| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recexprlemelu | Unicode version | ||
| Description: Membership in the upper
cut of |
| Ref | Expression |
|---|---|
| recexpr.1 |
|
| Ref | Expression |
|---|---|
| recexprlemelu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2610 |
. 2
| |
| 2 | ltrelnq 6555 |
. . . . . . 7
| |
| 3 | 2 | brel 4410 |
. . . . . 6
|
| 4 | 3 | simprd 112 |
. . . . 5
|
| 5 | elex 2610 |
. . . . 5
| |
| 6 | 4, 5 | syl 14 |
. . . 4
|
| 7 | 6 | adantr 270 |
. . 3
|
| 8 | 7 | exlimiv 1529 |
. 2
|
| 9 | breq2 3789 |
. . . . 5
| |
| 10 | 9 | anbi1d 452 |
. . . 4
|
| 11 | 10 | exbidv 1746 |
. . 3
|
| 12 | recexpr.1 |
. . . . 5
| |
| 13 | 12 | fveq2i 5201 |
. . . 4
|
| 14 | nqex 6553 |
. . . . . 6
| |
| 15 | 2 | brel 4410 |
. . . . . . . . . 10
|
| 16 | 15 | simpld 110 |
. . . . . . . . 9
|
| 17 | 16 | adantr 270 |
. . . . . . . 8
|
| 18 | 17 | exlimiv 1529 |
. . . . . . 7
|
| 19 | 18 | abssi 3069 |
. . . . . 6
|
| 20 | 14, 19 | ssexi 3916 |
. . . . 5
|
| 21 | 2 | brel 4410 |
. . . . . . . . . 10
|
| 22 | 21 | simprd 112 |
. . . . . . . . 9
|
| 23 | 22 | adantr 270 |
. . . . . . . 8
|
| 24 | 23 | exlimiv 1529 |
. . . . . . 7
|
| 25 | 24 | abssi 3069 |
. . . . . 6
|
| 26 | 14, 25 | ssexi 3916 |
. . . . 5
|
| 27 | 20, 26 | op2nd 5794 |
. . . 4
|
| 28 | 13, 27 | eqtri 2101 |
. . 3
|
| 29 | 11, 28 | elab2g 2740 |
. 2
|
| 30 | 1, 8, 29 | pm5.21nii 652 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-2nd 5788 df-qs 6135 df-ni 6494 df-nqqs 6538 df-ltnqqs 6543 |
| This theorem is referenced by: recexprlemm 6814 recexprlemopu 6817 recexprlemupu 6818 recexprlemdisj 6820 recexprlemloc 6821 recexprlem1ssu 6824 recexprlemss1u 6826 |
| Copyright terms: Public domain | W3C validator |