ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemm Unicode version

Theorem recexprlemm 6814
Description:  B is inhabited. Lemma for recexpr 6828. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemm  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemm
StepHypRef Expression
1 prop 6665 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 6668 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  A ) )
3 recclnq 6582 . . . . . . 7  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
4 nsmallnqq 6602 . . . . . . 7  |-  ( ( *Q `  x )  e.  Q.  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
53, 4syl 14 . . . . . 6  |-  ( x  e.  Q.  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
65adantr 270 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  ->  E. q  e.  Q.  q  <Q  ( *Q `  x ) )
7 recrecnq 6584 . . . . . . . . . . . 12  |-  ( x  e.  Q.  ->  ( *Q `  ( *Q `  x ) )  =  x )
87eleq1d 2147 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  ( 2nd `  A
)  <->  x  e.  ( 2nd `  A ) ) )
98anbi2d 451 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  <->  ( q  <Q  ( *Q `  x
)  /\  x  e.  ( 2nd `  A ) ) ) )
10 breq2 3789 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
q  <Q  y  <->  q  <Q  ( *Q `  x ) ) )
11 fveq2 5198 . . . . . . . . . . . . . 14  |-  ( y  =  ( *Q `  x )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  x ) ) )
1211eleq1d 2147 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  ( 2nd `  A )  <->  ( *Q `  ( *Q `  x
) )  e.  ( 2nd `  A ) ) )
1310, 12anbi12d 456 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  x )  ->  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( q  <Q  ( *Q `  x
)  /\  ( *Q `  ( *Q `  x
) )  e.  ( 2nd `  A ) ) ) )
1413spcegv 2686 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
153, 14syl 14 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  ( *Q `  ( *Q
`  x ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
169, 15sylbird 168 . . . . . . . . 9  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  x  e.  ( 2nd `  A ) )  ->  E. y ( q  <Q 
y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) ) )
17 recexpr.1 . . . . . . . . . 10  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1817recexprlemell 6812 . . . . . . . . 9  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
1916, 18syl6ibr 160 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
( q  <Q  ( *Q `  x )  /\  x  e.  ( 2nd `  A ) )  -> 
q  e.  ( 1st `  B ) ) )
2019expcomd 1370 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  e.  ( 2nd `  A )  ->  (
q  <Q  ( *Q `  x )  ->  q  e.  ( 1st `  B
) ) ) )
2120imp 122 . . . . . 6  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  -> 
( q  <Q  ( *Q `  x )  -> 
q  e.  ( 1st `  B ) ) )
2221reximdv 2462 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  -> 
( E. q  e. 
Q.  q  <Q  ( *Q `  x )  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) ) )
236, 22mpd 13 . . . 4  |-  ( ( x  e.  Q.  /\  x  e.  ( 2nd `  A ) )  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
2423rexlimiva 2472 . . 3  |-  ( E. x  e.  Q.  x  e.  ( 2nd `  A
)  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
251, 2, 243syl 17 . 2  |-  ( A  e.  P.  ->  E. q  e.  Q.  q  e.  ( 1st `  B ) )
26 prml 6667 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
27 1nq 6556 . . . . . . . 8  |-  1Q  e.  Q.
28 addclnq 6565 . . . . . . . 8  |-  ( ( ( *Q `  x
)  e.  Q.  /\  1Q  e.  Q. )  -> 
( ( *Q `  x )  +Q  1Q )  e.  Q. )
293, 27, 28sylancl 404 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  +Q  1Q )  e.  Q. )
30 ltaddnq 6597 . . . . . . . 8  |-  ( ( ( *Q `  x
)  e.  Q.  /\  1Q  e.  Q. )  -> 
( *Q `  x
)  <Q  ( ( *Q
`  x )  +Q  1Q ) )
313, 27, 30sylancl 404 . . . . . . 7  |-  ( x  e.  Q.  ->  ( *Q `  x )  <Q 
( ( *Q `  x )  +Q  1Q ) )
32 breq2 3789 . . . . . . . 8  |-  ( r  =  ( ( *Q
`  x )  +Q  1Q )  ->  (
( *Q `  x
)  <Q  r  <->  ( *Q `  x )  <Q  (
( *Q `  x
)  +Q  1Q ) ) )
3332rspcev 2701 . . . . . . 7  |-  ( ( ( ( *Q `  x )  +Q  1Q )  e.  Q.  /\  ( *Q `  x )  <Q 
( ( *Q `  x )  +Q  1Q ) )  ->  E. r  e.  Q.  ( *Q `  x )  <Q  r
)
3429, 31, 33syl2anc 403 . . . . . 6  |-  ( x  e.  Q.  ->  E. r  e.  Q.  ( *Q `  x )  <Q  r
)
3534adantr 270 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  ->  E. r  e.  Q.  ( *Q `  x ) 
<Q  r )
367eleq1d 2147 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
)  <->  x  e.  ( 1st `  A ) ) )
3736anbi2d 451 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  <->  ( ( *Q `  x )  <Q 
r  /\  x  e.  ( 1st `  A ) ) ) )
38 breq1 3788 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
y  <Q  r  <->  ( *Q `  x )  <Q  r
) )
3911eleq1d 2147 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  ( *Q `  x
) )  e.  ( 1st `  A ) ) )
4038, 39anbi12d 456 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  x )  ->  (
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( ( *Q `  x )  <Q 
r  /\  ( *Q `  ( *Q `  x
) )  e.  ( 1st `  A ) ) ) )
4140spcegv 2686 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
423, 41syl 14 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  ( *Q `  ( *Q `  x ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
4337, 42sylbird 168 . . . . . . . . 9  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  x  e.  ( 1st `  A ) )  ->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
4417recexprlemelu 6813 . . . . . . . . 9  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
4543, 44syl6ibr 160 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
( ( *Q `  x )  <Q  r  /\  x  e.  ( 1st `  A ) )  ->  r  e.  ( 2nd `  B ) ) )
4645expcomd 1370 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  e.  ( 1st `  A )  ->  (
( *Q `  x
)  <Q  r  ->  r  e.  ( 2nd `  B
) ) ) )
4746imp 122 . . . . . 6  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  -> 
( ( *Q `  x )  <Q  r  ->  r  e.  ( 2nd `  B ) ) )
4847reximdv 2462 . . . . 5  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  -> 
( E. r  e. 
Q.  ( *Q `  x )  <Q  r  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) ) )
4935, 48mpd 13 . . . 4  |-  ( ( x  e.  Q.  /\  x  e.  ( 1st `  A ) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
5049rexlimiva 2472 . . 3  |-  ( E. x  e.  Q.  x  e.  ( 1st `  A
)  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
511, 26, 503syl 17 . 2  |-  ( A  e.  P.  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
5225, 51jca 300 1  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   E.wrex 2349   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470   1Qc1q 6471    +Q cplq 6472   *Qcrq 6474    <Q cltq 6475   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656
This theorem is referenced by:  recexprlempr  6822
  Copyright terms: Public domain W3C validator