ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemell Unicode version

Theorem recexprlemell 6812
Description: Membership in the lower cut of  B. Lemma for recexpr 6828. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemell  |-  ( C  e.  ( 1st `  B
)  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem recexprlemell
StepHypRef Expression
1 elex 2610 . 2  |-  ( C  e.  ( 1st `  B
)  ->  C  e.  _V )
2 ltrelnq 6555 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4410 . . . . . 6  |-  ( C 
<Q  y  ->  ( C  e.  Q.  /\  y  e.  Q. ) )
43simpld 110 . . . . 5  |-  ( C 
<Q  y  ->  C  e. 
Q. )
5 elex 2610 . . . . 5  |-  ( C  e.  Q.  ->  C  e.  _V )
64, 5syl 14 . . . 4  |-  ( C 
<Q  y  ->  C  e. 
_V )
76adantr 270 . . 3  |-  ( ( C  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  C  e.  _V )
87exlimiv 1529 . 2  |-  ( E. y ( C  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  C  e.  _V )
9 breq1 3788 . . . . 5  |-  ( x  =  C  ->  (
x  <Q  y  <->  C  <Q  y ) )
109anbi1d 452 . . . 4  |-  ( x  =  C  ->  (
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( C  <Q  y  /\  ( *Q
`  y )  e.  ( 2nd `  A
) ) ) )
1110exbidv 1746 . . 3  |-  ( x  =  C  ->  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) ) )
12 recexpr.1 . . . . 5  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1312fveq2i 5201 . . . 4  |-  ( 1st `  B )  =  ( 1st `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )
14 nqex 6553 . . . . . 6  |-  Q.  e.  _V
152brel 4410 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
1615simpld 110 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
1716adantr 270 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
1817exlimiv 1529 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1918abssi 3069 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
2014, 19ssexi 3916 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  _V
212brel 4410 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
2221simprd 112 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
2322adantr 270 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
2423exlimiv 1529 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2524abssi 3069 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
2614, 25ssexi 3916 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  _V
2720, 26op1st 5793 . . . 4  |-  ( 1st `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )  =  { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) }
2813, 27eqtri 2101 . . 3  |-  ( 1st `  B )  =  {
x  |  E. y
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) }
2911, 28elab2g 2740 . 2  |-  ( C  e.  _V  ->  ( C  e.  ( 1st `  B )  <->  E. y
( C  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
301, 8, 29pm5.21nii 652 1  |-  ( C  e.  ( 1st `  B
)  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   _Vcvv 2601   <.cop 3401   class class class wbr 3785   ` cfv 4922   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470   *Qcrq 6474    <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1st 5787  df-qs 6135  df-ni 6494  df-nqqs 6538  df-ltnqqs 6543
This theorem is referenced by:  recexprlemm  6814  recexprlemopl  6815  recexprlemlol  6816  recexprlemdisj  6820  recexprlemloc  6821  recexprlem1ssl  6823  recexprlemss1l  6825
  Copyright terms: Public domain W3C validator