ( ph  ->  T  =  ran  R
)
21eleq2d 2148 . . . . . . . 8  |-  ( ph  ->  ( z  e.  T  <->  z  e.  ran  R ) )
3 frec2uz.1 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
4 frec2uz.2 . . . . . . . . . 10  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
5 uzrdg.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  V )
6 uzrdg.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  S )
7 uzrdg.f . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
8 uzrdg.2 . . . . . . . . . 10  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
93, 4, 5, 6, 7, 8frecuzrdgrom 9412 . . . . . . . . 9  |-  ( ph  ->  R  Fn  om )
10 fvelrnb 5242 . . . . . . . . 9  |-  ( R  Fn  om  ->  (
z  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  z ) )
119, 10syl 14 . . . . . . . 8  |-  ( ph  ->  ( z  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  z ) )
122, 11bitrd 186 . . . . . . 7  |-  ( ph  ->  ( z  e.  T  <->  E. w  e.  om  ( R `  w )  =  z ) )
133, 4, 5, 6, 7, 8frecuzrdgrrn 9410 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  e.  ( ( ZZ>= `  C )  X.  S ) )
14 eleq1 2141 . . . . . . . . 9  |-  ( ( R `  w )  =  z  ->  (
( R `  w
)  e.  ( (
ZZ>= `  C )  X.  S )  <->  z  e.  ( ( ZZ>= `  C
)  X.  S ) ) )
1513, 14syl5ibcom 153 . . . . . . . 8  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  z  ->  z  e.  ( ( ZZ>= `  C
)  X.  S ) ) )
1615rexlimdva 2477 . . . . . . 7  |-  ( ph  ->  ( E. w  e. 
om  ( R `  w )  =  z  ->  z  e.  ( ( ZZ>= `  C )  X.  S ) ) )
1712, 16sylbid 148 . . . . . 6  |-  ( ph  ->  ( z  e.  T  ->  z  e.  ( (
ZZ>= `  C )  X.  S ) ) )
1817ssrdv 3005 . . . . 5  |-  ( ph  ->  T  C_  ( ( ZZ>=
`  C )  X.  S ) )
19 xpss 4464 . . . . 5  |-  ( (
ZZ>= `  C )  X.  S )  C_  ( _V  X.  _V )
2018, 19syl6ss 3011 . . . 4  |-  ( ph  ->  T  C_  ( _V  X.  _V ) )
21 df-rel 4370 . . . 4  |-  ( Rel 
T  <->  T  C_  ( _V 
X.  _V ) )
2220, 21sylibr 132 . . 3  |-  ( ph  ->  Rel  T )
233, 4frec2uzf1od 9408 . . . . . . . . . 10  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
24 f1ocnvdm 5441 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  v )  e.  om )
2523, 24sylan 277 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  om )
263, 4, 5, 6, 7, 8frecuzrdgrrn 9410 . . . . . . . . 9  |-  ( (
ph  /\  ( `' G `  v )  e.  om )  ->  ( R `  ( `' G `  v )
)  e.  ( (
ZZ>= `  C )  X.  S ) )
2725, 26syldan 276 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
28 xp2nd 5813 . . . . . . . 8  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
301eleq2d 2148 . . . . . . . . . . 11  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  <->  <. v ,  z >.  e.  ran  R ) )
31 fvelrnb 5242 . . . . . . . . . . . 12  |-  ( R  Fn  om  ->  ( <. v ,  z >.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
329, 31syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( <. v ,  z
>.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
3330, 32bitrd 186 . . . . . . . . . 10  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
343adantr 270 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  C  e.  ZZ )
355adantr 270 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  S  e.  V )
366adantr 270 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  A  e.  S )
377adantlr 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  e.  om )  /\  (
x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
38 simpr 108 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  w  e.  om )
3934, 4, 35, 36, 37, 8, 38frec2uzrdg 9411 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  =  <. ( G `  w ) ,  ( 2nd `  ( R `  w )
) >. )
4039eqeq1d 2089 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>. 
<-> 
<. ( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >. )
)
41 vex 2604 . . . . . . . . . . . . . . . . . . 19  |-  v  e. 
_V
42 vex 2604 . . . . . . . . . . . . . . . . . . 19  |-  z  e. 
_V
4341, 42opth2 3995 . . . . . . . . . . . . . . . . . 18  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  <->  ( ( G `  w )  =  v  /\  ( 2nd `  ( R `  w ) )  =  z ) )
4443simplbi 268 . . . . . . . . . . . . . . . . 17  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  ->  ( G `  w )  =  v )
4540, 44syl6bi 161 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( G `  w )  =  v ) )
46 f1ocnvfv 5439 . . . . . . . . . . . . . . . . 17  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  w  e.  om )  ->  ( ( G `
 w )  =  v  ->  ( `' G `  v )  =  w ) )
4723, 46sylan 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  om )  ->  ( ( G `  w )  =  v  ->  ( `' G `  v )  =  w ) )
4845, 47syld 44 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( `' G `  v )  =  w ) )
49 fveq2 5198 . . . . . . . . . . . . . . . 16  |-  ( ( `' G `  v )  =  w  ->  ( R `  ( `' G `  v )
)  =  ( R `
 w ) )
5049fveq2d 5202 . . . . . . . . . . . . . . 15  |-  ( ( `' G `  v )  =  w  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
5148, 50syl6 33 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  ( `' G `  v )
) )  =  ( 2nd `  ( R `
 w ) ) ) )
5251imp 122 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
5341, 42op2ndd 5796 . . . . . . . . . . . . . 14  |-  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  w )
)  =  z )
5453adantl 271 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  w
) )  =  z )
5552, 54eqtr2d 2114 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) )
5655ex 113 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
5756rexlimdva 2477 . . . . . . . . . 10  |-  ( ph  ->  ( E. w  e. 
om  ( R `  w )  =  <. v ,  z >.  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5833, 57sylbid 148 . . . . . . . . 9  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5958alrimiv 1795 . . . . . . . 8  |-  ( ph  ->  A. z ( <.
v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
6059adantr 270 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A. z
( <. v ,  z
>.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
61 eqeq2 2090 . . . . . . . . . 10  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
z  =  w  <->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
6261imbi2d 228 . . . . . . . . 9  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
( <. v ,  z
>.  e.  T  ->  z  =  w )  <->  ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
6362albidv 1745 . . . . . . . 8  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  ( A. z ( <. v ,  z >.  e.  T  ->  z  =  w )  <->  A. z ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
6463spcegv 2686 . . . . . . 7  |-  ( ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S  ->  ( A. z ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) )  ->  E. w A. z (
<. v ,  z >.  e.  T  ->  z  =  w ) ) )
6529, 60, 64sylc 61 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  E. w A. z ( <. v ,  z >.  e.  T  ->  z  =  w ) )
66 nfv 1461 . . . . . . 7  |-  F/ w <. v ,  z >.  e.  T
6766mo2r 1993 . . . . . 6  |-  ( E. w A. z (
<. v ,  z >.  e.  T  ->  z  =  w )  ->  E* z <. v ,  z
>.  e.  T )
6865, 67syl 14 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  E* z <. v ,  z >.  e.  T )
69 dmss 4552 . . . . . . . . . 10  |-  ( T 
C_  ( ( ZZ>= `  C )  X.  S
)  ->  dom  T  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
7018, 69syl 14 . . . . . . . . 9  |-  ( ph  ->  dom  T  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
71 dmxpss 4773 . . . . . . . . 9  |-  dom  (
( ZZ>= `  C )  X.  S )  C_  ( ZZ>=
`  C )
7270, 71syl6ss 3011 . . . . . . . 8  |-  ( ph  ->  dom  T  C_  ( ZZ>=
`  C ) )
733adantr 270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
745adantr 270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  S  e.  V )
756adantr 270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
767adantlr 460 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
77 simpr 108 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  ( ZZ>= `  C )
)
7873, 4, 74, 75, 76, 8, 77frecuzrdglem 9413 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R )
791eleq2d 2148 . . . . . . . . . . . . 13  |-  ( ph  ->  ( <. v ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  e.  T  <->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R ) )
8079adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  T  <->  <.
v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >.  e.  ran  R ) )
8178, 80mpbird 165 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  T
)
82 opeldmg 4558 . . . . . . . . . . . 12  |-  ( ( v  e.  _V  /\  ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S )  -> 
( <. v ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  e.  T  ->  v  e.  dom  T ) )
8341, 82mpan 414 . . . . . . . . . . 11  |-  ( ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >.  e.  T  ->  v  e.  dom  T
) )
8429, 81, 83sylc 61 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  dom  T )
8584ex 113 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  (
ZZ>= `  C )  -> 
v  e.  dom  T
) )
8685ssrdv 3005 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  C )  C_ 
dom  T )
8772, 86eqssd 3016 . . . . . . 7  |-  ( ph  ->  dom  T  =  (
ZZ>= `  C ) )
8887eleq2d 2148 . . . . . 6  |-  ( ph  ->  ( v  e.  dom  T  <-> 
v  e.  ( ZZ>= `  C ) ) )
8988pm5.32i 441 . . . . 5  |-  ( (
ph  /\  v  e.  dom  T )  <->  ( ph  /\  v  e.  ( ZZ>= `  C ) ) )
90 df-br 3786 . . . . . 6  |-  ( v T z  <->  <. v ,  z >.  e.  T
)
9190mobii 1978 . . . . 5  |-  ( E* z  v T z  <->  E* z <. v ,  z
>.  e.  T )
9268, 89, 913imtr4i 199 . . . 4  |-  ( (
ph  /\  v  e.  dom  T )  ->  E* z  v T z )
9392ralrimiva 2434 . . 3  |-  ( ph  ->  A. v  e.  dom  T E* z  v T z )
94 dffun7 4948 . . 3  |-  ( Fun 
T  <->  ( Rel  T  /\  A. v  e.  dom  T E* z  v T z ) )
9522, 93, 94sylanbrc 408 . 2  |-  ( ph  ->  Fun  T )
96 df-fn 4925 . 2  |-  ( T  Fn  ( ZZ>= `  C
)  <->  ( Fun  T  /\  dom  T  =  (
ZZ>= `  C ) ) )
9795, 87, 96sylanbrc 408 1  |-  ( ph  ->  T  Fn  ( ZZ>= `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   E*wmo 1942   A.wral 2348   E.wrex 2349   _Vcvv 2601    C_ wss 2973   <.cop 3401   class class class wbr 3785    |-> cmpt 3839   omcom 4331    X. cxp 4361   `'ccnv 4362   dom cdm 4363   ran crn 4364   Rel wrel 4368   Fun wfun 4916    Fn wfn 4917   -1-1-onto->wf1o 4921   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   2ndc2nd 5786  freccfrec 6000   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  frecuzrdgcl  9415  frecuzrdg0  9416  frecuzrdgsuc  9417  iseqfn  9441
  Copyright terms: Public domain W3C validator