ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0 Unicode version

Theorem nqnq0 6631
Description: A positive fraction is a non-negative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
nqnq0  |-  Q.  C_ Q0

Proof of Theorem nqnq0
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6538 . . . . 5  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
21eleq2i 2145 . . . 4  |-  ( y  e.  Q.  <->  y  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
3 vex 2604 . . . . 5  |-  y  e. 
_V
43elqs 6180 . . . 4  |-  ( y  e.  ( ( N. 
X.  N. ) /.  ~Q  ) 
<->  E. x  e.  ( N.  X.  N. )
y  =  [ x ]  ~Q  )
5 df-rex 2354 . . . 4  |-  ( E. x  e.  ( N. 
X.  N. ) y  =  [ x ]  ~Q  <->  E. x ( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )
)
62, 4, 53bitri 204 . . 3  |-  ( y  e.  Q.  <->  E. x
( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )
)
7 elxpi 4379 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  E. u E. v ( x  = 
<. u ,  v >.  /\  ( u  e.  N.  /\  v  e.  N. )
) )
8 nqnq0pi 6628 . . . . . . . . . . 11  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  [ <. u ,  v
>. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  )
98adantl 271 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ <. u ,  v >. ] ~Q0  =  [ <. u ,  v >. ]  ~Q  )
10 eceq1 6164 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  [ x ] ~Q0  =  [ <. u ,  v >. ] ~Q0  )
11 eceq1 6164 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  [ x ]  ~Q  =  [ <. u ,  v >. ]  ~Q  )
1210, 11eqeq12d 2095 . . . . . . . . . . 11  |-  ( x  =  <. u ,  v
>.  ->  ( [ x ] ~Q0  =  [ x ]  ~Q  <->  [
<. u ,  v >. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  ) )
1312adantr 270 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  ( [
x ] ~Q0  =  [ x ]  ~Q 
<->  [ <. u ,  v
>. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  ) )
149, 13mpbird 165 . . . . . . . . 9  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ] ~Q0  =  [ x ]  ~Q  )
15 pinn 6499 . . . . . . . . . . . . 13  |-  ( u  e.  N.  ->  u  e.  om )
16 opelxpi 4394 . . . . . . . . . . . . 13  |-  ( ( u  e.  om  /\  v  e.  N. )  -> 
<. u ,  v >.  e.  ( om  X.  N. ) )
1715, 16sylan 277 . . . . . . . . . . . 12  |-  ( ( u  e.  N.  /\  v  e.  N. )  -> 
<. u ,  v >.  e.  ( om  X.  N. ) )
1817adantl 271 . . . . . . . . . . 11  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  <. u ,  v >.  e.  ( om  X.  N. ) )
19 eleq1 2141 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  ( x  e.  ( om  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( om  X.  N. ) ) )
2019adantr 270 . . . . . . . . . . 11  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  ( x  e.  ( om  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( om  X.  N. ) ) )
2118, 20mpbird 165 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  x  e.  ( om  X.  N. )
)
22 enq0ex 6629 . . . . . . . . . . . 12  |- ~Q0  e.  _V
2322ecelqsi 6183 . . . . . . . . . . 11  |-  ( x  e.  ( om  X.  N. )  ->  [ x ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
24 df-nq0 6615 . . . . . . . . . . 11  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
2523, 24syl6eleqr 2172 . . . . . . . . . 10  |-  ( x  e.  ( om  X.  N. )  ->  [ x ] ~Q0  e. Q0 )
2621, 25syl 14 . . . . . . . . 9  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ] ~Q0  e. Q0 )
2714, 26eqeltrrd 2156 . . . . . . . 8  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ]  ~Q  e. Q0 )
2827exlimivv 1817 . . . . . . 7  |-  ( E. u E. v ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ]  ~Q  e. Q0 )
297, 28syl 14 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  [ x ]  ~Q  e. Q0 )
3029adantr 270 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  [ x ]  ~Q  e. Q0 )
31 eleq1 2141 . . . . . 6  |-  ( y  =  [ x ]  ~Q  ->  ( y  e. Q0  <->  [ x ]  ~Q  e. Q0 ) )
3231adantl 271 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  ( y  e. Q0  <->  [ x ]  ~Q  e. Q0 ) )
3330, 32mpbird 165 . . . 4  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  y  e. Q0 )
3433exlimiv 1529 . . 3  |-  ( E. x ( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )  ->  y  e. Q0 )
356, 34sylbi 119 . 2  |-  ( y  e.  Q.  ->  y  e. Q0 )
3635ssriv 3003 1  |-  Q.  C_ Q0
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349    C_ wss 2973   <.cop 3401   omcom 4331    X. cxp 4361   [cec 6127   /.cqs 6128   N.cnpi 6462    ~Q ceq 6469   Q.cnq 6470   ~Q0 ceq0 6476  Q0cnq0 6477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-enq 6537  df-nqqs 6538  df-enq0 6614  df-nq0 6615
This theorem is referenced by:  prarloclem5  6690  prarloclemcalc  6692
  Copyright terms: Public domain W3C validator