| Step | Hyp | Ref
| Expression |
| 1 | | frecuzrdgfn.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 = ran 𝑅) |
| 2 | 1 | eleq2d 2148 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ 𝑇 ↔ 𝑧 ∈ ran 𝑅)) |
| 3 | | frec2uz.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 4 | | frec2uz.2 |
. . . . . . . . . 10
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| 5 | | uzrdg.s |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 6 | | uzrdg.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 7 | | uzrdg.f |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 8 | | uzrdg.2 |
. . . . . . . . . 10
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| 9 | 3, 4, 5, 6, 7, 8 | frecuzrdgrom 9412 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 Fn ω) |
| 10 | | fvelrnb 5242 |
. . . . . . . . 9
⊢ (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧)) |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧)) |
| 12 | 2, 11 | bitrd 186 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝑇 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧)) |
| 13 | 3, 4, 5, 6, 7, 8 | frecuzrdgrrn 9410 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × 𝑆)) |
| 14 | | eleq1 2141 |
. . . . . . . . 9
⊢ ((𝑅‘𝑤) = 𝑧 → ((𝑅‘𝑤) ∈ ((ℤ≥‘𝐶) × 𝑆) ↔ 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆))) |
| 15 | 13, 14 | syl5ibcom 153 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 𝑧 → 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆))) |
| 16 | 15 | rexlimdva 2477 |
. . . . . . 7
⊢ (𝜑 → (∃𝑤 ∈ ω (𝑅‘𝑤) = 𝑧 → 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆))) |
| 17 | 12, 16 | sylbid 148 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ 𝑇 → 𝑧 ∈ ((ℤ≥‘𝐶) × 𝑆))) |
| 18 | 17 | ssrdv 3005 |
. . . . 5
⊢ (𝜑 → 𝑇 ⊆
((ℤ≥‘𝐶) × 𝑆)) |
| 19 | | xpss 4464 |
. . . . 5
⊢
((ℤ≥‘𝐶) × 𝑆) ⊆ (V × V) |
| 20 | 18, 19 | syl6ss 3011 |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ (V × V)) |
| 21 | | df-rel 4370 |
. . . 4
⊢ (Rel
𝑇 ↔ 𝑇 ⊆ (V × V)) |
| 22 | 20, 21 | sylibr 132 |
. . 3
⊢ (𝜑 → Rel 𝑇) |
| 23 | 3, 4 | frec2uzf1od 9408 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
| 24 | | f1ocnvdm 5441 |
. . . . . . . . . 10
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
| 25 | 23, 24 | sylan 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
| 26 | 3, 4, 5, 6, 7, 8 | frecuzrdgrrn 9410 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (◡𝐺‘𝑣) ∈ ω) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
| 27 | 25, 26 | syldan 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
| 28 | | xp2nd 5813 |
. . . . . . . 8
⊢ ((𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
| 30 | 1 | eleq2d 2148 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ 𝑇 ↔ 〈𝑣, 𝑧〉 ∈ ran 𝑅)) |
| 31 | | fvelrnb 5242 |
. . . . . . . . . . . 12
⊢ (𝑅 Fn ω → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 32 | 9, 31 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 33 | 30, 32 | bitrd 186 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ 𝑇 ↔ ∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉)) |
| 34 | 3 | adantr 270 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝐶 ∈ ℤ) |
| 35 | 5 | adantr 270 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝑆 ∈ 𝑉) |
| 36 | 6 | adantr 270 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝐴 ∈ 𝑆) |
| 37 | 7 | adantlr 460 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 38 | | simpr 108 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → 𝑤 ∈ ω) |
| 39 | 34, 4, 35, 36, 37, 8, 38 | frec2uzrdg 9411 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → (𝑅‘𝑤) = 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉) |
| 40 | 39 | eqeq1d 2089 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 ↔ 〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉)) |
| 41 | | vex 2604 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑣 ∈ V |
| 42 | | vex 2604 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑧 ∈ V |
| 43 | 41, 42 | opth2 3995 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 ↔ ((𝐺‘𝑤) = 𝑣 ∧ (2nd ‘(𝑅‘𝑤)) = 𝑧)) |
| 44 | 43 | simplbi 268 |
. . . . . . . . . . . . . . . . 17
⊢
(〈(𝐺‘𝑤), (2nd ‘(𝑅‘𝑤))〉 = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣) |
| 45 | 40, 44 | syl6bi 161 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (𝐺‘𝑤) = 𝑣)) |
| 46 | | f1ocnvfv 5439 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
| 47 | 23, 46 | sylan 277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝐺‘𝑤) = 𝑣 → (◡𝐺‘𝑣) = 𝑤)) |
| 48 | 45, 47 | syld 44 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (◡𝐺‘𝑣) = 𝑤)) |
| 49 | | fveq2 5198 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝐺‘𝑣) = 𝑤 → (𝑅‘(◡𝐺‘𝑣)) = (𝑅‘𝑤)) |
| 50 | 49 | fveq2d 5202 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐺‘𝑣) = 𝑤 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
| 51 | 48, 50 | syl6 33 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤)))) |
| 52 | 51 | imp 122 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) = (2nd ‘(𝑅‘𝑤))) |
| 53 | 41, 42 | op2ndd 5796 |
. . . . . . . . . . . . . 14
⊢ ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
| 54 | 53 | adantl 271 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → (2nd ‘(𝑅‘𝑤)) = 𝑧) |
| 55 | 52, 54 | eqtr2d 2114 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ω) ∧ (𝑅‘𝑤) = 〈𝑣, 𝑧〉) → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) |
| 56 | 55 | ex 113 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ω) → ((𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 57 | 56 | rexlimdva 2477 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑤 ∈ ω (𝑅‘𝑤) = 〈𝑣, 𝑧〉 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 58 | 33, 57 | sylbid 148 |
. . . . . . . . 9
⊢ (𝜑 → (〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 59 | 58 | alrimiv 1795 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 60 | 59 | adantr 270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 61 | | eqeq2 2090 |
. . . . . . . . . 10
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (𝑧 = 𝑤 ↔ 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))))) |
| 62 | 61 | imbi2d 228 |
. . . . . . . . 9
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → ((〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤) ↔ (〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
| 63 | 62 | albidv 1745 |
. . . . . . . 8
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝑣))) → (∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤) ↔ ∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))))) |
| 64 | 63 | spcegv 2686 |
. . . . . . 7
⊢
((2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆 → (∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = (2nd ‘(𝑅‘(◡𝐺‘𝑣)))) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤))) |
| 65 | 29, 60, 64 | sylc 61 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤)) |
| 66 | | nfv 1461 |
. . . . . . 7
⊢
Ⅎ𝑤〈𝑣, 𝑧〉 ∈ 𝑇 |
| 67 | 66 | mo2r 1993 |
. . . . . 6
⊢
(∃𝑤∀𝑧(〈𝑣, 𝑧〉 ∈ 𝑇 → 𝑧 = 𝑤) → ∃*𝑧〈𝑣, 𝑧〉 ∈ 𝑇) |
| 68 | 65, 67 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ∃*𝑧〈𝑣, 𝑧〉 ∈ 𝑇) |
| 69 | | dmss 4552 |
. . . . . . . . . 10
⊢ (𝑇 ⊆
((ℤ≥‘𝐶) × 𝑆) → dom 𝑇 ⊆ dom
((ℤ≥‘𝐶) × 𝑆)) |
| 70 | 18, 69 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑇 ⊆ dom
((ℤ≥‘𝐶) × 𝑆)) |
| 71 | | dmxpss 4773 |
. . . . . . . . 9
⊢ dom
((ℤ≥‘𝐶) × 𝑆) ⊆
(ℤ≥‘𝐶) |
| 72 | 70, 71 | syl6ss 3011 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑇 ⊆ (ℤ≥‘𝐶)) |
| 73 | 3 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ ℤ) |
| 74 | 5 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑆 ∈ 𝑉) |
| 75 | 6 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝐴 ∈ 𝑆) |
| 76 | 7 | adantlr 460 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 77 | | simpr 108 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑣 ∈ (ℤ≥‘𝐶)) |
| 78 | 73, 4, 74, 75, 76, 8, 77 | frecuzrdglem 9413 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅) |
| 79 | 1 | eleq2d 2148 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇 ↔ 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅)) |
| 80 | 79 | adantr 270 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇 ↔ 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅)) |
| 81 | 78, 80 | mpbird 165 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇) |
| 82 | | opeldmg 4558 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ V ∧ (2nd
‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇 → 𝑣 ∈ dom 𝑇)) |
| 83 | 41, 82 | mpan 414 |
. . . . . . . . . . 11
⊢
((2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆 → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ 𝑇 → 𝑣 ∈ dom 𝑇)) |
| 84 | 29, 81, 83 | sylc 61 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑣 ∈ dom 𝑇) |
| 85 | 84 | ex 113 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ (ℤ≥‘𝐶) → 𝑣 ∈ dom 𝑇)) |
| 86 | 85 | ssrdv 3005 |
. . . . . . . 8
⊢ (𝜑 →
(ℤ≥‘𝐶) ⊆ dom 𝑇) |
| 87 | 72, 86 | eqssd 3016 |
. . . . . . 7
⊢ (𝜑 → dom 𝑇 = (ℤ≥‘𝐶)) |
| 88 | 87 | eleq2d 2148 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ dom 𝑇 ↔ 𝑣 ∈ (ℤ≥‘𝐶))) |
| 89 | 88 | pm5.32i 441 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ dom 𝑇) ↔ (𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶))) |
| 90 | | df-br 3786 |
. . . . . 6
⊢ (𝑣𝑇𝑧 ↔ 〈𝑣, 𝑧〉 ∈ 𝑇) |
| 91 | 90 | mobii 1978 |
. . . . 5
⊢
(∃*𝑧 𝑣𝑇𝑧 ↔ ∃*𝑧〈𝑣, 𝑧〉 ∈ 𝑇) |
| 92 | 68, 89, 91 | 3imtr4i 199 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ dom 𝑇) → ∃*𝑧 𝑣𝑇𝑧) |
| 93 | 92 | ralrimiva 2434 |
. . 3
⊢ (𝜑 → ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧) |
| 94 | | dffun7 4948 |
. . 3
⊢ (Fun
𝑇 ↔ (Rel 𝑇 ∧ ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧)) |
| 95 | 22, 93, 94 | sylanbrc 408 |
. 2
⊢ (𝜑 → Fun 𝑇) |
| 96 | | df-fn 4925 |
. 2
⊢ (𝑇 Fn
(ℤ≥‘𝐶) ↔ (Fun 𝑇 ∧ dom 𝑇 = (ℤ≥‘𝐶))) |
| 97 | 95, 87, 96 | sylanbrc 408 |
1
⊢ (𝜑 → 𝑇 Fn (ℤ≥‘𝐶)) |