ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm3 Unicode version

Theorem isprm3 10500
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Distinct variable group:    z, P

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 10499 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2 dvdszrcl 10200 . . . . . . . . . . 11  |-  ( z 
||  P  ->  (
z  e.  ZZ  /\  P  e.  ZZ )
)
32simpld 110 . . . . . . . . . 10  |-  ( z 
||  P  ->  z  e.  ZZ )
4 1zzd 8378 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  1  e.  ZZ )
5 zdceq 8423 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  1  e.  ZZ )  -> DECID  z  =  1 )
63, 4, 5syl2an2 558 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  z  =  1
)
72simprd 112 . . . . . . . . . . 11  |-  ( z 
||  P  ->  P  e.  ZZ )
87adantl 271 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  P  e.  ZZ )
9 zdceq 8423 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  -> DECID  z  =  P )
103, 8, 9syl2an2 558 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  z  =  P
)
11 dcor 876 . . . . . . . . 9  |-  (DECID  z  =  1  ->  (DECID  z  =  P  -> DECID 
( z  =  1  \/  z  =  P ) ) )
126, 10, 11sylc 61 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  ( z  =  1  \/  z  =  P ) )
13 imandc 819 . . . . . . . 8  |-  (DECID  ( z  =  1  \/  z  =  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  (
z  e.  NN  /\  -.  ( z  =  1  \/  z  =  P ) ) ) )
1412, 13syl 14 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  (
z  e.  NN  /\  -.  ( z  =  1  \/  z  =  P ) ) ) )
15 eluz2nn 8657 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
16 nnz 8370 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  z  e.  ZZ )
17 dvdsle 10244 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
1816, 17sylan 277 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
19 nnge1 8062 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  1  <_  z )
2019adantr 270 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  1  <_  z )
2118, 20jctild 309 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
2215, 21sylan2 280 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
23 nnz 8370 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  P  e.  ZZ )
24 zre 8355 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ZZ  ->  z  e.  RR )
25 1re 7118 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  RR
26 leltap 7724 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  e.  RR  /\  z  e.  RR  /\  1  <_  z )  ->  (
1  <  z  <->  z #  1
) )
2725, 26mp3an1 1255 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  RR  /\  1  <_  z )  -> 
( 1  <  z  <->  z #  1 ) )
2824, 27sylan 277 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( 1  <  z  <->  z #  1 ) )
29 1z 8377 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  ZZ
30 zapne 8422 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  ZZ  /\  1  e.  ZZ )  ->  ( z #  1  <->  z  =/=  1 ) )
3129, 30mpan2 415 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ZZ  ->  (
z #  1  <->  z  =/=  1 ) )
3231adantr 270 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( z #  1  <->  z  =/=  1 ) )
3328, 32bitrd 186 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( 1  <  z  <->  z  =/=  1 ) )
34333adant2 957 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  1  <_  z )  ->  (
1  <  z  <->  z  =/=  1 ) )
35343expia 1140 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <_  z  ->  ( 1  <  z  <->  z  =/=  1 ) ) )
36 zre 8355 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  ZZ  ->  P  e.  RR )
37 leltap 7724 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  RR  /\  P  e.  RR  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
3824, 37syl3an1 1202 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  P  e.  RR  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
3936, 38syl3an2 1203 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
40 zapne 8422 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  ZZ  /\  z  e.  ZZ )  ->  ( P #  z  <->  P  =/=  z ) )
4140ancoms 264 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( P #  z  <->  P  =/=  z ) )
42413adant3 958 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  ( P #  z  <->  P  =/=  z
) )
4339, 42bitrd 186 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  (
z  <  P  <->  P  =/=  z ) )
44433expia 1140 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <_  P  ->  ( z  <  P  <->  P  =/=  z ) ) )
4535, 44anim12d 328 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
4623, 45sylan2 280 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
47 pm4.38 569 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  ( z  =/=  1  /\  P  =/=  z ) ) )
48 df-ne 2246 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =/=  1  <->  -.  z  =  1 )
49 nesym 2290 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  =/=  z  <->  -.  z  =  P )
5048, 49anbi12i 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =/=  1  /\  P  =/=  z )  <-> 
( -.  z  =  1  /\  -.  z  =  P ) )
51 ioran 701 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  ( z  =  1  \/  z  =  P )  <->  ( -.  z  =  1  /\  -.  z  =  P )
)
5250, 51bitr4i 185 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  =/=  1  /\  P  =/=  z )  <->  -.  ( z  =  1  \/  z  =  P ) )
5347, 52syl6bb 194 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) )
5446, 53syl6 33 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
5516, 15, 54syl2an 283 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
5622, 55syld 44 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) ) )
5756imp 122 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) )
58 eluzelz 8628 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
59 zltp1le 8405 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  ZZ  /\  z  e.  ZZ )  ->  ( 1  <  z  <->  ( 1  +  1 )  <_  z ) )
6029, 59mpan 414 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  ( 1  +  1 )  <_ 
z ) )
61 df-2 8098 . . . . . . . . . . . . . . . . . . . 20  |-  2  =  ( 1  +  1 )
6261breq1i 3792 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  <_  z  <->  ( 1  +  1 )  <_ 
z )
6360, 62syl6bbr 196 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  2  <_  z ) )
6463adantr 270 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <  z  <->  2  <_  z ) )
65 zltlem1 8408 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
6664, 65anbi12d 456 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
67 peano2zm 8389 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
68 2z 8379 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
69 elfz 9035 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  2  e.  ZZ  /\  ( P  -  1 )  e.  ZZ )  -> 
( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
7068, 69mp3an2 1256 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  ( P  -  1
)  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
7167, 70sylan2 280 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
7266, 71bitr4d 189 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7316, 58, 72syl2an 283 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7473adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7557, 74bitr3d 188 . . . . . . . . . . . 12  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7675anasss 391 . . . . . . . . . . 11  |-  ( ( z  e.  NN  /\  ( P  e.  ( ZZ>=
`  2 )  /\  z  ||  P ) )  ->  ( -.  (
z  =  1  \/  z  =  P )  <-> 
z  e.  ( 2 ... ( P  - 
1 ) ) ) )
7776expcom 114 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
z  e.  NN  ->  ( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
7877pm5.32d 437 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
79 fzssuz 9083 . . . . . . . . . . . . 13  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  2 )
80 2eluzge1 8664 . . . . . . . . . . . . . 14  |-  2  e.  ( ZZ>= `  1 )
81 uzss 8639 . . . . . . . . . . . . . 14  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 ) )
8280, 81ax-mp 7 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 )
8379, 82sstri 3008 . . . . . . . . . . . 12  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  1 )
84 nnuz 8654 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
8583, 84sseqtr4i 3032 . . . . . . . . . . 11  |-  ( 2 ... ( P  - 
1 ) )  C_  NN
8685sseli 2995 . . . . . . . . . 10  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  z  e.  NN )
8786pm4.71ri 384 . . . . . . . . 9  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) )
8878, 87syl6bbr 196 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
8988notbid 624 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  ( -.  ( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
9014, 89bitrd 186 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
9190pm5.74da 431 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  ( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  ||  P  ->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
92 bi2.04 246 . . . . 5  |-  ( ( z  ||  P  -> 
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
93 con2b 625 . . . . 5  |-  ( ( z  ||  P  ->  -.  z  e.  (
2 ... ( P  - 
1 ) ) )  <-> 
( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) )
9491, 92, 933bitr3g 220 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  e.  NN  ->  ( z  ||  P  -> 
( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) ) )
9594ralbidv2 2370 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
9695pm5.32i 441 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
971, 96bitri 182 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   A.wral 2348    C_ wss 2973   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154    - cmin 7279   # cap 7681   NNcn 8039   2c2 8089   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029    || cdvds 10195   Primecprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-prm 10490
This theorem is referenced by:  prmind2  10502  2prm  10509  3prm  10510
  Copyright terms: Public domain W3C validator