ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemm GIF version

Theorem recexprlemm 6814
Description: 𝐵 is inhabited. Lemma for recexpr 6828. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemm (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemm
StepHypRef Expression
1 prop 6665 . . 3 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 6668 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd𝐴))
3 recclnq 6582 . . . . . . 7 (𝑥Q → (*Q𝑥) ∈ Q)
4 nsmallnqq 6602 . . . . . . 7 ((*Q𝑥) ∈ Q → ∃𝑞Q 𝑞 <Q (*Q𝑥))
53, 4syl 14 . . . . . 6 (𝑥Q → ∃𝑞Q 𝑞 <Q (*Q𝑥))
65adantr 270 . . . . 5 ((𝑥Q𝑥 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 <Q (*Q𝑥))
7 recrecnq 6584 . . . . . . . . . . . 12 (𝑥Q → (*Q‘(*Q𝑥)) = 𝑥)
87eleq1d 2147 . . . . . . . . . . 11 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ (2nd𝐴) ↔ 𝑥 ∈ (2nd𝐴)))
98anbi2d 451 . . . . . . . . . 10 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴))))
10 breq2 3789 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → (𝑞 <Q 𝑦𝑞 <Q (*Q𝑥)))
11 fveq2 5198 . . . . . . . . . . . . . 14 (𝑦 = (*Q𝑥) → (*Q𝑦) = (*Q‘(*Q𝑥)))
1211eleq1d 2147 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)))
1310, 12anbi12d 456 . . . . . . . . . . . 12 (𝑦 = (*Q𝑥) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴))))
1413spcegv 2686 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
153, 14syl 14 . . . . . . . . . 10 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
169, 15sylbird 168 . . . . . . . . 9 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
17 recexpr.1 . . . . . . . . . 10 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1817recexprlemell 6812 . . . . . . . . 9 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
1916, 18syl6ibr 160 . . . . . . . 8 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
2019expcomd 1370 . . . . . . 7 (𝑥Q → (𝑥 ∈ (2nd𝐴) → (𝑞 <Q (*Q𝑥) → 𝑞 ∈ (1st𝐵))))
2120imp 122 . . . . . 6 ((𝑥Q𝑥 ∈ (2nd𝐴)) → (𝑞 <Q (*Q𝑥) → 𝑞 ∈ (1st𝐵)))
2221reximdv 2462 . . . . 5 ((𝑥Q𝑥 ∈ (2nd𝐴)) → (∃𝑞Q 𝑞 <Q (*Q𝑥) → ∃𝑞Q 𝑞 ∈ (1st𝐵)))
236, 22mpd 13 . . . 4 ((𝑥Q𝑥 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 ∈ (1st𝐵))
2423rexlimiva 2472 . . 3 (∃𝑥Q 𝑥 ∈ (2nd𝐴) → ∃𝑞Q 𝑞 ∈ (1st𝐵))
251, 2, 243syl 17 . 2 (𝐴P → ∃𝑞Q 𝑞 ∈ (1st𝐵))
26 prml 6667 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
27 1nq 6556 . . . . . . . 8 1QQ
28 addclnq 6565 . . . . . . . 8 (((*Q𝑥) ∈ Q ∧ 1QQ) → ((*Q𝑥) +Q 1Q) ∈ Q)
293, 27, 28sylancl 404 . . . . . . 7 (𝑥Q → ((*Q𝑥) +Q 1Q) ∈ Q)
30 ltaddnq 6597 . . . . . . . 8 (((*Q𝑥) ∈ Q ∧ 1QQ) → (*Q𝑥) <Q ((*Q𝑥) +Q 1Q))
313, 27, 30sylancl 404 . . . . . . 7 (𝑥Q → (*Q𝑥) <Q ((*Q𝑥) +Q 1Q))
32 breq2 3789 . . . . . . . 8 (𝑟 = ((*Q𝑥) +Q 1Q) → ((*Q𝑥) <Q 𝑟 ↔ (*Q𝑥) <Q ((*Q𝑥) +Q 1Q)))
3332rspcev 2701 . . . . . . 7 ((((*Q𝑥) +Q 1Q) ∈ Q ∧ (*Q𝑥) <Q ((*Q𝑥) +Q 1Q)) → ∃𝑟Q (*Q𝑥) <Q 𝑟)
3429, 31, 33syl2anc 403 . . . . . 6 (𝑥Q → ∃𝑟Q (*Q𝑥) <Q 𝑟)
3534adantr 270 . . . . 5 ((𝑥Q𝑥 ∈ (1st𝐴)) → ∃𝑟Q (*Q𝑥) <Q 𝑟)
367eleq1d 2147 . . . . . . . . . . 11 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ (1st𝐴) ↔ 𝑥 ∈ (1st𝐴)))
3736anbi2d 451 . . . . . . . . . 10 (𝑥Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) ↔ ((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴))))
38 breq1 3788 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → (𝑦 <Q 𝑟 ↔ (*Q𝑥) <Q 𝑟))
3911eleq1d 2147 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘(*Q𝑥)) ∈ (1st𝐴)))
4038, 39anbi12d 456 . . . . . . . . . . . 12 (𝑦 = (*Q𝑥) → ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴))))
4140spcegv 2686 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
423, 41syl 14 . . . . . . . . . 10 (𝑥Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
4337, 42sylbird 168 . . . . . . . . 9 (𝑥Q → (((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
4417recexprlemelu 6813 . . . . . . . . 9 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
4543, 44syl6ibr 160 . . . . . . . 8 (𝑥Q → (((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
4645expcomd 1370 . . . . . . 7 (𝑥Q → (𝑥 ∈ (1st𝐴) → ((*Q𝑥) <Q 𝑟𝑟 ∈ (2nd𝐵))))
4746imp 122 . . . . . 6 ((𝑥Q𝑥 ∈ (1st𝐴)) → ((*Q𝑥) <Q 𝑟𝑟 ∈ (2nd𝐵)))
4847reximdv 2462 . . . . 5 ((𝑥Q𝑥 ∈ (1st𝐴)) → (∃𝑟Q (*Q𝑥) <Q 𝑟 → ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
4935, 48mpd 13 . . . 4 ((𝑥Q𝑥 ∈ (1st𝐴)) → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
5049rexlimiva 2472 . . 3 (∃𝑥Q 𝑥 ∈ (1st𝐴) → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
511, 26, 503syl 17 . 2 (𝐴P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
5225, 51jca 300 1 (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  {cab 2067  wrex 2349  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  Qcnq 6470  1Qc1q 6471   +Q cplq 6472  *Qcrq 6474   <Q cltq 6475  Pcnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656
This theorem is referenced by:  recexprlempr  6822
  Copyright terms: Public domain W3C validator