![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1qec | GIF version |
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) |
Ref | Expression |
---|---|
1qec | ⊢ (𝐴 ∈ N → 1Q = [〈𝐴, 𝐴〉] ~Q ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nqqs 6541 | . 2 ⊢ 1Q = [〈1𝑜, 1𝑜〉] ~Q | |
2 | 1pi 6505 | . . . 4 ⊢ 1𝑜 ∈ N | |
3 | mulcanenqec 6576 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1𝑜 ∈ N ∧ 1𝑜 ∈ N) → [〈(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)〉] ~Q = [〈1𝑜, 1𝑜〉] ~Q ) | |
4 | 2, 2, 3 | mp3an23 1260 | . . 3 ⊢ (𝐴 ∈ N → [〈(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)〉] ~Q = [〈1𝑜, 1𝑜〉] ~Q ) |
5 | mulidpi 6508 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐴 ·N 1𝑜) = 𝐴) | |
6 | 5, 5 | jca 300 | . . . 4 ⊢ (𝐴 ∈ N → ((𝐴 ·N 1𝑜) = 𝐴 ∧ (𝐴 ·N 1𝑜) = 𝐴)) |
7 | opeq12 3572 | . . . 4 ⊢ (((𝐴 ·N 1𝑜) = 𝐴 ∧ (𝐴 ·N 1𝑜) = 𝐴) → 〈(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)〉 = 〈𝐴, 𝐴〉) | |
8 | eceq1 6164 | . . . 4 ⊢ (〈(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)〉 = 〈𝐴, 𝐴〉 → [〈(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)〉] ~Q = [〈𝐴, 𝐴〉] ~Q ) | |
9 | 6, 7, 8 | 3syl 17 | . . 3 ⊢ (𝐴 ∈ N → [〈(𝐴 ·N 1𝑜), (𝐴 ·N 1𝑜)〉] ~Q = [〈𝐴, 𝐴〉] ~Q ) |
10 | 4, 9 | eqtr3d 2115 | . 2 ⊢ (𝐴 ∈ N → [〈1𝑜, 1𝑜〉] ~Q = [〈𝐴, 𝐴〉] ~Q ) |
11 | 1, 10 | syl5eq 2125 | 1 ⊢ (𝐴 ∈ N → 1Q = [〈𝐴, 𝐴〉] ~Q ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 〈cop 3401 (class class class)co 5532 1𝑜c1o 6017 [cec 6127 Ncnpi 6462 ·N cmi 6464 ~Q ceq 6469 1Qc1q 6471 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-ni 6494 df-mi 6496 df-enq 6537 df-1nqqs 6541 |
This theorem is referenced by: recexnq 6580 |
Copyright terms: Public domain | W3C validator |