ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpostpos Unicode version

Theorem tpostpos 5902
Description: Value of the double transposition for a general class 
F. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)

Proof of Theorem tpostpos
Dummy variables  x  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 5888 . 2  |-  Rel tpos tpos  F
2 inss2 3187 . . 3  |-  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V )
3 relxp 4465 . . 3  |-  Rel  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
4 relss 4445 . . 3  |-  ( ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X.  _V ) ) 
C_  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V )  ->  ( Rel  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V )  ->  Rel  ( F  i^i  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) ) ) )
52, 3, 4mp2 16 . 2  |-  Rel  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )
6 relcnv 4723 . . . . . . . . 9  |-  Rel  `' dom tpos  F
7 df-rel 4370 . . . . . . . . 9  |-  ( Rel  `' dom tpos  F  <->  `' dom tpos  F  C_  ( _V 
X.  _V ) )
86, 7mpbi 143 . . . . . . . 8  |-  `' dom tpos  F 
C_  ( _V  X.  _V )
9 simpl 107 . . . . . . . 8  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  ->  w  e.  `' dom tpos  F )
108, 9sseldi 2997 . . . . . . 7  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  ->  w  e.  ( _V  X.  _V )
)
11 simpr 108 . . . . . . 7  |-  ( ( w F z  /\  w  e.  ( _V  X.  _V ) )  ->  w  e.  ( _V  X.  _V ) )
12 elvv 4420 . . . . . . . . 9  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
13 eleq1 2141 . . . . . . . . . . . . . 14  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  `' dom tpos  F  <->  <. x ,  y
>.  e.  `' dom tpos  F ) )
14 vex 2604 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
15 vex 2604 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
1614, 15opelcnv 4535 . . . . . . . . . . . . . 14  |-  ( <.
x ,  y >.  e.  `' dom tpos  F  <->  <. y ,  x >.  e.  dom tpos  F )
1713, 16syl6bb 194 . . . . . . . . . . . . 13  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  `' dom tpos  F  <->  <. y ,  x >.  e.  dom tpos  F )
)
18 sneq 3409 . . . . . . . . . . . . . . . . 17  |-  ( w  =  <. x ,  y
>.  ->  { w }  =  { <. x ,  y
>. } )
1918cnveqd 4529 . . . . . . . . . . . . . . . 16  |-  ( w  =  <. x ,  y
>.  ->  `' { w }  =  `' { <. x ,  y >. } )
2019unieqd 3612 . . . . . . . . . . . . . . 15  |-  ( w  =  <. x ,  y
>.  ->  U. `' { w }  =  U. `' { <. x ,  y >. } )
21 opswapg 4827 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  U. `' { <. x ,  y >. }  =  <. y ,  x >. )
2214, 15, 21mp2an 416 . . . . . . . . . . . . . . 15  |-  U. `' { <. x ,  y
>. }  =  <. y ,  x >.
2320, 22syl6eq 2129 . . . . . . . . . . . . . 14  |-  ( w  =  <. x ,  y
>.  ->  U. `' { w }  =  <. y ,  x >. )
2423breq1d 3795 . . . . . . . . . . . . 13  |-  ( w  =  <. x ,  y
>.  ->  ( U. `' { w }tpos  F
z  <->  <. y ,  x >.tpos  F z ) )
2517, 24anbi12d 456 . . . . . . . . . . . 12  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  ( <. y ,  x >.  e.  dom tpos  F  /\  <. y ,  x >.tpos  F z ) ) )
2615, 14opex 3984 . . . . . . . . . . . . . . 15  |-  <. y ,  x >.  e.  _V
27 vex 2604 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
2826, 27breldm 4557 . . . . . . . . . . . . . 14  |-  ( <.
y ,  x >.tpos  F z  ->  <. y ,  x >.  e.  dom tpos  F )
2928pm4.71ri 384 . . . . . . . . . . . . 13  |-  ( <.
y ,  x >.tpos  F z  <->  ( <. y ,  x >.  e.  dom tpos  F  /\  <. y ,  x >.tpos  F z ) )
30 brtposg 5892 . . . . . . . . . . . . . 14  |-  ( ( y  e.  _V  /\  x  e.  _V  /\  z  e.  _V )  ->  ( <. y ,  x >.tpos  F z  <->  <. x ,  y
>. F z ) )
3115, 14, 27, 30mp3an 1268 . . . . . . . . . . . . 13  |-  ( <.
y ,  x >.tpos  F z  <->  <. x ,  y
>. F z )
3229, 31bitr3i 184 . . . . . . . . . . . 12  |-  ( (
<. y ,  x >.  e. 
dom tpos  F  /\  <. y ,  x >.tpos  F z )  <->  <. x ,  y >. F z )
3325, 32syl6bb 194 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  <. x ,  y >. F z ) )
34 breq1 3788 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( w F z  <->  <. x ,  y
>. F z ) )
3533, 34bitr4d 189 . . . . . . . . . 10  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  w F
z ) )
3635exlimivv 1817 . . . . . . . . 9  |-  ( E. x E. y  w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  w F
z ) )
3712, 36sylbi 119 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  w F z ) )
38 iba 294 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  ->  ( w F z  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) ) )
3937, 38bitrd 186 . . . . . . 7  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) ) )
4010, 11, 39pm5.21nii 652 . . . . . 6  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) )
41 elsni 3416 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { (/) }  ->  w  =  (/) )
4241sneqd 3411 . . . . . . . . . . . . . . 15  |-  ( w  e.  { (/) }  ->  { w }  =  { (/)
} )
4342cnveqd 4529 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) }  ->  `' { w }  =  `' { (/) } )
44 cnvsn0 4809 . . . . . . . . . . . . . 14  |-  `' { (/)
}  =  (/)
4543, 44syl6eq 2129 . . . . . . . . . . . . 13  |-  ( w  e.  { (/) }  ->  `' { w }  =  (/) )
4645unieqd 3612 . . . . . . . . . . . 12  |-  ( w  e.  { (/) }  ->  U. `' { w }  =  U. (/) )
47 uni0 3628 . . . . . . . . . . . 12  |-  U. (/)  =  (/)
4846, 47syl6eq 2129 . . . . . . . . . . 11  |-  ( w  e.  { (/) }  ->  U. `' { w }  =  (/) )
4948breq1d 3795 . . . . . . . . . 10  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  (/)tpos  F z ) )
50 brtpos0 5890 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( (/)tpos  F z  <->  (/) F z ) )
5127, 50ax-mp 7 . . . . . . . . . 10  |-  ( (/)tpos  F z  <->  (/) F z )
5249, 51syl6bb 194 . . . . . . . . 9  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  (/) F z ) )
5341breq1d 3795 . . . . . . . . 9  |-  ( w  e.  { (/) }  ->  ( w F z  <->  (/) F z ) )
5452, 53bitr4d 189 . . . . . . . 8  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  w F
z ) )
5554pm5.32i 441 . . . . . . 7  |-  ( ( w  e.  { (/) }  /\  U. `' {
w }tpos  F z
)  <->  ( w  e. 
{ (/) }  /\  w F z ) )
56 ancom 262 . . . . . . 7  |-  ( ( w  e.  { (/) }  /\  w F z )  <->  ( w F z  /\  w  e. 
{ (/) } ) )
5755, 56bitri 182 . . . . . 6  |-  ( ( w  e.  { (/) }  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e. 
{ (/) } ) )
5840, 57orbi12i 713 . . . . 5  |-  ( ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  \/  (
w  e.  { (/) }  /\  U. `' {
w }tpos  F z
) )  <->  ( (
w F z  /\  w  e.  ( _V  X.  _V ) )  \/  ( w F z  /\  w  e.  { (/)
} ) ) )
59 andir 765 . . . . 5  |-  ( ( ( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( (
w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  \/  ( w  e.  { (/) }  /\  U. `' { w }tpos  F
z ) ) )
60 andi 764 . . . . 5  |-  ( ( w F z  /\  ( w  e.  ( _V  X.  _V )  \/  w  e.  { (/) } ) )  <->  ( (
w F z  /\  w  e.  ( _V  X.  _V ) )  \/  ( w F z  /\  w  e.  { (/)
} ) ) )
6158, 59, 603bitr4i 210 . . . 4  |-  ( ( ( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( w F z  /\  (
w  e.  ( _V 
X.  _V )  \/  w  e.  { (/) } ) ) )
62 elun 3113 . . . . 5  |-  ( w  e.  ( `' dom tpos  F  u.  { (/) } )  <-> 
( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } ) )
6362anbi1i 445 . . . 4  |-  ( ( w  e.  ( `' dom tpos  F  u.  { (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( (
w  e.  `' dom tpos  F  \/  w  e.  { (/)
} )  /\  U. `' { w }tpos  F
z ) )
64 brxp 4393 . . . . . . 7  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  ( w  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  z  e. 
_V ) )
6527, 64mpbiran2 882 . . . . . 6  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  w  e.  ( ( _V  X.  _V )  u.  { (/) } ) )
66 elun 3113 . . . . . 6  |-  ( w  e.  ( ( _V 
X.  _V )  u.  { (/)
} )  <->  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) )
6765, 66bitri 182 . . . . 5  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) )
6867anbi2i 444 . . . 4  |-  ( ( w F z  /\  w ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) z )  <-> 
( w F z  /\  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) ) )
6961, 63, 683bitr4i 210 . . 3  |-  ( ( w  e.  ( `' dom tpos  F  u.  { (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( w F z  /\  w
( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z ) )
70 brtpos2 5889 . . . 4  |-  ( z  e.  _V  ->  (
wtpos tpos  F z  <->  ( w  e.  ( `' dom tpos  F  u.  {
(/) } )  /\  U. `' { w }tpos  F
z ) ) )
7127, 70ax-mp 7 . . 3  |-  ( wtpos tpos  F z  <->  ( w  e.  ( `' dom tpos  F  u.  {
(/) } )  /\  U. `' { w }tpos  F
z ) )
72 brin 3832 . . 3  |-  ( w ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
) z  <->  ( w F z  /\  w
( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z ) )
7369, 71, 723bitr4i 210 . 2  |-  ( wtpos tpos  F z  <->  w ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) ) z )
741, 5, 73eqbrriv 4453 1  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601    u. cun 2971    i^i cin 2972    C_ wss 2973   (/)c0 3251   {csn 3398   <.cop 3401   U.cuni 3601   class class class wbr 3785    X. cxp 4361   `'ccnv 4362   dom cdm 4363   Rel wrel 4368  tpos ctpos 5882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-tpos 5883
This theorem is referenced by:  tpostpos2  5903
  Copyright terms: Public domain W3C validator